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Summary. A semiempirical effective Hamiltonian treatment is proposed for 
transition metal complexes, taking into account d-electron correlations, weak 
covalency of the metal-ligand bonds and the electronic structure of the ligand 
sphere. The technique uses the variation wave function which differs from the 
usual Hartree Fock antisymmetrized product of molecular orbitals extended 
over the whole complex. The scheme is implemented and parameters describing 
the metal-ligand interactions are adjusted to reproduce d-d-excitation spectra of 
a number of octahedral MF 4 (M = Mn, Fe, Co, Ni) anions, Mn(FH)6 2+ cation, 
CoC14- anion, and a tetrahedral CoC1]- anion. The values of the parameters are 
reasonable, thus confirming the validity of the proposed scheme. 
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1. Introduction 

The electronic structure of transition metal complexes (TMC) has some specific 
features accounted for by the d-electrons of the transition metal atom. These 
unusual characteristics become apparent in the optical absorption spectra, in the 
magnetic properties of the TMC, etc. It is common practice to fit the experimen- 
tal electronic spectra of TMC and the results of magnetic measurements to the 
crystal field (CF) theory [1] (see also [2-6]) which implies that nd-electrons of 
the central ion of the complex (here n is the principal quantum number) form an 
isolated system placed in the electrostatic field of point charges (or point dipoles) 
modelling the ligand sphere. All other electrons placed either in the ligand or in 
the outer valence ((n + 1)s and (n + 1)p) metal orbitals are not considered 
explicitly. 

In contrast with the CF scheme, the calculation methods applied to TMC 
usually account for either all or at least the valence electrons both in the central 
ion and in the ligands. These methods are mainly based upon the Hartree- 
Fock-Roothan (HFR) approximation [7]. An exception is the Generalized 
Valence Bond (GVB) method [8] which has been recently applied to TMC 
[9-11]. The calculations in the HFR approximation are carried out both on the 
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ab-initio and semiempirical level. For the ab-initio calculations with extended 
configuration interaction (CI) (see for example [12-16] and references therein) 
and the semiempirical ones with elaborated parameterization (see for example 
[17-22] and references therein) the calculated transition energies are in quite 
good agreement with those observed in experiment. Despite numerical agreement 
between the HFR calculations and the experimental excitation spectra, the entire 
body of experimental data and theoretical calculations concerning TMC is in 
certain disagreement with the Hartree-Fock picture of the electronic structure of 
TMC as a whole. The major contradictions are the following: 

(i) The Koopmans' theorem is not valid for the ionization transitions involving 
one-electron states with a large contribution from atomic d-orbitals [23]. 

(ii) The Aufbauprinzip is frequently violated for the orbitals with large contribu- 
tions from atomic d-orbitals [24-26]. 

(ii) The HFR self-consistency procedure in the calculations of TMC either 
converges very slowly or oscillates [27]. 

The nonvalidity of the Koopmans' theorem by itself raises questions about the 
HFR picture of the electronic structure of TMC. The Hartree-Fock many- 
electron wave function is an antisymrnetrized product of one-electron states 
(molecular orbitals, MO) delocalized over the whole complex. Each electron is 
considered as if it moved in the mean (self-consistent) field induced by nuclei and 
all other electrons. However, it is meaningless to speak about the self-consistent 
field when it turns out to be completely different for different ionic forms of a 
complex or for its different spin states. Quantitatively that phenomenon is 
usually discussed in terms of orbital relaxation energies. Removal of an electron 
from the MO with large contribution from metal d-orbitals can be accompanied 
by relaxation of the orbital energy by about 10-20 eV (!) [27]. Indeed the 
statement that the SCF strongly changes when a TMC molecule is ionized or 
excited means that electrons do not experience any mean field but by contrast 
trace any motion of each other very carefully. Therefore electrons in that case 
cannot be treated as independent particles in some external (though self-consis- 
tent) field, but in contrast their motion is strongly correlated. 

Violation of the Aufbauprinzip also indicates the particular importance of 
electron correlation effects. Clearly, the CI procedure can take into account all 
these effects, but it is known that the CI series taking the HFR orbitals as a 
one-electron basis set converge quite slowly [28] and a large number of configu- 
rations should be considered. Thus the qualitative picture which is possible only 
when one or two configurations give the main contribution to the expansion of 
the ground-state wave function turns out to be lost. 

Even the most successful parameterization scheme developed for TMC (the 
INDO-parameterization by Zerner and coworkers [19-22, 27]) based on the 
HFR approximation is not free from the general contradictions outlined above, 
which are inherent to the HFR scheme. For example, the HFR ground states of 
both CuC1]- and CoC1]- obtained in [27] violate the Aufbauprinzip and thus 
they are not minima of the Hartree-Fock energy functional. The same situation 
occurs in the recent calculations on iron (II) porphyrins [21]. All the HFR states 
with nonzero spin violate the Aufbauprinzip, namely, all the singly occupied 
orbitals in the Slater determinants representing these states have lower orbital 
energies than some doubly occupied orbitals. It naturally leads to the instability 
of the Hartree-Fock solution. The self-consistent orbitals [21, 22] for the inter- 
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mediate and high spin states of iron porphyrins are not those of correct 
symmetry, thus indicating serious problems in the HFR approximation itself. 

Summarizing the above observations we can state that a partially filled 
d-shell causes considerable complications in the HFR treatment of the electronic 
structure of TMC. The agreement between HFR calculations and experiments is 
achieved either by elaborated adjustment of parameters or at a heavy cost of loss 
of any qualitative picture of the problem. For these reasons we tried to find a 
point of view of the electronic structure of TMC different from the commonly 
adopted HFR one. Our purpose is to describe the electronic structure of TMC 
conserving some qualitative view and to try to avoid the above-mentioned 
contradictions which are inherent to the HFR approximation. 

The origin of all these contradictions lies in the strong Coulomb interaction 
between electrons in the d-orbitals of the central atom and relatively weak 
resonance interaction of these orbitals with other orbitals in the TMC molecule. 
In the NiF 4 anion the ratios of the one-center Coulomb repulsion parameters 
to the resonance integrals between Ni orbitals and F 2p-orbitals are about 50 for 
3d-orbitals, about 1.5 for 4s-orbitals, and about 1 for 4p-orbitals of the Ni atom 
(parameters are taken from [29]). Similar values can be obtained for other 
complexes and other parameterizations. By comparison, this ratio for rc-orbitals 
in benzene is about 4 (PPP parameters). Harrison notes the similar situation in 
magnetic insulators and crystals with paramagnetic impurities [30]. In this case, 
when intraatomic matrix elements of the Coulomb interaction turn out to be 
more significant than the interatomic matrix elements taken as a basis for band 
structure calculations (the Coulomb-to-resonance ratio >> 1), electrons in the 
crystal are to be described with use of local states rather than Bloch states 
delocalized over whole crystal. The excitation spectrum of the crystal (for 
example MnO) coincides with the band spectrum of the simple ionic crystal CaO 
completed with the spectrum of d-shells splitted by the crystal field. 

In the case of TMC the molecular orbitals take part of the delocalized Bloch 
states in crystals. As in the case of crystals with partially filled d-shells it seems 
to be inappropriate to consider in a unified approach the orbitals for which the 
Coulomb-to-resonance ratios differ by orders of magnitude. It is natural to unite 
the orbitals with modest (e.g. smaller than 10) Coulomb-to-resonance ratios in 
one group (called below the ligand subsystem) and consider them in the 
framework of the HFR approach as it is done with the states which are 
responsible for formation of the CaO-like band structure in the theory of 
transition metal monoxides [30]. This is indirectly supported by the observation 
that the above-mentioned contradictions (i)-(iii) usually do not arise for the 
orbitals formed mainly by the ligand atomic orbitals. 

The orbitals for which the Coulomb-to-resonance ratios exceed 10 (d- 
orbitals) should be considered separately as the CF theory does. The general 
picture of the electronic structure of TMC which arises in the framework of the 
CF theory is very attractive. The CF theory implies that the spectra of TMC are 
completely determined by excitations in their d-shells. That attribution is correct 
with an obvious exception of charge-transfer excitations and, moreover, it is 
perfectly correct for low energy excitations which are responsible for the mag- 
netic properties [5] and which are important for the catalytic activity of TMC 
[31]. The CF theory takes into account the correlation effects in the d-shell of the 
central ion by inclusion of full configurational manifold for the given number of 
d-electrons. However, the problem is that the CF parameters obtained by 
numerical fit of the observed energy level to the computations strongly differ 
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from those obtained by direct calculations based upon the original CF model 
(with the ligands modelled as point charges). This discrepancy indicates that 
some other effects not included in the original electrostatic CF model (first of all 
the effects of metal-ligand covalency, i.e., the resonance interaction between 
d-orbitals and the ligand ones) are important and must be taken into account. 

From our point of view, a physically adequate method for the description of 
the electronic structure of TMC should be constructed as follows: 

(a) Electrons in the ligands together with those in the metal's outer valence (s- 
and p-) orbitals should be treated in the HFR approximation. 

(b) Electrons in the d-orbitals of the metal should be considered in the frame- 
work of the CF approach. 

(c) The resonance interaction of the d-subsystem with the ligand subsystem 
(effects of covalency) should be included into the scheme by perturbative (for 
example, L6wdin projection) technique giving an effective CF Hamiltonian for 
d-electrons. 

The paper is organized as follows. In Sect. 2.1 we derive an effective 
Hamiltonian for TMC with isolated d-shell. In Sects. 2.2 and 2.3, respectively, 
the effective Hamiltonians for d- and ligand subsystems are derived. Introducing 
physical assumptions we parameterize our scheme in Sect. 3.1 and present results 
of calculations in Sect. 3.2. Some discussions and comments are given in Sect. 4. 
Derivations of complex formulae are presented in the Appendices A and B. 

2. Theory 

2.1. Effective Hamiltonian for T M C  

Let us consider the one-electron basis functions of TMC. In the valence 
approximations 4s-, 4p- and 3d-orbitals of the metal atom and valence orbitals 
of the ligand atoms are the basis orbitals. The chosen basis of atomic orbitals 
(AO) can be divided into two parts with respect to their Coulomb-to-resonance 
ratios. The first part contains 3d-orbitals of the transition metal atom which 
have large Coulomb-to-resonance ratio (d-subsystem). The second part contains 
4s-, 4p-orbitals of the transition metal atom and valence orbitals of the ligand 
atoms with relatively small Coulomb-to-resonance ratios (ligand subsystem). The 
exact valence Hamiltonian for TMC can be written without loss of generality in 
the form: 

H = H d + H L  + H c + H  r (1) 

where Hd is the Hamiltonian for d-electrons in the field of the atomic cores of 
TMC, HL is the Hamiltonian for electrons in the ligand subsystem, H c and Hr 
are, respectively, operators of the Coulomb and the resonance interaction 
between the subsystems. 

The exact wave function of the ground state of TMC can be presented as a 
superposition of functions which describe different distributions of N valence 
electrons among the subsystems: 

= ~ ~ Ci(n, N - n)#i(n, X - n) (2) 
n i 
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where n is the number of electrons in the d-subsystem. We however intend to 
describe the electronic structure of TMC using an approximate wave function 
with fixed number of d-electrons which coincides with the number of d-electrons 
in the relevant valence state of the metal ion of TMC. The configurations with 
other numbers of d-electrons will be taken into account with use of the L6wdin 
partition technique [32] (see also Ref. [33]). 

Following the L6wdin partition technique, we introduce the projection 
operator on the subspace which is spanned by the functions with a fixed number 
of d-electrons na and with nL = N -- n a electrons in the ligand subsystem: 

e = ~ I,~i (ndnD)(~e (ndnL) [ (3) 
i 

and the complementary operator Q = 1 - P .  Inserting the identity ~ = P7 j 4. Q~ 
into the Schr6dinger equation H7 t = E~  where H is the exact Hamiltonian Eq. 
(1), and multiplying the result in turn by P and Q from the left, one obtains the 
pair of equations: 

PHPP~P + P H Q Q ~  = EP7: (4) 

QHPP7 j + QHQQ7 j = E Q ~  (5) 

Solving formally Eq. (5) with respect to Q7 j and inserting the result into Eq. (4), 
one obtains the equation for the function PTJ: 

[PHP + PHQ(EQ - QHQ) -1QHP]PTt = EP7  j (6) 

The expression in square brackets is the effective Hamiltonian Heft(E). It 
operates in the subspace spanned by the functions with a fixed number of 
d-electrons (in the P-block), but its eigenvalues coincide with those of the exact 
Hamiltonian Eq. (1). For further simplification let us assume that the operator 
Hc does not change the number of electrons in the subsystems. This means that 
in the Coulomb interaction operator we neglect the terms which mix the 
functions with different numbers of d-electrons (terms with different n in Eq. 
(2)). Therefore only the one-electron operator Hr mixes functions with n's 
differing by 1 and thus gives a nonvanishing contribution to the resolvent term 
of the effective Hamiltonian Eq. (6). Thus Heft(E) can be rewritten in the form: 

H eft = PHoP 4- HR.  (7) 

where 

Ho= Hd 4. HL 4"He (8) 

HRR = PH,.Q(EQ - QHoQ) IQHrP (9) 

The energies of the states of TMC are to be found from the equation: 

(~,, Igef t (E, )[~ ) = En (10) 

where variation wave functions On belong to the P-block and will be defined 
explicitly below. 

In order to find the n-th eigenvalue of H, the latter equation has to be solved 
iteratively until convergence in E n is achieved. However, it has been noted in Ref. 
[34] that the dependence of the effective Hamiltonian of the type Eq. (6) on 
energy is weak enough in the case when all resolvent poles are far enough from 
the energy eigenvalue to be found. Since the energy of the lowest charge transfer 
(between the subsystems) state is considerably higher than the energies of 
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excitations in the d-subsystem, we neglect this dependence and consider the 
effective Hamiltonian Heff(Eo) where E 0 is the ground-state energy of the 
Hamiltonian H 0. The energy E 0 is assumed to be the zero energy. The effective 
operator Heff(Eo) corresponds to the second order of the operator perturbation 
theory with resonance operator Hr as a perturbation [35]. 

The symmetry- and spin-adapted external products of the group functions of 
the subsystems form the basis in the P-block. They are the functions of the 
definite total spin S and spin projection # and belong to the definite row ~ of the 
definite irreducible representation /~ of the point symmetry group. The total 
number of electrons N equals to n d + nL : 

]ndk; nL k ' )  = IndSF ; nL S 'F'  ; NSS Ff  ) (11) 

Here nd is the number of d-electrons in the ground state of the free transition 
metal ion, nc is the number of electrons in the ligand subsystem. 

The functions ~b, from Eq. (10) can be presented as linear combinations of 
the basis states defined by Eq. (11): 

4. = E C k,l,dk; (12) 
k,k' 

In the present consideration we restrict ourselves to the case of the complexes 
where excitations in the ligand subsystem (and also ligand-to-metal and metal- 
to-ligand charge transfer ones) are of relatively high energy as compared to the 
excitations in the d-subsystem and thus their interference is negligible. The major 
group of TMC with the ligands having closed electronic shells (e.g., halogen 
anions, closed-shell donors like ammines, water, etc.) satisfies this condition. In 
such complexes the number of electrons in the ligand subsystem is even, 
therefore the ground state of the ligand subsystem can be described by a Slater 
determinant ~L(~AI) with zero total spin. The wave function ~, is transformed 
to the simple form: 

According to the group theory rules, both the spin multiplicity and the point 
symmetry of the functions of the type Eq. (13) coincide with those of the functions 
• }. Note that the wave function in the form of Eq. (13) satisfies our qualitative 
conditions (a) and (b) formulated in the Introduction. The function of the ligand 
subsystem ~L is a single Slater determinant formed by delocalized MOs and it is 
analogous to the wave function describing the CaO-like part of transition metal 
monoxides. The function ~} is the function of d-electrons only, and it can be 
selected from the full CI manifold of ne electrons distributed in five d-orbitals. 

The variation functions ~} and ~L can be found by the minimization of the 
following functional: 

.~[qb] -- ~[q~, q)L] ----- ( # ,  IHeff(Eo)If,, ) (14) 

with respect to the strong orthogonality condition [36], which we assume to be 
satisfied. 

The minimization of the functional Eq. (14) gives a pair of interconnected 
equations for the functions ~b~ and ~b c (see Ref. [33]): 

Hf(/),~ = E~/i~ (15) 

H ~ L  = EL (bE (16) 
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The effective Hamiltonians for the subsystems are given by: 

H ~  = H a + (cI) L [Hc + HRR [~L ) (17) 

H ~  = HL + (~[H~ + HRI~[q~) (18) 

To derive the Hamiltonians of Eqs. (17) and (18) the explicit forms of the 
functions 4~ and 4~ L are not needed. All the necessary information is condensed 
in the corresponding density matrices. According to Ref. [33] the system of Eqs. 
(15) and (16) has to be solved by iterations. We replace the iteration procedure 
by setting effective parameters into H~ r and H r .  In effect we do not need to 
parameterize the Hamiltonian H~.  Since the function eL is to be found in the 
HFR approximation we need the effective Fock operator F~ r only. We start from 
an initial density matrix Q of the d-subsystem. Using this matrix we construct the 
effective Fock operator F ~  and then find the ground-state Slater determinant ~L 
and orbital energies e~. Thorough analysis of Eq. (9) reveals, however, that the 
energies of the charge-transfer states (the poles of the resolvent) are to be 
calculated for the Hamiltonian Ho (Eq. (8)) where the resonance term is absent. 
Therefore the orbital energies of the ligand subsystem e; are also to be calculated 
without H~. Hence we omit the term HRR in Eq. (18). Inserting the result of the 
calculation on the ligand subsystem 4~/. and e~ in Eq. (17) we get the effective 
Hamiltonian H f .  The diagonalization of the latter gives the energies of the 
d-electron terms of TMC. In this model they are equivalent to the energies of 
low-lying excited states of the entire complex. The energies of the relevant charge 
transfer states correspond to the poles of the resolvent factor in the definition of 
the operator//Re, Eq. (9). 

2.2. Derivation of H ~  (Eq. 18) and F ~  

The definition of H~ r (Eq. (18)) can be rewritten in the form: 

H ~ =  HL + ((Hc ))a + ((H,R ))d 

where (( . . .  ))d denotes the average over degrees of freedom of d-subsystem. 
According to the previous section, the term ((HRR))d is to be omitted. 

The Hamiltonian Hc for electrons in the ligand 

G 

+ Z ~i,(b + b,~ + h.c.) + • ~H, b + b,,~ + ½ Z (rs I tu)b + b,~ b + but 
i,1 ll" r s t u  

subsystem can be written as: 

(19) 

where bi + (bi,) are the creation (annihilation) operators of an electron with the 
spin projection o- on the i-th valence AO of the ligand subsystem. The first term 
describes the interactions of electrons on the metal 4s- and 4p-orbitals 
(i = 4s, 4px, 4py, 4pz) with the metal core (parameters Uii < 0) and with the 
ligand atom cores (parameters VML > 0). The second term describes the interac- 
tions of electrons in the ligand AO's with their cores (parameters Uu < 0), with 
the cores of the other ligand atoms (parameters VLL' > 0) and with the metal 
core (parameter VLM > 0). The third and the fourth terms describe the resonance 
interactions in the ligand subsystem (parameters /3~/< 0 and /?H, < 0). The last 
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term describes the Coulomb interactions of electrons ((rsltu) are the correspond- 
ing Coulomb integrals). 

The influence of d-electrons upon the ligand subsystem electrons is con- 
densed in the term ((H~))a. According to Ref. [33] the averages of the Coulomb 
interaction operator over some subsystem density matrix gives contributions only 
to the one-electron part of the effective Hamiltonian of another subsystem. 
Correspondingly, only the one-electron part of the subsystem Fock operator will 
be renormalized by the ((H~))a term. Let us take the initial density matrix of the 
d-subsystem (5) in the form: 

0~,~ = g).~na/5 (20) 

Tr[0] = nd 

Such a matrix describes a uniform distribution of electrons in the d-orbitals of 
the metal atom. The operator H~ comprises two terms: 

H~ = H~ ° + H~ 2) (21) 

where H(~ 1) is the operator for the intraatomic Coulomb interaction of d-elec- 
trons with 4s- and 4p-electrons on the metal and H(~ 2) is the operator for the 
interatomic Coulomb interaction of d-electrons with ligand electrons. 

Averaging the operator H(~ 1) over the one-electron density matrix 0 one 
obtains [33]: 

where 

((~/~l~))~ = y Z ( j / j  1 + - 2K~j)bi~ bj~ (22) 
I ,J  ¢~ 

/2,V 

K o = • e~v(~ilvj) 
/z,V 

Taking into account the special form of 0u, (Eq. (20)) one obtains: 

((H~ 1) )),  = Z ( , ,  IV) - ~(,' I~J) bi~ bj~ (23) 
,,s 

Due to spherical symmetry of atoms, the integrals (## ]#') and (#i [#j) are 
nonvanishing if i = j  only (see [27]). Thus we have: 

na ~ guifii (24) ((/-t~ 1) >), = E S 

where g,, (##[ii)=½(#i1~i), and f i ; = E ~  + = b,-~ b~ is the electron number oper- 
ator for the i-th AO. 

The operator H(~ 2) can be written in the form: 

~i(g~ = Z Z E (~u'lU)dyod..obZb.. = E Z Z vL.a;od..~ Z ~, 
#,,u" 1 a , z  # , I t"  a L l ~ L 

= Z Z Z V~.,d%d.,~ Z ~, (25) 
m , m "  ~r L I E L 

where (##']I1) is the Coulomb integral which we assume to have the same value 
+ + (d~,~, dm,~) stand V~, for all the AO's l centered on the ligand atom L. d,~, d,,~ 



Transition metal complexes: electronic structure/optical spectra 397 

for the operators of creation (annihilation) of an electron either on the /,-th 
(p'-th) real d-AO (with the angular part taken as cubic harmonic) or on the 
complex d-AO (the angular part of the complex function is taken as a familiar 
spherical harmonic) with the angular momentum projection quantum number m 
(m'). The given form of the operator H(~ 2) corresponds to the following approx- 
imation. The Coulomb interaction of d-electrons with an electron in the ligand 
AO l is considered as the interaction of the d-electron with point unit charge 
placed on the ligand atom L, All the Coulomb integrals (##'[//) where AO l is 
centered on the ligand atom L are set equal to V~r~, which is the matrix element 
of the operator for the potential energy of d-electron interacting with a unit 
charge placed on the ligand atom L. The matrix elements of the latter operator 
in the basis of the spherical harmonics have the form: 

e 2 

r ( m [ ~ l m ) = e  2 ~, Fk(RL)Yr~-m'(OL,4)L)A'~ m" (26) V r a m "  ~ t 

i ,  - 1 , , r  l k = 0 , 2 , 4  

Here e is the electron charge; (RL, Or, OL) are the spherical coordinates of the 
ligand atom L (the coordinates of the metal atom are (0, 0, 0)); 

Fk(R) = R (k+ 1) rkR2a(r)r2 dr + R k r (k + l)R2d(r)r2 dr (27) 

are the functions of the distance R L between the metal atom and the ligand atom 
L (R3a(D are the radial functions for d-orbitals); Y~'- m'(0L, ~bL) are the spherical 
functions; A~ m" are the coefficients which are related to the Wigner 3j-symbols by 
the following formula: 

A,~m.=(_l)m.5[4, / (2k+l)] i /2(~ k ~ ) (  2 k 2 )  
0 - m  m - r e '  m' (28) 

The matrix elements V,~, can be yielded from L Vmm" by an unitary transformation 
from the ]m)-basis to the I#)-basis. 

Averaging H~ 2) over the density matrix 0 (Eq. (20)) one obtains: 

where 

{H(~ 2> ))d = ~ 2e £ ~, (29) 
L I ~ L  

& = ~ 5". V ~ #,u 
/.t 

The trace of the matrix V L is invariant with respect to unitary transformations 
of the basis, thus: 

L Tr[V L] = ~ V r 
V m  m ~ -  i~ # 

m Iz 

Using Eq. (26) and the explicit form of the matrices Ak (Eq. (28)) one obtains: 

Z v.L = 5e:F0(RL) (30) 
# 

Finally we have: 

3nd2g~i ni + ~ e2ndFo(RL) ~, At (31) 
• I t  L I E L  
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Comparing Eqs. (31) and (19) we can see that the term ((H~))a changes the 
metal core attraction parameters by the formulae: 

1 n uei ff = Ui~ + ~ a Z gu~ (32) 

VeLffM = V L M  - -  e2ndFo(RL) ( 3 3 )  

According to Eq. (32), attraction of 4s- and 4p-electrons to the metal core is 
reduced by the Coulomb interaction with d-electrons of the same atom. The 
second term in Eq. (33) describes the screening of the metal core by d-electrons. 

2.3. Derivation of He/f (Eq. 17) 

The operator Hd has the form: 

H d = U d ~ , d ~ d ~ +  ~ V~°red+~dvo+½ ~, ~(#vlp~1)d+~d~od+d~ (34) 
per #v~ #vpr I wr 

where d,+~ (d,~) are the operators of creation (annihilation) of an electron with 
the spin projection o- in the #-th real d-orbital; Uda is the attraction parameter of 
d-electrons to the metal c o r e ;  VC_u °re = ( #  I V . . . .  IV ) is the matrix element of the 
total interaction of d-electrons with all the ligand atom cores; (#v 10r D is the 
two-electron Coulomb integral. 

The matrix element of the operator V .... for a pair of d-functions having the 
angular momentum projections m and m' has the form: 

a L e  2 

= - ~ ZL V~m, (35) V~ °re, (m[ ~ [r--R-~] Ira'> = -- y,~ 

Here ZL is the core charge of the ligand atom L. 
According to Eq. (17) we average the operators H~ and HRR over the 

ground-state wave function ~L of the ligand subsystem. 
For H~ o one obtains an expression similar to Eq. (22): 

(( H(~ 0 ))L = ~ ~(J~v - ½Ku~)d+ d~ (36) 
12,V (r 

where 

J,v = ~ Po-(iJ [#v); K,, = ~ Pij(i# I jr) 
i ,j  i ,j  

Here Po is the matrix element of the one-electron density matrix of the ligand 
subsystem. 

Applying the following condition to the one-center two-electron integrals on 
the metal atom: 

(ijl#v) = 6~6~(ii1##) 

(i# l jr)  = aoa.~( i#1i#)  

we reduce Eq. (36) to the form: 

(( H(~ ° )) r = E 2 gpiPiin,u (37) 
# i 

where tl, = ~ d~d,o is the electron number operator for the #-th d-orbital. 
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For H~ 2) one has (see also Eq. (25)): 

V~vPLLdu~d~ 
p,v  ¢r L 

(38) 

where PLL = ~ L PH is the electronic population on the ligand atom L. 
Finally ((He))L takes the form: 

((H~))L = ((H(~ 1) ))L + ((H(c 2) ))L = Z Z g,aP,fi~, + 2 Z 2 V¢~PLLd+~d~= (39) 
IX i IZ,V ~r L 

The first term of this expression describes shifts of d-levels due to Coulomb 
interaction between d-electrons and electrons in the metal 4s- and 4p-orbitals. 
The second term is the contribution from the interaction with electrons in the 
valence AO's of the ligand atoms. The sum of the latter term and of the second 
term of Eq. (34) has the form of the operator of the crystal field induced by 
effective charges located on the ligand atoms: 

V<F= ~ ~ ~ (PLL - Zz)VLm~,d+~d~,~ (40) 
re,m" ff L 

When the spatial symmetry of the ligand sphere is high enough, for example 
when there exists a C. or S. axis (n > 3), the operator V ~f becomes diagonal in 
the basis of the real d-orbitals (/t-basis): 

- ZL) V,,d,=d~. (41) 
# er L 

The operator ((HRR))L also takes the most simple form in that basis (for 
derivation see Appendix A)" 

{(I --  rtj/2) 2 (rlj/2) 2 } Z f l2 j (~  2 
AE~j ~ d~+d~° - £~ uJ" . (42) 

where nj is the number of electrons in the j-th ligand MO (nj = 0 or 2); AE~j 
(AEj~) is the energy necessary to transfer an electron from the #-th d-orbital 
(from the j-th MO) to the j-th MO (to the #-th d-orbital). 

As a result, the Hamiltonian H f  becomes: 

# ~  #votl  crz 

where C = const and the effective core attraction parameters for metal d-elec- 
trons Uf, contain the corrections originating both from the Coulomb and the 
resonance interaction with the ligand subsystem: 

Ufu = Uaa + W~ °" + WC~ °~ (43) 

Here the ionic term is: 

m u  °n = Z gpiPii + ~ (PLL -- Zr)V~u (44) 
i ~ s ,p  L 

and the covalent term is: (~o) {(l_nj/2)2 (nj/2)2} 
m~ov = __ fl2j A E . j  A E j ~  (45 )  
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Thus we derive simple expressions for effective parameters of the Hamilto- 
nian for isolated d-electrons. These formulae contain contributions from the 
Coulomb interactions between d-electrons and electrons in the ligands and 
account the resonance interactions between d- and ligand subsystems perturba- 
tively according to the contribution (c) formulated above in the Introduction. 

3. Implementation of the theory 

In the previous section we derived general formulae for the effective Hamiltoni- 
ans of the subsystems. To carry out particular calculations, some parameteriza- 
tion scheme for the effective Hamiltonians is to be chosen. In general the 
ab-ini t io level may be accepted for both the ligand and d-subsystem. However, 
ab-ini t io calculations are too cumbersome for complex molecules and some 
semiempirical level of approximation, for both the ligand subsystem and d-sub- 
system seems to be reasonable to be used. 

In this section we describe a possible way to implement the above theory for 
TMC and discuss the calculated results for a number of TMC. Particular 
emphasis is put on the reproduction of the spin and symmetry properties of the 
ground state and d-d-spectra of TMC. 

3.1. Parameter i za t ion  

3.1.1. Parameter i za t ion  o f  H ~ .  As it is noted above, the electron correlation 
effects in the ligand subsystem of TMC are not as important as those in the 
d-subsystem. Thus for the ligand subsystem we have accepted the single configu- 
ration self-consistent-field approximation. As a base for parameterization of the 
effective Fock operator F~ r for the ligand subsystem we use the CNDO/2 
scheme. For the ligand atoms (C, N, O, F, H etc.) the system of CNDO/2 
parameters [37] is used. In effect only the parameters for metal 4s- and 
4p-orbitals and for their interaction with ligand atoms are to be parameterized. 

Let us express the core attraction parameters U~ ff and Upp if, entering into both 
H~ r and F~ ,  in terms of quantities used in the CNDO method. For transition 
metal atoms (Mn through Ni) we assume the valence state configuration s2d n. 
Then the parameters U,s and Upp are given by [29]: 

Uss = - ½(Is + As)  - gsp/2 - gs~ - nagsa (46) 

- -  5 ( l p  -'k A p )  - -  3gsp/2 - n a g p c  I (47) Upp = 1 

Here 1(I  s - A s )  and ~(Ipl + Ap) are the orbital electronegativities (OE) of the 
metal 4s- and 4p-orbitals, respectively; gss, gsp, gpp, and gpd = ½ ~ ,  gp, are the 
Coulomb repulsion parameters which are related to the Slater-Condon factors 
F k and G k [38] by simple formulae [27]. These OE are used in the calculations 
provided that the ionization potentials and the electron affinities for s and p 
orbitals Is, As, and Ip, Ap a r e  defined by the following relations: 

- L  = E ( s 2 d  ") - E ( s d  n) 

-A,  = E ( s 2 p d  n) - E ( s p d " )  
(48) 

- I ~  = E(spd" )  - -  E ( s d  o) 

- Ap = E(s2pd  ") -- E(s2d  ") 

where E's are averaged energies of the configuration indicated in the brackets. 
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The choice of the valence state configurations in Eq. (48) is enforced by the 
structure of the proposed model. The model implies a fixed number of electrons 
in the d-shell of the transition metal atom. Therefore we retain only the 
valence-state configurations with the given number of d-electrons n. 

Substituting the Uii terms in Eq. (32) by the expressions for U~s and Upp, Eqs. 
(46), (47), we have: 

Uses ff = - ½(I~ + A~) - gsp/2 - gs~ (49) 
eft'__ 1 Upp - - -  2 ( Ip  + A p )  - 3gsp/2 (50) 

These coincide with the standard CNDO/INDO formulae for U~ and Upp, 
Eqs. (46), (47), where the terms, describing the Coulomb interaction of electrons 
in the 4s-, 4p-orbitals with d-electrons, discarded. Hence we can use the values 
of the OE for the 4s- and 4p-AO's of the metal atoms of the first transition row, 
which have been adjusted in Ref. [29] to reproduce the results of ab-ini t io HFR 
calculations of diatomics including transition metal atoms. For the Coulomb 
repulsion parameters g;j we use the values which have been found by OIeari et al. 
[39] from atomic spectroscopy data. 

According to the standard rules of the CNDO method, the expression for the 
metal-ligand interaction parameter VLM will be: 

VLM = ZM~L~ (51) 

where ZM is the core charge of the metal atom M, 7CM is the two-center 
Coulomb integral. Hence: 

V~M = ZMTZM -- e2naFo(RL) (52) 

We approximate the two-center integral VLM by the isotropic part of the crystal 
field potential: 

7CM = e 2 r o ( R c )  Y°(Oz ,  ~gL)Ar~ m = e2Fo(RL) (53) 

For the metal-ligand distances characteristic for TMC (2 A) this approximation 
is valid [40]. As a result, the expression Eq. (33) takes the form: 

VeLffM eff (54) = ZM7LM 

where Z ~  = Z M  -- na is the effective core charge of the metal atom. It means that 
electrons in the ligands experience only a part of the total metal core charge 
(namely Z~t). The remaining part of the core charge is considered to be 
completely screened by the d-electrons. 

The remaining parameters are chosen as follows. For the Slater 4s- and 
4p-orbitals of transition metal atoms Burns' exponents (~4s 5& ~4p) are used as it 
was done in Ref. [41]. For two-center resonance integrals the standard Pople's 
approximation [37]: 

flij = __ ( f lo  q_ f l o ) s i j / 2  ' i ~ A , j  ~ B 

is used (S~ is an overlap integral). The resonance parameters /~4°s and flop for 
transition metal atoms are set equal to valence ionization potentials of the 
corresponding orbitals [41]. Our choice of flo ¢/~op is done in a line with 
Labarre et al. [42, 43] to avoid overpopulation of the metal 4p-orbitals which is 
inherent, for example, in calculations with use of Clack's resonance parameter 
set [44]. The one-center Coulomb interaction of electrons, occupying the metal 
4s- and 4p-orbitals, is determined by the Slater-Condon parameters F°(ss) ,  
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F°(sp),  and F°(pp )  which are estimated from the corresponding Oleari parame- 
ters gij [39]: 

F°(ss)  = gs~, F° (pp )  = (8gxy -t- 7gpp)/15, 

FO(sp) = [FO(ss ) + FO(pp)]/2 (55) 

3.1.2. Parameter i za t ion  o f  H }  ft. The parameters entering Eqs. (44) and (45) are 
chosen as follows. The one-center two-electron Coulomb integrals g,~ are taken 
from Ref. [39]. The one-center core attraction parameters Uda were estimated by 
a numerical fit of the ionization potentials (i}xp) of 3d-electrons from the free 
doubly charged transition metal ions [45] to the calculations within the Oleari 
scheme [39]: 

U d  d = __i~/xp __ (na -- 1)gad (56) 

The two-center integrals Vu~ are calculated by the formula Eq. (29). When 
evaluating the radial integrals Fk(RL)  the Slater 3d-orbitals with the Burns' 
exponents [41] were taken. 

The excitation energies entering the denominators of Eq. (42) are the energies 
of the electron transfer between the subsystems. In the mean field approximation 
they are estimated as follows: 

AE.:= I. + cs - G.: 

AEjv -= --£j -- A u - G. j  (57) 

Here ej is the orbital energy of the j-th MO in the ligand subsystem. The MO 
energies are obtained from the solution of the Hartree-Fock equations with the 
effective Fock operator F~ f derived from the effective Hamiltonian H~  f without 
the ((HRR))a term; G . j  is the energy of the Coulomb interaction between an 
electron and a hole which are located on the #-th d-orbital and the j-th ligand 
MO. The latter has the form: 

% = Z + E E cj, (58) 
i L l ~ L  

where cji are the LCAO coeffÉcients, i runs over the metal 4s- and 4p-orbitals, l 
runs over the ligand atomic orbitals. 

Quantities I. and A. are respectively the ionization potential and the electron 
affinity of the #-th d-orbital, which we estimate in the mean field approximation 
provided the complex is described by the Hamiltonian H0: 

Ip = - U d d  - -  W ~  On - -  (gl d - -  1)grid 
(59) 

A .  = -- Uaa - Wiu °n - nagaa 

The resonance integrals between the 11-th d-orbital and the j-th MO of the 
ligand subsystem fl~j are calculated by the formula: 

fluJ = Z Ckfl~uk (60) 
k 

where Ckj are the LCAO coefficients for the j-th MO; fl.k are the resonance 
integrals for the 11-th d-AO and the k-th AO in the ligand subsystem. For 
interatomic resonance integrals fl~k, the formula resembling that of the MINDO/ 
3 method [46] is used: 

f l # k  = - - ( I d +  l k ) S l ~ k f l  M - L ,  t 1 e M ,  k e L  (61) 
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Here Ia and Ik are the valence ionization potentials [41] of d-AO and of the k-th 
AO; S~k is their overlap integral. The values of  the dimensionless pair resonance 
parameters /~M-L are fitted to approximate the energy of  the first observable 
d-d transition in the optical spectra of  considered complexes. They are given in 
Table 1. 

The Coulomb interaction parameters (/~vlQq) are expressed through the 
Racah parameters A, B, C. The parameters A are set equal to the Oleari 
parameter gad. The parameters B and C are set equal to those for free transition 
metal ions [2] except the cases of MnF 4- , Mn(FH)~ + , CoC14- , and CoC12- . 
For these complexes the values of the parameters are taken from the correspond- 
ing spectroscopic data and used in our calculations. 

The parameter set for transition metal atoms used in our calculations is given 
in Table 2. 

Table 1. Pair resonance parameters ~M-L 

Mn Fe Co Ni 

F 1.225 1.431 1.826 1,775 
C1 1.588 

Table 2. Transition metal parameters (eV) 

Parameter Mn Fe Co Ni 

~'(4s) 1.450 1.575 1.700 1.825 
~(4p) 0.900 0.975 1.050 1.125 
~(3d) 2.935 3.152 3.369 3.586 
I(4s) 6.820 7.060 7.310 7.560 
I(4p) 3.590 3.720 3.840 3.840 
l(3d) 7.930 8.670 9.420 10.040 
Z(4s) a 3.983 4.120 4.170 4.306 
)~(4p) a 0.975 1.062 1.160 1.260 
- U~s 61.220 72.600 84.500 96.920 
- Upp 49.240 58.540 68.270 78.430 
-- Uua 92.490 1 0 7 . 4 9 0  1 2 9 . 7 9 0  153.130 
F°(ss) 7.090 7.380 7.670 7.690 
F°(sp) 6.200 6.430 6.660 6.880 
F°(pp) 5.950 6.100 6.250 6.400 
F2(pp) 1.271 1.333 1.395 1.457 
G l(sp) 1.060 1.116 1.172 1.227 
gsa 9.130 9.410 9.690 9.970 
g~,z2 7.820 8.060 8.300 8.540 
g~,z2 7.590 7.820 8.050 8.280 
gz,xz 7.740 7.980 8.220 8.460 
gz,xy 7.510 7.740 7.970 8,200 
gaa 14.700 15.370 16.040 16.710 
B (cm 1)b 860 917 971 1030 
C (cm-  l)b 3850 4040 4497 4850 

"Zi = (Ii + A~)/2 
b These values correspond to free double charged ions [2] 
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3.2. Calculation results and discussion 

In our method the ground-state wave function of a complex is an external 
product of the Slater determinant function of the ligand subsystem, which is 
found by a SCF calculation, and of the ground-state function of d-electrons 
which is determined by diagonalization of the effective Hamiltonian H} ~r in the 
complete basis of nd-electron functions. The wave functions of the lowest excited 
states are the external products of the ligand ground-state determinant function 
and of the corresponding eigenfunctions of the effective Hamiltonian H} ft. The 
transition energies are equal to the differences of the corresponding eigenvalues 
of H} ~ which are obtained by the diagonalization of the latter. 

In this paper we applied the proposed semiempirical scheme to simple 
divalent transition metal complexes in order to check the validity of the 
approximations accepted. The chosen complexes are octahedral hexafluoroan- 
ions MF 4- (M = Mn, Fe, Co, Ni), complex cation Mn(FH)62+ , octahedral anion 
CoCI~-, and tetrahedral anion CoC142 . There are reliable experimental data on 
the optical absorption spectra of these complexes [6, 47-49]. Also the calcula- 
tions on the electronic structure of these complexes have been carried out on 
both ab-initio [50, 51] and semiempirical [44, 52] levels. 

Geometry of the complexes MF 4- used in the calculations has been taken 
from Ref. [52]. The following bond lengths are assumed: R(Mn-F)=  2.12 A, 
R(Fe-F) = 2.08 ~, R(Co-F) = 2.05 ~, R(Ni-F) = 2.01 ~. For the chlorocom- 
plexes of divalent cobalt we use the experimental bond lengths: for 
CoCI~-R(Co-C1) = 2.340/k (as in CoG12 crystal [53]), and for 
COG1]- R(Co-Cl) = 2.252 A [51]. 

The present version of the proposed method is aimed at a detailed descrip- 
tion of the d-subsystem, and particularly at d-d-excitations. The calculation 
results obtained for the MF 4- and CoC14- complexes are presented in Tables 3 
and 4, respectively. They are compared with experimental data obtained on the 
MnFz, FeF2, KCoF 3, KNiF3, and CoC12 crystals. Such comparisons of the 
calculations performed for the finite clusters involving only first coordination 
sphere with d-d-spectra of transition metal ions in the ionic crystals is common 
practice. Moreover, it has been shown [54] by ab-initio MCSCF-CI calculation 
on CoC12- that the d-d transition energies for the finite clusters are farily 
independent of the Madelung potential from the surrounding crystal. A similar 
conclusion can be drawn from the results of ab-initio SCF-CI calculations on 
various cluster models of the K2CuF4 crystal [55]. 

The values of the pair resonance parameters (tim F fiM-Ct) are fitted to 
reproduce d-d-excitation energies for these complexes. They range between 1.2 
and 1.8 (see Table 1) for various metal atoms. These values seem to be 
reasonable. Calculations with these parameters reproduce the point symmetry 
and the spin multiplicity of the ground state for all the complexes used for the 
fit. We nevertheless consider this result to be nontrivial because predictions of 
the ground-state multiplicity of TMC in the framework of the SCF approxima- 
tion requires special efforts [27]. The calculated excitation energies are also in fair 
agreement with experimental data (see Tables 3, 4). 

In order to check the transferability of the resonance parameters tim L, we 
calculated d-d-excitation energies for the dication Mn(FH)~ + and the tetra- 
hedral chloroanion CoC1]-. 

There is no direct experimental data on the molecular structure of 
Mn(FH) 2+ . This complex with hydrogen fluoride FH as a ligand has been 
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TaMe 3. d-d Excitation energies for the MF 4 complexes 

405 

Transition E °ale ~, c m -  i Eobs b, cm 1 

MnF~ , ground s t a t e  6Alg 
6Alg---~4Tlg 19451 19440 

~4T2g 22869 23500 
~4Aig; 4Eg 25295 25300 
~4Tzg(D ) 28407 28120 
~4Eg(D) 30223 30230 
~4Tlg(P ) 35144 33060 

Fe~-, ground state 5T2g 
5T2g--,SEg 6987 6990 (10600) 

Co 4 , ground s t a t e  4Tlg 
4Tlg --*'4T2g 7150 7150 

----r 4A2g 15407 15200 
~-~ 4Tlg 20607 19200 

NiF~6 , ground s t a t e  3A2g 
3A2g---~3T2g 7236 7250 

~3TI~ 12316 12530 
--*lEg 17158 15440 
~lT2g 23849 20920 
~3T~g(P) 24842 23810 

a For MnF 4-  the values of Racah parameters B =704cm -~ and 
C = 3651 cm-a  are obtained from two transition energies which are inde- 
pendent of 10 Dq: E(6AIg --* 4Alg , 4Eg) = 10B + 5C a n d  E(6Alg ~ 4Eg(D)) = 
17B + 5C 
b From Ref. [6] 

Table 4. d-d Excitation energies for the CoCI~ complex 

Transition Eca lc  a, c m  - l E o b s  b c m  - 1 

CoC14 , ground s t a t e  4Tlg 
4 Tlg  __4. 4 T2g 6600 6600 

2Eg 8447 
~4A2g 14167 13300 

2Tlg 14420 
--* 2T2g 14748 
-+4Zig 17332 17150 (17350) 

a The values of Racah parameters for 
C = 3432 c m - l )  are taken from Ref. [48] 
b From Ref. [48] 

COC164- ( B = 7 8 0 c m - l  and 

p o s t u l a t e d  [47] to exp la in  the  fact  t ha t  the  d - d - e x c i t a t i o n  s p e c t r u m  o f  the  M n  2+ 
in a n h y d r o u s  h y d r o g e n  f luor ide  fa i r ly  fits to  the  C F  p i c tu re  fo r  o c t a h e d r a l l y  
c o o r d i n a t e d  d 5 i on  ( M n 2 + ) ,  T h e  R a m a n  spec t ra  a lso  give s o m e  ev idence  fo r  H F  

2+ c o o r d i n a t i o n  [47]. W e  set the  b o n d  leng ths  in o c t a h e d r a l  M n ( F H ) 6  as fo l lows:  
R ( M n - F )  = 2.15 A,  R ( F - H ) =  0.83 A.  T h e  resul ts  o f  o u r  c a l c u l a t i o n  on  d-d- 
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Table 5. d-d Excitation energies for Mn(FH) 2+ and CoC12- 

A. V. Soudackov et al. 

Transition Ecalc acm - x Eobs b cm - l 

Mn(FH) 2+ , ground state 6hlg 
6 A l g  ~ 4Zig 23772 22700 

4T2g 25219 24700 
--~ 4 A l g  , 4Eg 25645 25800 

--+4Tze 30123 30800 
---, 4Eg 30776 29800 

4 Tag 32449 
-"~ 4A2g 41767 

4Zig 41963 42200 

CoC124-, ground state 4A 2 
4A2 ---~ 4T 2 4413 - -  

4T 1 (F) 7571 5220-5700 
2E 14375 14600-14800 

--+2T 1 14917 
4 Tl (p) 16318 15750(16230) 

a The values of the Racah parameters for Mn(FH)62+ (B = 733 cm i and 
C =3663cm-1) are taken from Ref .  [47]; the values for 
CoC142 (B = 710 cm-1 and C = 3290 cm l) are taken from Ref. [49] 
b Mn(FH)2+ : from Ref. [47]; CoC142 : from Ref. [49] 

spectrum of  the Mn(FH)~  + moiety with the /?Mn F parameter  adjusted for the 
M n F  4-  anion are presented in Table 5. As it can be seen, the calculated 
d-d-spect rum coincides fairly with the observed one. This can be taken as 
additional evidence for H F  coordination.  

The predicted spatial symmetry  and spin multiplicity o f  the ground state and 
calculated excitation energies o f  the CoC1]-  anion also coincide fairly well with 
those f rom the experiment [49] (see Table 5) though the ~Co-Cl parameter  was 
adjusted to reproduce d-d-excitation spectra o f  the CoC14- anion. The calcula- 
tions on the mixed-ligand complexes, testing the transferability o f  the resonance 
parameters systematically, are still in progress. 

In  order  to elucidate the nature o f  d-level splitting in the complexes consid- 
ered, we compared  the ionic and the covalent contributions to the calculated 
crystal  field splitting parameter  lODq. It follows f rom Eq. (43) that  the splitting 
parameter  is related to the effective parameters  o f  H ~  by the formula:  

lODq = ,~W i°neg __ W,2g ) i  . . . . .  + (Weg - W °°v~,2g, = 10Dqi°n + 10Dq c°v (62) 

where t2g and eg are the symmetry indices for d-orbitals in the field o f  cubic 
symmetry.  The results o f  the calculations are given in Table 6. The ionic 
contr ibut ion is quite small for all the considered complexes. Similar results were 
obtained by H u b b a r d  et al. [34]. Their calculations o f  N iF  4-  give the value o f  
1390 cm i for the ionic contr ibut ion to lODq. This value comes to only 22 
percent o f  the total. Our  estimate o f  the ionic contr ibut ion for N iF  4-  is about  
twice as low (647 c m -  1), because we use more  localized atomic d-functions than 
those of  Ref. [34]. These results confirm that  the point  ion model  does not  suffice 
even to describe such complexes as transit ion metal hexafluoroanions which can 
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Table 6. Ionic (A ion) and covalency (A oov) contributions to the d-level splitting A (cm 1) 

407 

MnV 4 - VeF 4 - CoV 4 NiF 4 - Mn(FH) 2 + COC164 CoC142 

A i°n 1246 1050 805 647 265 403 187 
A coy 7208 5937 7452 6568 3600 7154 4226 
A t°tal 8454 6987 8257 7215 3865 7557 4413 
A expt 7750 a __ 8050 a 7250 a 5128 b 6900 a 3130 ° 

a From Ref. [6] 
b From Ref. [47] 
° From Ref. [49] 

seem to be purely ionic at the first glance. The covalent contributions to lODq 
which are presented in Table 6 are about  90 percent of  the total splitting for all 
the considered complexes. Thus the resonance interaction in our method plays a 
decisive role in the splitting of the d-levels in TMC. This conclusion is also 
confirmed by ab-initio calculations with use of  many-body perturbation theory 
developed in Refs. [56, 57]. For  MnF + diatomic it has been shown [58] that the 
leading contributions to the crystal field parameters of d-electrons arise from the 
second-order terms of perturbation series describing the corrections from the 
excitations transferring an electron from the ligand orbitals to the manganese 
3d-orbitals (covalent contribution). 

The covalent contributions to the d-level splitting arise from the interactions 
with charge transfer (CT) states of  T M C  (i.e., from the virtual charge transfer). 
The importance of these interactions has also been stressed by Janssen and 
Nieuwpoort  [49]. They have demonstrated that the inclusion of the configuration 
interaction with the CT states in the ab-initio calculation scheme leads to 
substantial increase of  the effective d-level splitting which is always under- 
estimated at the H a r t r e e - F o c k  level. In the framework of our method this 
interaction renormalizes the one-electron parameters of  the Hamiltonian for 
isolated d-electrons or, in other words, changes the d-orbital energies. The 
virtual charge transfer from the metal d-orbitals to the ligand subsystem MO's  
lowers the d-orbital energy, whereas the virtual transfer in the opposite direction 
increases it. In Table 7 the most  significant contributions from the CT states to 
the d-level splitting are presented. 

In the case of  the M F  4- anions, these States are generated by the electron 
transfer from the H O M O  which is composed of the fluorine p~-orbitals to the 
metal d-orbitals of  the eg symmetry. In the case of  the Mn(FH)  2+ cation, there 
are two "ligand-to-metal" CT states which contribute to ((HRR)). The first one 
is generated by the electron transfer from the occupied MO which is composed 
of the fluorine p~ -orbitals to the metal d-orbitals of  eg symmetry. The second one 
is generated by the electron transfer from the occupied MO which is composed 
of the fluorine p~-orbitals to the metal d-orbitals of  t2g symmetry and gives the 
small contribution because of the low value of the corresponding resonance 
integral (see Table 7). Thus, for both M F  4- anions and Mn(FH)  2+ cation the 
covalent contribution to the lODq is mainly determined by the virtual charge 
transfer from the fluorine p~-orbitals to the metal d-orbitals of  the eg symmetry. 
For  the COC164 anion, a similar qualitative picture is obtained. However, as 
distinct from the fluorocomplexes, in the case of  CoCI~- ,  there are noticeable 
contributions to the splitting from the virtual charge transfer from metal 
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Table 7. The energies AEg-(eV) of the charge transfer states contributing to the A c°v, corresponding 
resonance integrals fl/f (eV) and second order corrections flZ/AE (cm- 1) 

Complex charge transfer (i-+f) AE~u [fl,f[ flZ/AE 

MnF 4 - HOMO(p~ F) --+ d(eg) 7.27 2.22 5469 
FeF 4 - HOMO(p~ F) + d(eg) 11.75 2.46 4194 
CoF 4 - HOMO(p~ F) --+ d(eg) 9.80 2.61 5646 
NiF 4 - HOMO(p~ F) -+ d(eg) 8.42 2.10 4194 
Mn(FH)~ + MO(p~ F) --+ d(t2g ) 12.12 0.58 225 

MO(p~ F) + d(eg) 14.58 2.21 2700 
CoC14 - MO(p~ CI) ~ d(t2g ) 11.00 1.01 749 

HOMO(po C1) --+ d(eg) 9.30 2.86 7109 
d(t2g ) --+ Mo(dC1) 14.37 0.99 - 550 
d(eg) --+ MO(dC1) 15.60 1.72 - 1536 

CoC12 - MO(p= C1) --+ d(e) 8.49 1.03 1004 
MO(so C1) --+ d(t2) 23.22 1.81 1134 
HOMO(p= C1) --+ d ( t 2 )  7.64 2.21 5147 
d(ta) --+ MO(a*n*) 11.97 1.05 - 735 
d(t2) --+ MO(dC1) 16.67 1.26 - 772 

d-orbitals to unoccupied d-orbitals o f  chlorine atoms. It  indicates a weak 
bonding  between metal d-orbitals and chlorine ones. In  the case o f  the CoC1 z -  
anion, the main contr ibut ion to the stabilization energy of  metal d-orbitals o f  
tetrahedral tz symmetry  (dx~, dyz, dxy) arises f rom virtual charge transfer to these 
orbitals f rom low-lying M O  involving s-orbitals o f  chlorine a toms and f rom 
H O M O  involving p~-orbitals o f  chlorine atoms. Partial stabilization o f  metal 
t2-orbitals arises f rom virtual charge transfer f rom these ones to unoccupied 
M O ' s  o f  a* and re* types, and also to M O ' s  involving d-orbitals o f  chlorine 
atoms. 

The results o f  the calculations on the ligand subsystem of  the considered 
complexes also deserve some attention. They are given in Table 8 compared  with 
the results o f  some semiempirical [27, 44, 52] and ab-initio [50, 51] calculations 
on TMC.  In the f ramework of  the proposed method,  H F R  calculations on the 
ligand subsystem give only intermediate results. Strictly speaking they are only 
internal quantities in our  methodl Nevertheless, we compare  these data with 
those obtained in all-valence electron calculations for two reasons. First, these 
results seem to be reasonable and thus indicate internal consistency o f  the 
method.  And  second, such a compar ison  shows an extent o f  influence o f  the 
metal d-electrons on the charge distribution in the ligand subsystem. 

Electronic populat ions  on the metal a tomic orbitals reflect the extent o f  the 
charge transfer f rom the ligands to the metal, which turns out  to be neither very 
large nor  very small. This is in accordance with the well-known Pauling 
electroneutrality principle which states that  the absolute values o f  effective 
charges on the a toms in a molecule do not  exceed unity. The trends o f  the 
effective atomic charges and orbital populat ions  observed in the present work  for 
the hexafluoro anions coincide with those known f rom previous calculations 
[44, 52]. However,  there are sufficient differences between the orbital occupancies 
calculated by the different methods.  The very large occupancies o f  the metal 4s- 
and 4p-orbitals and, respectively, too  small effective positive charges on the 
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Table  8. Electronic s t ructure  o f  the l igand subsys tem of  a n u m b e r  of  t ransi t ion meta l  complexes  

M n F  4 - FeV64 - CoV 4 - N iF  4 - M n ( F H )  62 + CoC14 - COC142 - 

Energy  gaps e ( L U M O )  - - E ( H O M O )  (eV): 

A~ 16.85 18.32 19.43 20.45 25.53 16.91 

Meta l  orbi ta l  populat ions:  

4s 0.36 0.38 0.39 0.40 0.21 0.481 

0.48 a 0 . 5 P  0.53 a 0.55" 

0.07 ~ 

4p 0.25 0.26 0.28 0.29 O. 11 0.359 

0.41 a 0.47" 0.44 a 0.49 ~ 

0 .0C 

A t o m i c  charges: 

M 0.89 0.83 0.78 0.72 1.44 0.442 

0.17 a 0.06 a - 0 . 0 3  a - 0 . 1 2  a 
-- 0.89 b - -0 .538 - -0 .718 -- 0.76 b -- 1.2548 

1.82 ~ 

X - -0 .82  - 0.80 - 0.80 - 0.79 - 0.25 - 0.740 
- 0.52 b - 0.57 b - - 0 , 5 5  b - -  0.548 -- 0.456 b 

- -0 .97  c 

16.22 

0.537 
0.290 d 

0.444 e 

0.342 
0.170 d 

0.328 e 

0.437 

1.360 d 

0.422 e 

- 0.609 

- 0.840 a 

- 0.606 ~ 

" C N D O  [52] 

b I N D O  [44] 

cab initio [50] 

dab initio [51] (Mul l iken  popu la t ion  analysis) 

e I N D O / 1  U H F  [27] 

metal atom (sometimes the negative ones) obtained by the semiempirical meth- 
ods with use of Clack's parameter set [44, 52] seem to be unreliable. In contrast, 
the ab-initio calculations [50] yield very small occupancies of the metal 4s- and 
4p-orbitals and effective charges on the metal atom close to +2  (free ion 
charge). From our point of view these calculations underestimate the charge 
transfer from the ligands to the metal 4s- and 4p-orbitals. Our calculations of the 
orbital occupancies in the ligand subsystem of CoC1]- (without d-electrons) are 
in good agreement with the results of all-valence INDO/1 calculations with 
thoroughly elaborated parameterization by Bacon and Zerner [27]. 

It is worthwhile to note that though the electron distribution (in the ligand 
subsystem) within our approach is close to that obtained in the HFR-based 
INDO/1 approximation [27], the total pictures of the electronic structure of 
TMC in the two approaches are completely different. The charge distribution in 
CoC1]- has been obtained in [27] with the HFR wave function which violates 
the Aufbauprinzip (see the Introduction). In the framework of our approach, the 
HFR wave function for the ligand system (q~L) obeys the Aufbauprinzip. For all 
the considered complexes, the energy gaps between the lowest unoccupied MO 
(LUMO) and the highest occupied MO (HOMO) of the ligand subsystem (see 
Table 8) are large as compared to the d-d-excitation energies. This confirms our 
assumption that the excited configurations of the ligand subsystem do not 
interfere significantly in ground and lower excited states of the complexes. The 
gaps in the energy spectrum of the ligand subsystem are also large as compared 
to any two-electron interaction matrix element between the ~L state and excited 
states of the ligand subsystem, thus providing a certain assurance for the stability 
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of the HFR state of the ligand subsystem. At the same time, d-electrons which 
caused instabilities in the HFR-based methods are treated as a separate subsys- 
tem and the electron-electron repulsion in that subsystem is taken into account 
exactly (within the CI scheme). 

4. Conclusions 

In this paper a new treatment of the electronic structure of TMC, invoking the 
effective Hamiltonian method, is presented. Earlier a similar method was used 
by Hubbard et al. (Ref. [34]) to describe the electronic structure of the crystals 
of KNiF 3 and KMnF3. The method of Ref. [34] takes into account both the 
effects of weak covalency and electron correlation with use of the configuration 
interaction method. The wave function of the system was assumed to have the 
form of a ground-state configuration M2+F6 in which the number of d-elec- 
trons in the metal atom is fixed with small admixture of the M+FF~ configura- 
tions in which one electron is transferred from the fluorine atoms to the d-shell 
of the metal atom. With use of the effective Hamiltonian technique the problem 
was reduced to the crystal field model with an effective potential taking into 
account the interactions with charge-transfer states. The numerical calculations 
were performed at ab-initio level and quite reasonable results for the splitting of 
one-electron d-levels of the transition metal ion were obtained [34]. Recently, 
these ideas were used in the ab-initio calculations [55, 59] of TMC with ex- 
tended CI for selection of more important electronic configurations. It turns 
out that namely the excited configurations within the d-shell of the transition 
metal atom and the single excited ligand-to-metal CT configurations are to be 
included in the CI manifold to obtain consistent results for the transition 
energies. 

The main difference between our model and that used in Ref. [34] is 
concerned with involvement of the metal outer valence s- and p-orbital into 
metal-ligand bonding. In Ref. [34] these orbitals are left out of consideration, 
whereas in our model they play an important role in the formation of the 
bonding MOs delocalized over the whole complex. The important role of the 
metal outer valence s-orbital has also been stressed by Ohanessian and God- 
dard [60]. They considered bonding in transition metal hybride diatomic 
cations MH +. As it follows from the results of ab-initio GVB calculations 
reviewed in Ref. [60], the M-H bond in these molecules is formed by the 
spin-pairing of an unpaired electron in the metal outer valence s-orbital with an 
electron in the hydrogen Is-orbital. The spin and symmetry of the ground state 
of the transition metal hydride cations are completely determined by the ar- 
rangement of electrons in the d-shell of transition metal ion, which in its turn 
minimizes the total Coulomb repulsion. It should be noted that, according to 
Ref. [60], the electronic configuration of the transition metal ion in its hydride 
cations is s ld  n 1. That is not surprising from the viewpoint of the total energy 
for those metal ions which have this configuration in their ground states, but 
the singly charged metal ions having in their ground state d n configuration are 
promoted to the lowest s ld  n-1 excited state when the MH + molecule is 
formed. Thus, in transition metal hydride cations the outer valence s- and 
p-orbitals of transition metal ion and valence orbitals of ligands are mainly 
involved in the bond formation. This is likely to be generally valid for other 
TMC with more complex ligands than the hydrogen atom. 
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In the framework of our present method the above picture of the electronic 
structure of MH + arises by construction. Indeed, the ligand and d-subystems in 
our method are separated. Moreover, the number of  electrons in the metal 
d-shell coincides with that for the ground-state configuration of the free ion M 2+ 
(it equals to the corresponding group number in the Periodic Table) and also 
with the number of  d-electrons (n - 1) in the configuration s l d  n -  1 of  the ion 
M +. The qualitative description of  bonding in TMC in the framework of our 
model is also very similar to the GVB description. Specifically, in our method 
transition metal hydride cations could be considered as complexes of doubly 
charged ions M 2+, having as many d-electrons as in the ground-state configura- 
tion d n of the free ion M 2 +  , with single hydride anion as a ligand. Two electrons 
originally occuping the Is-orbital of  the hydride ion H -  will be delocalized over 
the molecule. The ligand wave function will be the closed-shell Slater determi- 
nant for two electrons on a a-type bonding MO involving the Is-orbital of the 
hydrogen atom and outer valence s- (and p- in less extent) orbitals of transition 
metal atom. This MO being occupied describes the chemical bond between the 
transition metal atom and hydrogen atom. Electrons in the d-shell are by 
definition arranged to have a minimal Coulomb repulsion because their arrange- 
ment is obtained from diagonalization of  the atomic-like CI Hamiltonian for 
d-electrons which also accounts for the splitting. 

The proposed method might also be considered as a way to derive the widely 
used angular overlap model (AOM) [61-63], starting from the exact Hamilto- 
nian for valence electrons Eq. (1). The proposed method gives formulas for the 
corrections to the d-orbital energies, which contain both the ionic and covalent 
terms. The latter have a form which closely resembles the perturbation expres- 
sions for the AOM parameters [62], though the terms obtained in our method 
are sums of contributions from MOs of the ligand subsystem rather than from 
separate ligands. Under certain conditions these MO contributions can be 
transformed to those from separate ligands as it should be in the AOM. The 
ligand contributions can be treated as estimates for the conventional AOM 
parameters e;.(L), We also luckily manage to avoid difficulties which arose in 
justifying the AOM approach from the first principles [64, 65]. Specifically, we 
manage to treat the density of d-electrons correctly. Our method takes into 
account both occupied ligand orbitals with corresponding destabilizing contribu- 
tions to d-orbital energies and vacant ligand orbitals with corresponding stabiliz- 
ing contributions. The common derivations of AOM involve only destabilizing 
contributions [65]. 

The present paper stresses the local character of d-shell in transition metal 
complexes. The proposed method can be implemented in different ways ranging 
from qualitative analysis of  different contributions to the d-level splitting to 
ab-init io calculations with use of the proposed class of wave functions. 
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Appendix A 

The expression for the operator //Re (Eq. (9)) at E = E0 has the form of the 
second-order perturbation correction with H r as perturbation: 

HRR = P H r Q R ( E o ) Q H r P ,  (A1) 

where R(Eo)  - (EoQ - Q H o Q )  - 1 is the resolvent for the operator Q H o Q ,  Eo is 
the ground-state energy of the Hamiltonian P H o P .  This becomes evident when 
the resolvent is rewritten in the following form [28]: 

I/)<il 
R(eo) = eo-  (A2) 

where l i )  stands for the eigenfunctions of  the operator Q H o Q  with the eigenval- 
ues Ei, i = 1 . . . .  , N o (NQ is the dimension of the subspace defined by the 
projection operator Q or the dimension of the Q-block). 

We define the basis functions of  the Q-block as follows: 

li', ~r', k, n l )  = aL, I~L) A I~k(nl)), nl = na - 1 (A3') 

li', cr', l, n2)  = ac~.lq~L)/x I~,(n2)), n2 = nd + 1 (13") 

where ai+~ (a~) are operators of  creation (annihilation) of  an electron having the 
spin projection a on the i-th MO; I4~L ) is the single determinant wave function 
of the ground state of  the ligand subsystem, obtained from the SCF-type 
calculation; I q~k(nl)) and I~,(n2)> are single determinant wave functions of  nl 
and n2 d-electrons, respectively: 

nl  

14~/(n1)) = ~ dL~10) ,  k = k ( # , f f l "  "/~ni0".l) 
n2 

Iq~l(n2)) = 1-[ d ~ 1 0 ) ,  l = l(YlTYl'''Vn272n2 ), 

d~ + are the operators of  creation of an electron having the spin projection a on 
the #-th d-AO; I 0)  is the vacuum state for d-electrons. The basis functions of  
Eqs. (A3') and (A3"), respectively, describe the states with one extra electron in 
the ligand subsystem or in the d-subsystem. 
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To simplify the subsequent evaluation let us neglect the configuration interac- 
tion between the functions of the Q-block. Henceforth, Eqs. (A3') and (A3") 
became the eigenfunctions of the operator QHoQ. As we are not interested in the 
detailed description of the charge transfer states this assumption is acceptable. 

The resonance operator Hr has the form: 

a # , j  

where j runs through the ligand MO's, fl~j is the resonance integral between the 
g-th d-orbital and the j-th ligand MO. Then HRR takes the form: 

HRR = ~ Z Z fl~.fl~JfPd+~a~Q Z 2 aL'leL> A (eL La,,o. 
~,~.,v ij ~ i'~" k E o - E ( i ' , a ' , k ,  nl) 

x Qai + d~P + Pd~oa~ + Q ~ ~ a~'~'lec ) A le~(nz))(e,(n2) I A ( e  L [a+,.. 
i'~" l Eo - E(i', a', l, n2) 

+} x Qa~d~P 

As the Q-block basis functions are orthonormal, the first term in the braces 
contains only the states of the type of Eq. (A3') and the second term contains 
only the states of the type of Eq. (A3"). 

Averaging Eq. (A4) over the ground state of the ligand subsystem leL ) one 
obtains: 

( ( H R e ) ) r = ~ ' ~ f l " ~ f l q { d " ~ " ( ~ ( a ~ " a + ' ) l e k ( n ~ ) ) ( e k ( n ~ ) ' ( a c ° ' a J + ) )  .,~ - ~.~. Eo - E(i', a', k, n~) 

+du,~'(~l(ai+ai' ,<)let(n2'!(~l(n2)l(a+~'aJ'~)) } 
c,~' ~00 7 E ~ ,  ~,,/-/-~2 3 d~+~ (A5) 

Introducing obvious relations: 

<ae.~.af > =- (eL  [ag,~.af~ [e L > = 6,.j6o,~( 1 -- nj~) 

(ai,,ai,,.,) + = (eLlai~ae',,.lCl)L) = 6ii.6¢,~.ni,, 

(a?~.aj. ) ==- <eL [ai+.aj~ [eL > = 6,7@~n j, 

(n,~ is the number of electrons on the i-th MO having a spin projection a) and 
taking into account that in the case of high symmetry the product flv, flvi is not 
vanishing only when # = v (it is because that the different d-orbitals have 
different symmetry properties and therefore the different d-orbitals I#> and [v ) 
can not overlap with the same ligand orbital [i)) one reduces Eq. (A5) to the 
form: 

Eoo : ~ ,  a , , / ~  ) d"+~ } (A6) 
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The energy denominators in Eq. (A6) are estimated with use of the mean 
field approximation which ascribes the same energy to all the terms of the given 
configuration. It means that the energy denominators should be substituted 
according to Eq. (A7)  

E o - E(i, a, k, nl) ~ -AE(#a ia) for all k "# (~ k 
(A7) 

E o - E(i, a, l, n2) ~ -AE(ia #a) for all l:# ~ l 

After this substitution it turns out that for the given i and # all the denominators 
in the sums over k and l in Eq. (A6) can be factorized. Comparing the explicit 
forms of the functions ~ and q~ with those of the projection operators O(n, #a) 
and O(n,#o-) (Appendix B) one can see that the sums over k and l are 
transformed into the projection operators O(n, #a) and O(n, #a) multiplied by an 
energy denominator. This leads to the following expression for ((HER))L: 

} (A8) 
+ AE(ia #a) 

Substituting the relation O = O 2 for projection operators and Eqs. (B1), (B2) 
into Eq. (A8), we obtain: 

- ni ) 2 

n~, O(na, ~-a)g~d+~ ©(na, ~ )  } (A9) 
+ AE(ia #a) 

Replacing the projection operators O(na, #a) and O(na, #a) (according to Eqs. 
(B3), (B4)) by O(na)d+,d,~ and ©(na)du~d~ +, respectively, and taking into 

4- account, that the occupation number operators d,~d,, are idempotent, one 
obtains the final expression for ((HRR))L" 

((HHRR ))L = -- Z Z Z fl~ AE(ia #a) O(na) 
# i 

f~ ( l = ni~) e n~ } O(na)d+ d.~ O(na ) 

(A10) 

The projection operators ©(na) in Eq. (A10) can be omitted because the 
operator ((HRn))L by definition operates in the subspace of nd-electron func- 
tions. Thus, Eq. (A10) is transformed into Eq. (42) of Sect. 2.3. 

Appendix B 

Here we prove some useful relations for the projection and creation (annihila- 
tion) operators which are used in the text. 

a~ O(n - 1, k) = O(n, k)a~ (B1) 
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where a~- is the operator of creation of an electron on the spin-orbital k; ©(n, k) 
and O(n,/?) are the operators which project a function of the Fock space to the 
subspaces spanned by the n-electron functions with the spin-orbital k either 
occupied or unoccupied, respectively. The explicit forms of the operators ()(n,/~) 
and O(n, k) are, respectively: 

O(n,l?)= 2 (] a~+10><0l (I a.~ 
{#c~} c~=l c~=l 

( ~  ~ k) 

~ 3 ( n , k ) = a ~  ~ I] a+10)<01 a,~ ak 
{#~} c~=l c~= 1 

~ # k) 

Comparing these two definitions one immediately obtains: 

O(n, k) --= a~- O(n - 1,/~)ak 

Multiplying the left-hand side of Eq. (B1) by: 

a~ ak + aka + =1  

from the right, one obtains: 

a~- O(n - 1, k)(a~ ak 4- aka~ ) = a~ O(n -- 1, F~)a~ a k ÷ a~ O(n -- 1, F~)aka~ 

The first term of the expression on the right-hand side always vanishes, but the 
second term is exactly the right-hand side of Eq. (B1). 

O(n - 1,/~)ak = ak ©(n, k) (B2) 

Multiplying the left-hand side by ak+ ak + aka~+ = 1 from the left and carry- 
ing out the same transformations as in the case of Eq. (B1) we yield the 
right-hand side of Eq. (B2). 

~3(n, k) = O(n)a~ ak (B3) 

This relation, where O(n) is the projector on the subspace spanned by the 
n-electron functions, can be proved by the following equality chain (the under- 
lined terms are zero): 

©(n, k) = [O(n) - (~(n, k)](a~a k ÷ ak a+)  

= O ( n ) a  + ak -- Q ( n ,  - + k)ak ak ÷ O(n)aka~ -- O(n, k)aka + 

= O ( n ) a ;  ak ÷ [()(n) -- ©(n, Fz)]aka] 

= O(n)a~ ak + O(n, k)aka + = © ( n ) a {  ak 

The following relation: 

©(n, F~) = Q(n)aka~ (B4) 

can be proven analogously. 


