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A classification is proposed for the variation functions in the variable local- 
ized geminals (VLG) approximation based on the types of variational function in 
the unrestricted Hartree-Fock (UHF) method for one-dimensional systems. It has 
been found that functions of VLG type provide better incorporation of electron- 
correlation effects than do UHF ones. A study has been made on the phase dia- 
gram for the electronic states of polyacetylene in relation to the electron- 
electron parameters in the extrended Hubbard Hamiltonian containing certain types 
of VLG function. 

Various theoretical approaches have been used [i-9] in research on one-dimensional con- 
jugated systems in order to give fuller incorporation of electron Coulom-interaction correlation 
effects. Here the generalized Hartree-Fock method (GHFM) and the variable localized geminal 
(VLG) method incorporate configuration interaction incompletely but can be applied effec- 
tively to more extended systems. Here we use ideas from [8] in new variational functions, 
whose performance is discussed in describing polyene chain features. 

VLG FUNCTION CLASSIFICATION 

The following form can be given for the variational wave function for the ground state 
of the ~ electrons in a cyclic polyene (CH)2M (with one ~ electron in each atomic carbon 
2pz orbital): 

M 

o= FI g~lO>, (1) 
rn=l 

u ~ + 2m ~ + v"- = I, ( 2 )  

where g~ is the operator for electron-pair generation in a geminal localized on atomic pair 
m, f~a~ is the operator for electron generation in one of the two one-electron (~ = • 1/2) 
states localized on pair m with spin o (o = +1/2 or -i/2, which is denoted by the subscripts 

and B). The operators f~ (fmao) are expressed in terms of the corresponding ones for an 
electron in AO n cn~ (cn~) and in MO ak~ (ak~) having quasimomentum k: 

]:m=o = V Umkq)akG, ( 3 
Ikl<le F 

' a 
~a~a ---- xa~ak~ -7- Yako ~a' ( 4 

-k = k -'~ 2kF, kF = a/2 ,  [ Xok~ I ~" + I Gk~  ? = i.  

ak~ = (2M) -1/2 ~-' exp ( - -  ikn) c~G. (5  
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The MO is localized on pair m by a unitary transformation [8, i0]: 

Umh =M-I/2exp[i(2m + i/2)k]. (6) 

The variational parameters x=~a, 9ak~ determine the type of the MO q ako, which corresponds 
to a one-electron density matrix with perturbed symmetry of period-doubling type. The cor- 
responding variational functions and density matrices relate to states of spin-wave "(SW) 
type, charge-wave (CW) type (deviation from translational symmetry in the diagonal density- 
matrix elements), or bond-order waves (BOW), spin bond-order waves (SBOW) (symmetry devia- 
tion in the nondiagonal density-matrix elements), and also states of mixed type with sym- 
metry deviations in the diagonal and nondiagonal elements (SW-BOW, CW-BOW, etc.). In the 
nodal representation, 

/.,~o = --V <mao I no> c.o, (7) 
n 

where the coefficients <maolno> are defined by (3)-(6). 

Formulas (i)-(6) provide the basis for constructing various VLG function type:s. The 
VLG functions having w =0 wiIl be denoted by VLG ~ One can use ~aka corresponding to states 
of SW, CW, BOW, and SBOW types in (3) to construct VLG functions having the following types: 
VLG-SW, VLG-CW, VLG-BOW, VLG-SBOW and (for w = 0) VLG~ VLG~ VLG~ and VLG~ 
We put Xak~-~l,  y~k~=O, in (4) to get 

=/aka, a=1/2,  
(Pak~ /ai~, a =  -- 1/2, 

which corresponds to the MO in the restricted Hartree-Fock method with completely symmetrical 
density matrix. For such ~, which are called plane waves (PW), one can construct two 
further VLG function types: VLG-PW and VLG~ The Xak o and Yako are expressed in terms 
of Xko and Yko: 

Xa~a ~ (a + 1/2)xka + (a - -  1/2)y,~, 
Y a k , =  (a + 1 / 2 ) y ~ a - - ( a - -  1/2)xk,~, ( t k l <  kF) 

(8) 

where the asterisk denotes the complex conjugate. 

The type of one-electron function ~ae~ is determined by the symmetry featureso• Yko in the 
substitutions k--~--k, o--~--o (Xko is unaltered in such substitutions): 

SW: Yka ---- Y-ka = --Yk.-a' 

gOWi Y*~ = - -  Y-ka = - -  Yk~ = ttk,-~' 

SBOW: g*~ = -- Y-~a = -- ~/~a ---- -- lJk,--~" 

(9) 

For v = 0, we get the GHFM function from the VLG ~ ones (or simply variational functions 
with a certain symmetry violation if qaka is not a GHFM solution): 

= I-I ~ , ~ . ~ 1 o > ,  
Ikl<k F 

whose type is defined by Yka in accordance with (9). 

The VLG function used in [8] was of the VLG~ type, so the alternat property 

(I0) 

<m,a,~lp, o> = (--1F+~<m,--a, olp, o> 

for <m, a, ~lP, @ (see (7)) is a consequence of the BOW relations in (9) for Yko" 
coefficients in (8) and (9) are real for SW and CW but imaginary for BOW and SBOW. 

The 

(11) 

614 



PAIR CORRELATORS FOR VLG FUNCTIONS 

The GHFM functions with symmetry deviations (SW, CW, or BOW) lead to nonzero pair cor- 
relation functions corresponding to long-range order (SW, CW, or BOW). The long-range order 
persists after the GHFM functions have been projected on a state with the correct symmetry 
[3], although such projection leads to zero spin density (for SW), zero charges (for CW), 
and identical bond orders (for BOW), i.e., the first correlation functions become zero. We 
have found the following pair correlation functions for functions of VLG ~ type that do not 
decrease with distance p-q between the atoms p and q: 

~%~o_sw:  <S~(p) S ~ ( q ) > = 4 ( - - l ) P - q 6  2 ( u i - v i )  ~, ( 1 2 )  

VLGO-- CW: <Q(p) Q(q)> = 4 ( - -  l);'-a6~" (u ~ - - u i )  ~, (i3) 

VLaO ._  BOW: (O (p) D (q)) = 4 ( - -  1) p-q A"- (u ~ - -  v"-)'-', (14) 

where 

C+ -~ Sz(p) = (p~,cp=--chf~cp~), Q(p) = V C'~,rCpa-- 1, D(p)= Z c~cp+~a--P; (15) 

and the parameter 6 (spin (charge) wave amplitude) is given by 

(v  t cgcqo I w) = 1/2 + ( - -  1)'6 

with the GHFM function of (i0) having the SW (CW) type, while P and A are given by 

( 1 6 )  

(~[c~cq+,~ I T) = P/2 + (-- 1) q A ( 17 ) 

with the (i0) GHFM function of BOW type. The expressions for the (12)-(14) correlators 
containing VLG ~ differ from the corresponding ones containing GHFM functions only in the 
factor (ui--ui)2<1. The transfer from GHFM to VLG-GHFM reduces the correlators and causes 
them to become zero in the strong-interaction limit, where the electron Coulomb-repulsion 
parameters greatly exceed the resonant parameters for interatomic electron jumps, and the 
contributions to the geminal from the filled and free MO become equal: ui-~ui-~I/2 These 
correlators should become zero for any values of the electron interaction parameters for 
the exact function. 

A spin correlator containing VLG~ or VLG~ contains only terms that decrease 
for p-q + = in accordance with (p--q)-~ ; such terms have been deleted on the right in (12)- 
(14). Other correlators containing VLG ~ of other symmetry types behave similarly: the 
density-density correlator containing VLG~ and VLG~ functions and the bond-bond 
correlator containing VLG~ and VLG~ ones. This reflects the fact that the VLG func- 
tions resemble the GHFM ones in establishing their own long-range order, and they constitute 
an artefact from the viewpoint of the exact solution. For example, it has been found that 
VLG states [ii, 12] show a tendency for a polyene to have alternating bond lengths, which 
is due to the use in [ii, 12] of a VLG~ function having the correlator of (14) different 
from zero. On the other hand, GHFM-SW function [12] and a VLG~ one will not lead to 
bond-length alternation in a polyene, where the latter can be verified. 

POLYENE TOTAL ENERGY IN THE VLG-CW 

APPROXIMATION 

We c o m p a r e  s e v e r a l  o f  t h e  s i m p l e r  t y p e s  o f  VLG f u n c t i o n  f o r  p e r f o r m a n c e  in  c a l c u l a t i n g  
the gound-state energy for a polyene (CH)2~ in an approximation based on an extended Hubbard 
H a m i l t o n i a n :  

H = -- ~ V (c~c~+~ ~- c~+~oC,~) ~,, V c~c~c<c,~= -B ~ -= 
n , ~  

+ Y1 V c~oC~o(C7+~ic~+~o. + c~o,c,~_~o.) - -  2Vl 'C c.~c~o + 2M7~, (18) 
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where B > 0 is the electron resonance integral (jump parameter), which is different from 
zero for adjacent carbon atoms, while ~0 and ~l are the electron Coulumb interaction param- 
eters for electrons correspondingly on the same atom and on adjacent carbon atoms. The 
penultimate term in (18) describes the electron attraction to the positively charged o 
core, while the last term describes the contribution from the repulsion between the positive 
ionic cores. 

The following is the total ground-state energy for a system having a VLG function of 
(1)-(6) and the Hamiltonian of (18) [13]: 

= E [",- + (':=) E 
m n=~m 

(19) 

The quantities in (19) here are 

I,.. = <Ol g,.Hr 0>, (20) 

j m n  = V 

a ,a ' , b ,b"  

A==,Abu (mm Inn 1 
\ aa' I bb' ! ' 

(21)  

K""~= ,-;V A,,a,Aw( mn, ab b'a'nm) 

a,a ' ,b ,b"  

(summation is over the two values +1/2 and -1/2 for each subscript 
in (20)-(22) are 

a,a ' ,  b ,b '  ). 

(22)  

The symbols 

A v v = u = + w  2, A~u=w~+v ~, Au~,=Av~=w(u+v) 
( v =  1/2, ~ = - - 1 / 2 )  

(23) 

and 

where 

rnrn' I nn' 
aa' ] bb' = ~-~(pqlrs)(raalp•215 (2a )  

�9 pqrs 

(Pq I rs) = 8pqS~ [6p~% + Yl (~,r-1 + ~,r+,)], (25)  

We examine t he  p o l y e n e  e n e r g y  f o r  VLG -CW f u n c t i o n s  o f  t he  s i m p l e s t  form w i t h  

xk~=x ,  Yk~=Y (x ~+y~== 1) ( 2 6 )  

(see (9)) and denote this function type as VLG-CWy. We derive energy expressions for simple 
VLG function types (VLG-CW, VLG~ VLG-PW, and so on) and compare the type for performance. 

With VLG-CWy, the diagonal contribution is 

Im = h +  G,~, (27) 

where 

h = 2 V Aaa, t==,--4yl, t~, = 4f5 (xja , - -y~ya,) /a ;  
Q.a' 

r )  ( ( ) Gm = u~ mm mm -~ v"- mm ]+%o_ mm ram' r 
"7" 

~V I ~V , ~t~ ~qtt / vV ~t~ 

p.------1/2, v =  1,'2. 
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/ d 

z ~ /7 o 

Fig. i. Phase diagram for an infinity polyene derived in the 
VLG-CWy approximation (above the F boundary in the plane of 
U 0 and U l, the charge-wave state is the ground one, while below 
F, the ground state does not have long-range order): i) 
straight line K = 0 (Uo=12 U,/a 2) ; 2) line U,=Uo/2 ; 3) line U~=5"Uo/12. 

We have from (3)-(6) and (26) for (maln)=(nlma> that 

(2/[ ma) = ( - -  1) m-t  P=/2a (m - -  t + 1/4), 

<2t + 1 [ma> = ( - -  1) ~ - t  Q=/2~ (m - -  t - -  I/4), 

P ~ = x ~ + y ~ ,  O a = Y ~ - - ~ "  

The following sums over (m, n) must be calculated to derive the total energy of (19) via 
( 2 4 ) - ( 2 8 ) :  

(28) 

We put 

 (mnrnm) 
aa' bb' 

r I ~ m  

$1 = PaPa,PbP~, 4" QaQ,,,QbQ.b,, 

. 

$1, V m m  n n  = S ~ + ~ ( a ~ - - 4 ) $ 2 ,  
- - -  , aa' aa' 
n ~ m  

So_ = PaP~ObQv, § QaQ~,PbPo,. 

( 2 9 )  

u = c o s ~ c o s  z, v = s i n ~ c o s z ,  m = (1 / |  '-2) s in  %, x = c o s O ,  y = s i n O  

and use (19)-(23) with (29) to get an expression for the total energy E=E(%%,0) 
tron: 

(30) 

per elec- 

s(~,  ~, o) = (1/2M)E (~, x, 0). 

The energy is defined by this expression for 8 = 0 for VLG-PW functions, or with X = e = 0 
for VLG~ 

Analytic and numerical studies on e(~, %, 0) have been made with various values of 
U0=y0/~ and U1=y1/~ , which have shown that in the (U0, UI) plane there is a boundary F 
(Fig. i) below which (UI~UI(F)) the VLG~ states are favored by energy (the minimum in 
e(~, X, e) occurs for X = e = 0). Above F (U~>UI(F)), the. VLG-CWy state having %~0, 0~-0 
is favored by energy. In the VLG~ state, e(~, 0, 0) has a minimum at ff = q0, where 
~0 is defined by 

t g 2 q  o = - - .~K /24 ,  K U o - -  12Ui/~2. ( 3 1 )  

F o r  s m a l l  U o a n d  U z (Uo, U I < < I ) ,  we h a v e  

617 



0 ~; x "'~ //: ̂ 
a b 

Fig. 2. Dependence of Yk on the quasi- 
momentum k for: a) GHFM-SW (CW); b) 
GHFM-BOW. 

e (q9 o, 0, 0)/1~ = -- 4/~ q- Uo/4 -- 2U~/~ ~- -- ~K2/288 + 0 (K~). (32) 

The same expansions for e have been derived in [8] (for U I = 0) and in [14] (for U I # 0). 

The VLG~ solution of (31) has been examined in the region Uo, Ul~l for Ut>UI(F) 
by means of a second-derivative matrix calculated for the point (~, X, 0)--=-(~0, 0, 0) : 

i 0 0 ~ a2 e 02e O~e O=e 
C D j ,  B = - - ~ , ,  C = - -  D = - -  F =  

�9 D F ax ~ ' o;<oo ' 002 
(33) 

The simple expression for B is 

B = (1/3g) cos 2(po (48 + ~zK2/12) > O. 

The analytic-calculation system REDUCE-2 [15] has been used to derive expressions for C, 
D, and F. In the region U0, UI~I, there are critical values U~ r for which VLG~ becomes 
unstable: 

c r  

UI = 6z~/(4~"-.-- 11) (Uo = O) 

u e r - =  3~x/2 (z~ 2 - -  5) (Uo = 12UJ~2)o 
(34) 

The U~ r at which the VLG~ state vanishes is close to the Ux(F),for which the VLG~ 
state ceases to be the ground one. 

In the region U0, UI>>I , one can determine the relative magnitudes of the energy minima 
for the VLG states only by direct energy calculation. The solution containing (~0, 0, 0) 
remains stable, although it may be higher in energy than the (~,%,0) solution. We have 
found for U0, UI>>I that the F line approaches the following straight line asymptotically: 

Ua~O.41Uo.  (35 

This numerical result is readily explained by comparing the energies for the VLG~ and 
VLG-CWy states in the limit U0, U~>>I; for VLG~ we have [8] 

~(VLG ~ --- Vw)~Uo/12.  (36 

For VLG-CWy, we get numerically, as in GHFM for the SW state for U0, UI>>I ) that 

~(VLG --cwu)~U./2--U1. 

We e q u a t e  ( 3 6 )  and  ( 3 7 )  t o  g e t  

(37  

U1 (F) = (5/12)U o ~ 0,416U o. (38 

DISCUSSION 

It has been shown in [8, 9] and here that all the VLG functions (including the simple 
VLG~ ones) give a description of correlation effects in polyene chains better than do the 
GHFM ones. We have examined the relative energies for various VLG-type states on the simple 
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VLG-CWy example. For UI<UI(F), the VLG~ state energy is less than the VLG-CW. value, 
which coincides in this parameter region with the VLG~ state. For U0, UI<<I , t~e energy 
difference between these states is small: 

8 (VLG -- CWu)--S(VLG 0 -- BOW) -----8(VLG o__ PW)--a(VLG: ~ - BOW) = O(K ~) 

In the range U~>U,(F), the VLGF-CWystate has energy lower than VLG~ described 
in [8]. The forms of the F boundary separating the state having nonzero CW amplitude differ 
considerably from the phase diagram derived in the GHFM method [2], and also from numerical 
calculations by Monte Carlo methods [16] and from the renorm-group method [17, 18] on account 
of our approximation for x k and Yk in (26), which describes the behavior of these quantities 
incorrectly for k = k F. The k dependence of Yk in the self-consistent GHFM for SW states 
is [2] 

t x ) (Vo6/ l  ~ Vo6" + 413 ~ cos~ k ) , Y h = s i n  ~ - a r c s i n  r ~ ~ (39) 

while for CW states, 70 must be replaced by 471--?0 , while 6 is a variational-function param- 
eter. Figure 2a shows Yk for the GHFM-CW and SW functions; Fig. 2b gives lYk] for the BOW 
function obtained in the self-consistent GHFM. 

Figure 2a shows that Yk = const represents Yk closely for large U 0 and Ul, where 
y~_~]/]/2 , but describes it incorrectly for small and medium U 0 and U I. That situation has 
been found previously [ii, 19] for VLG~ functions. With ]yk]=sinO h, @h=%k , where % 
is a variational parameter, it has proved impossible to describe the system energy correctly 
for U 0 + 0, whereas Ok = (I/2)arctg(ltgk) with any ~ gives Ok F = ~/4, which enables one to de- 
scribe the energy correclty for U 0 ~ 0. 

Then the choice of one-electron basis can have a marked effect on the VLG behavior, as 
is evident also in the asynmptotic UI(F) for large U 0 and U I. For U0, UI>>I , the position 
of F is defined from comparing the energies of VLG-CWy in (37) and VLG ~ PW in (36). When 

one compares the VLG-CWy energy with the energy of the VLG~ state [8] 

( V-LG o - -  sow) ~ 1/Uo ~ O, 

we get an equation for the F boundary: 

Uo>> I 

U1 (r) = Uo/2. 

We are indebted to V. Ya. Krivnov and A. Yu. Kon for a valuable discussion and to V. M. 
Pak for providing the optimization program. 
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