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Summary. --  The crystal of Bechgaard salt ((TMTSF)2X) is considered as a system 
of defect-bounded finite-length fragments of the TMTSF stacks. The paramagnetic 
contribution Zspin to the susceptibility of the system arises due to the thermal 
population of the triplet excited states of the fragments and considerably increases 
with temperature in accordance with experiment. The unusual dependence of the 
pressure fractional derivative of Zspin on temperature is explained as well. For the 
average fragment length flowing to infinity our expression for Xspi~ transforms into 
the known Pauli formula and becomes temperature independent. 

PACS 75.20 - Diamagnetism and paramagnetism. 
PACS 73.20.Dx - Electron states in low-dimensional structures (including quantum 
wells, superlattices, layer stuctures, and intercalation compounds). 

1.  - I n t r o d u c t i o n .  

The charge-transfer crystals similar to Bechgaard salts (TMTSF)2X (TMTSF is 
tetramethyltetraselenafulvalene, X is an inorganic anion like PF~, AsF~, or SbF~) 
are usually considered as ,,organic metals,. Such an approach is usually justified by 
the character of the temperature dependence of electric conductivity. I t  drastically 
increases (by two orders of magnitude) while the temperature decreases from room 
temperature to about 20 K. On the other hand, the magnetic susceptibility Z even 
qualitatively strongly differs from the Pauli susceptibility of normal metals. At 
temperatures about TN ~ (10 + 15)K and at ambient pressure Bechgaard salts 
experience a transition into the antiferromagnetic state with a spin density wave 
(SDW). Below TN (the Neel temperature) the total magnetic susceptibility decreases 
remaining finite at zero temperature as should be in the common antiferromagnet. 
Above TN the susceptibility remains approximately constant up to about 50 K and 
then increases with temperature[i-4] in contrast with normal metals. The 
susceptibility of the so-called ,,organic metals- strongly depends also on pressure. 

In general the behaviour of all organic metals and in particular of Bechgaard salts 
(BS) hardly fits into any existing theoretical model. At low temperatures and 
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ambient pressure BS are antiferromagnets. All the body of data concerning the 
conductivity, ESR and NMR relaxation times, static magnetic moments etc.[l] 
strongly supports the idea of the SDW character of the low-temperature insulating 
state. 

In the literature two viewpoints upon the discrepancy between the metallic type 
of conductivity and obviously the nonmetallic type of susceptibility are presented. 
Some authors consider high conductivity in terms of the simple-band theory with 
highly anisotropic energy bands. The values of the mean free path determined by 
low-temperature conductivity amount up to 104~ thus implying the defect 
concentration in the BS crystal to be of the order of 0.1 mole%. This value seems, 
however, to be unnatural in view of the way the material is obtained. It is 
synthesized by means of electrochemical precipitation from the solution at room 
temperature and therefore considerable defect concentration should arise. We 
assume it to be of the order of i mole%. The high conductivity of BS at low 
temperatures in its turn can be attributed to superconductive fluctuations occurring 
above the superconductive critical temperature [5] rather than to the large mean free 
path. 

The authors of[6-9] studied the changes in low-temperature conductivity, Hall 
effect, magnetoresistance, and in SDW transition temperature of BS induced by 
irradiation damage. These experiments have been interpreted in [6] by mean of the 
model with weakly interacting segments proposed in [10]. The model [10], however, 
does not go beyond the scope of the model with metallic segments proposed in [11, 12] 
for electronic properties of quasi-one-dimensional materials. According to [6, 10] the 
irradiated crystal of a quasi-one-dimensional material is an assembly of metallic 
segments bounded by defects. The interaction between the segments is weak. That 
idea seems to be very nice. At the same time it seems to be logical to consider any 
quasi-one-dimensional material as the assembly of segments without any irradiation. 
We think (in line with[11]) that some fraction of defects leading to fragmentation of 
the idealized infinite stacks arises in the course of preparation of the crystals. The 
data obtained in irradiation experiments [7-9] can be used to support this viewpoint 
by the following reasoning. 

It is known that electronic states of the infinite one-dimensional stack are 
delocalized. Defects drastically change the electronic structure of the one-dimen- 
sional system. Even a small concentration of defects leads to the localization of its 
electronic states (for review see[13]) and, respectively, even a small irradiation 
damage has to result in sharp changes in transport and other electronic properties of 
quasi-one-dimensional materials. In contrast (as is seen from [7-9]) all the properties 
of quasi-one-dimensional materials vary smoothly with the increase of the irradiation 
dose from zero. No sharp transition from neat to irradiated crystals is observed. This 
suggests that irradiation merely provides additional defects to those which persisted 
in the crystal before and arose during the preparation. The zero irradiation dose in 
[7-9] does not correspond to zero but to some finite defect concentration (c = Co 

I mole %) which is inherent in neat materials. The zero defect concentration where 
the sharp transition is expected cannot be reached experimentally. 

Another important notion concerning the models [6-12] is that the one-dimensional 
stack itself is not metallic. The separate stack (as well as the separate fragment of the 
stack) cannot be treated as a conducting metallic wire. More likely it should be 
considered as an array of sites with electrons occupying the sites. The Hamiltonian 
for that array should include the intersite hopping and on-site electron-electron 
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repulsion. That model in the one-dimensional case straightforwardly leads to an 
insulating (rather than metallic) state for the stack even in the case when the 
repulsion parameter is small as compared with the parameter of the intersite 
hopping [14]. This state is referred to as the spin density wave (SDW) or the Mott 
insulating state of the one-dimensional Hubbard model (for review, see [1,15]). 

All the above considerations suggest that the state of the separate fragment of the 
stack is the Mott insulating state rather than the metallic state in contrast with the 
suggestion of paper [6]. The explanation of the contradiction is the 
one-dimensionality of the stack. Even for t , / y  >> 1 (t, is the intersite hopping and ~. is 
the on-site repulsion) the one-dimensional system remains insulating[14]. It should 
be noted, however, that in the framework of the model under consideration the 
intrinsic electronic structure of the fragment only slightly affects the conductivity of 
the crystal which is determined mainly by interfragment hopping [6, 8]. On the other 
hand, the proposed approach makes it possible to explain the existence of the 
low-temperature ordered states (for more details, see [16]). 

The model of metallic segments has been applied to the calculation of the magnetic 
susceptibility of quasi-one-dimensional materials[12]. It has been found that the 
susceptibility of the assembly of metallic segments is of the Pauli form with the 
effective density of states which takes into account the distribution of the fragments 
with respect to their lengths. Clearly such a result cannot account for the 
temperature behaviour of the experimentally observed susceptibility[i-4]. In the 
present paper the susceptibility is considered as the average susceptibility of 
fragments of different length. However, the fragments themselves are treated as the 
Mott insulating ones. The thermally populated triplet excited states of the fragments 
give a contribution to the temperature dependence of the susceptibility. 

2. - T h e o r y .  

It is known (see ref. [1]) that the BS crystals consist of one-dimensional stacks 
formed by the (TMTSF)~ dimers and by the chains of the X- anions. According to [5] 
the electronic structure of BS can be described if one assumes the concentration of 
electrons to be one electron per (TMTSF)2 + unit. So we assume that each fragment 
containing N dimers (sites) can be described with use of the N-site Hubbard model 
with one electron per site (see[i, 15]). 

2"1. Triple t  exc i ta t ions  o f  f r a g m e n t .  - The triplet excitation spectrum of the 
separate fragment in the Mott insulating (SDW) state has been derived in ref. [17]. 
For the cyclic N site system the energies of the triplet excitations have the 
form 

u 11 (27:t,,/~-) 
(1) s. = ~ In], u = 4zt, I o ( 2 r : t , / y ) '  n = +_1, ++_2, . . . ,  

where t,j is the intersite electron hopping parameter, y is the on-site electron-electron 
repulsion parameter, I0 and I1 are the modified Bessel functions. It has been shown in 
paper [18] that the triplet excitations in the N-site system with ends (i.e. in the linear 
fragment of N sites) have the same form for large N. 

2"2. The s p i n  suscep t ib i l i t y  o f  the f r a g m e n t .  - The spin susceptibility of a separate 
fragment is conditioned by the thermal population of its triplet states. According 
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to [19] the susceptibility of the fragment of length N is given by the formula 

2 2 ~  
[-r ge sech 2 nu  

(2) z (N)  - 2kT n = 1 2 N k T  ' 

where ~B is the Bohr magneton, ge is the electronic g-factor, k is the Boltzmann 
constant, T is the temperature. In ref. [19] also two important asympthotics of eq. (2) 
have been found. If u/2NkT>> 1 (short fragments and/or low temperature) the 
following estimate is valid: 

(3) Z< (N) = 2 ~ g [  exp [ -  ~ k T  ] 
k T  

The sense of this formula is quiet clear. It  presents paramagnetic susceptibility due 
to a unique thermally populated triplet state with energy u / N .  

If u / 2 N k T  << 1 (long fragments and/or high temperature) the following estimate is 
valid: 

(4) Z.  (N) - 
2 2 [ZB ge N 

U 

Carefully analysing eq. (1) we can elucidate the details of the behaviour of Z> (N) 
close to the limit where the approximation equation (4) is valid. It reads 

(5) z> ( N ) =  2 2( N 1 ) 
~ B g e  U 4 k T  " 

2"3. The spin contribution to the total susceptibility. - Now let us consider the 
contribution of the spin susceptibility to the mole susceptibility Zspin. As one can 
easily prove 

(6) 
or 

_ NA f z(N) g(N) d N ,  
(N) o 

where NA is the Avogadro number, 

(N)  = I N~(N)  d N  

is the average number of dimers in the fragment (i.e. the average number of sites or 
the average length), ~(N) is the partition function of fragments with respect to their 
lengths. 

Both the long and the short fragments contribute to the mole spin susceptibility. 
Contributions from the areas where one of the asymptotical formulae is valid can be 
found straightforwardly. Questions arise when we intend to interpolate the values of 
z(N) in the intermediate range of N where both the conditions u/2NkT>> 1 and 
u/2NkT<< 1 are not satisfied. 

To fill the intermediate N region, we choose the characteristic fragment length 
N *  = u / k T  which is temperature dependent. Equations (3) and (5) are, respectively, 
valid if N<<N* and N>>N*. Substituting the value N* into eqs. (3), (5), we obtain 
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two estimates for the susceptibility of the fragment of the length N*: 

2 z_2 ~tBg e 3 ~ 2 g e  2 

< (N*) - ek-----fi- and Z> (N*) = 4kT 

These values coincide with an accuracy of several per cent thus suggesting that the 
asymptotic formulae are good enough for our purposes even for the intermediate 
values of N. We can write 

IX< (N), if N < N * ,  
x(N) = [;~> (N), if N > N* .  

Inserting this expression into eq. (6) we obtain 

(7) ~spin = ~long + ~short, 

where 

N *  co 

NA Z< (N) p(N) dN,  Zlong = Z> (N) p(N) dN. ~short = ~ - ~  0 

Taking the partition function in the form 

p(N) = 1/(N) exp [ -  N/(N)] ,  

we estimate the first integral using the Laplace method (see also paper[20]): 

2NA/z~g~ [ rcZu ~1/4 r u_ _ 1/21 
(8) X~hort - (N)kT t - ( f f ~  ] e x p [ - 2 ( ( N } k T  ] J" 
For the second one the integration can be carried out explicitly: 

2 2 

(9) Zlo~g - (N} + k-~ + 1 exp . 

For (N}--~ oc eq. (9) transforms into an expression independent of temperature (Xshort 
vanishes in this limit): 

2 2 NA~Bge 
(10) Z~ - u 

It coincides with the well-known Pauli result 

2 2 
NA ~B ge 

(11) Z P a u l i  - -  ~ g(eF), 

provided the effective density of states at the Fermi level g(sF)=4/U.  For  
noninteracting electrons (r = 0) in the half-filled one-dimensional band the two 
formulae give the same result: 

2 2 
NA ~B ge 

(12) Xband - 47rtl, ' 
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because u = 4~t,l for y = 0 (eq. (1)) and g(sF)= (~tllsinkT) -1, kF = ~/2. The latter 
expression eq. (12) is usually used in order to describe experimental data on 
susceptibility of organic metals [1,3,4]. As we have shown this expression appears 
only in the limit (N} --~ oo and Y --) 0 of eq. (7) and thus can be merely a crude estimate 
of the susceptibility. From eq. (1) one can easily see that Coulomb interaction leads to 
an increase of the effective density of states and thus to an enhancement of the 
susceptibility over its value for noninteracting band electrons. 

2"4. P a r a m e t e r s  a n d  c a l c u l a t i o n s .  - We used eqs. (7)-(9) to calculate the 
paramagnetic contribution to the total susceptibility of BS. The parameters were 
taken from paper[16] where a similar parameter set was used to describe the 
low-temperature electronic ordered states of BS (antiferromagnetic and 
superconductive states). According to[16] we set tit = 1500K, Y = 6000K, and 
(AT) = 40. 

2"4.1. T e m p e r a t u r e  d e p e n d e n c e  of the  suscep t ib i l i ty .  We calculated ~spin 
for temperatures ranging from 100 to 290 K by eqs. (7)-(9). The Laplace method 
estimate, eq. (8), is valid when (N} < N* only. It can be easily proven that this 
condition is satisfied for the parameters values chosen above. The found Xspin for 
(TMTSF)2X is 1.52.10 4 e.m.u./mol at T = 290 K. This value perfectly agrees with 
the estimate given in review [1] for the susceptibility of the separate TMTSF stack, 
which equals 1.65.10 -4 e.m.u./mol. Analysis of the experimental on the spin 
susceptibility of BS is complicated by the large uncertainty in the core diamagnetic 
contribution ZD. The estimate of ZD obtained by using the Pascal coefficients given 
in [2] is - 4.55.10 -4 e.m.u./mol. The authors of[2] consider it as an overestimate and 
argue that it is to be reduced by about 10 -4 e.m.u./mol in absolute value. The values 
of the spin susceptibility of (TMTSF)2X at 290 K are obtained from the total 
susceptibility measured in[3,4] by the Faraday balance method by using the 
diamagnetic susceptibility values which are close to that used in [2]. After reducing 
them by 1.0.10 - 4  e.m.u./mol to obtain the true spin contribution, the values of the 
spin susceptibility[3,4] at 290K fall in the range from 1.7.10 _4 to 2.3"10 -4 
e.m.u./mol for different anions X and agree with the results of ref. [2]. So our 
theoretical results are in reasonable agreement with the experimental data of 
ref. [2-4]. 

Contrarily, the above parameter set, used for calculation of the spin susceptibility 
in the framework of the model with noninteracting band electrons (eq. (12)), gives the 
value 0.8.10 4 e.m.u./mol. This estimate is twice as low as the value obtained from 
eqs. (7)-(9). Therefore the proposed model (eqs. (7)-(9)) describes the enhance- 
ment [3, 4] of the experimental value of susceptibility over the band value as 
well. 

The calculated numerical values of the spin contribution to the susceptibility are 
of little importance themselves. An accurate qualitative behaviour of the 
susceptibility under pressure (see next section) and the correct form of its 
temperature dependence are much more important. The calculated spin contribution 
to the susceptibility smoothly increases with temperature (see fig. 1) as the 
experimental susceptibility does. At ambient pressure Zspin increases by the factor 
1.9, while the temperature increases from 100 K to 290 K (the experiment [3] gives for 
BS the factor 1.6). We think that the temperature-independent difference between 
the calculated and observed values of the spin susceptibility is not very important. It  
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Fig. 1. - The temperature dependence of the spin susceptibility. The solid line is the spin 
susceptibility of (TMTSF)2PF6 measured in ref.[2] by the ESR intensity. Solid dots (o) 
represent the spin susceptibility (Xspi.) calculated as a sum of the contributions from short (+) 
and long (• fragments. 

may be attributed, for example, to the same uncertainties in the diamagnetic 
contribution. 

2"4.2. P r e s s u r e  d e p e n d e n c e  of su scep t i b i l i t y .  The unique quantity in the 
proposed theory which depends on the crystal lattice parameters is the characteristic 
energy u being in its turn the function (eq. (1)) of the electronic parameters t, and T. 
The hopping parameter t, obviously increases with pressure due to decrease of the 
intermolecular separations. The pressure dependence of the on-site repulsion 
parameter T is not so clear. Though it should not be strong since V is a molecular 
property[4] there are some reasons [5, 16] to think that T decreases with pressure. 
Variations of both t, and y with pressure cause an increase of u (eq. (1)). 

From the analysis of eqs. (7)-(9) one can easily conclude that Xspi, decreases while u 
increases. Carefully inspecting eqs. (7)-(9), one can note that the temperature 
increase damps the effect of the u variation on the susceptibility. 

We calculated Xspin as a function of pressure assuming the pressure dependence of 
t, to be linear with slope t~i of 20K/kbar. The latter value is only slightly higher than 
that of 1%/kbar proposed in [4]. Our calculations show that Z~pin indeed decreases with 
increasing pressure. The I d lnz~pi n /dP I varies from 2.6%/kbar at 290 K to 4%/kbar at 
100 K. The experiments performed on (TMTSF)2PF6 in[3,4] give 2.8%/kbar and 
4.8%/kbar, respectively. 

3 .  - D i s c u s s i o n .  

In the present paper we refined the approach to the explanation of the 
temperature and pressure dependence of the Bechgaard salts (BS) paramagnetic 
susceptibility previously developed in papers[6-12]. Two ideas are crucial for our 
approach. The first is the idea of the structure defects in one-dimensional stacks of 
the donor molecules. The second is that of the Mott insulating state of the 
defect-bounded fragments. The two ideas contradict all the data on BS if the latter 
are understood in the framework of the simple band theory. We however have noted 
in the introduction that the interpretation of the experiments carried out on BS in 
terms of the band theory is not frequently unequivocal. For instance the bandwidth 
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measured in the experiments on reflectance will be the same in the framework of the 
model with fragments because the zero reflectance energy corresponds to the 
transition between the lowest-energy occupied state and the highest-energy empty 
state, which all the same is 4t, for both the infinite stack and the finite fragment. 
Below that energy the reflectance spectrum is determined by transitions between the 
occupied and empty one-electron states within fragments. The fragments are long 
enough and their lengths are random. For these two reasons the one-electron states 
of the fragments are lying close in energy, thus giving wide structureless band in the 
reflectance spectra [1]. 

Some experimental data do not fit into the band theory at all. The properties of 
the ordered phases in BS at low temperature (see also[16] or the susceptibility 
considered in the present paper can be understood only in terms of the finite 
fragments (for review see [1]). And this is not surprising in view of recent findings 
due to Anderson [21]. He has shown that the quasi-one-dimensional Hubbard model 
has the property of -confinement, which means that the interstack hopping t• when it 
is weak as compared to the electron-electron repulsion 7 does not result in coherent 
motion of electrons in the transverse direction. According to [21] the two-dimensional 
t• 7 phase diagram of the quasi-one-dimensional Hubbard model is divided into two 
areas. The first area is that with t• > 7. The second area corresponds to t• < 7 and 
here the ,,confined- regime occurs. The electron parameters (t• and 7) seem to fall 
into the confinement area on the phase diagram for the majority of ,,organic metals-. 
For that reason Anderson [21] suggested to re-examine the data on the transport 
properties (conductivity, thermopower) in terms of the confined states. Clearly the 
new treatment will result in a description different from the traditional band 
interpretation of the transport properties[i], since the band theory obviously 
describes the opposite limit. 

Careful analysis reveals that an additional variable may be important for the 
description of the real -organic metals,, namely, the defect concentration c (or the 
average fragment length (N)). It does not enter either the band theory or the 
perturbative approach of Anderson at all. The effect of the nonzero defect 
concentration upon the electronic states of the stack basically coincides with that of 
electron repulsion; the electronic states in the stack with either nonzero repulsion or 
nonzero defect concentration becomes localized (for review see [13]). For that reason 
we think that the Anderson's analysis of the case of interacting electrons picks up to 
some extent the case of finite fragments as well. So we believe that the 
reinterpretation proposed by Anderson will lead to a description of the transport 
properties of ,,organic metals- in terms of local states, which also appear in the case of 
finite fragments. Furthermore, there are some indications that the interfragment 
hopping may give the thermal dependence of conductivity which is normally 
attributed to metals. For example, Sumi[22] has shown, that in some cases the 
diffusive mobility diverges at low temperature as T -2 which may be well 
misinterpreted as metallic behaviour. 

One of the attractive features of the models with finite fragments is their 
capability to treat neat and irradiated crystals in a uniform manner. The  parameters 
involved in the description of the magnetic susceptibility in the present paper are 
close to those used in[16] to describe low-temperature antiferromagnetic and 
superconductive states. 

The general picture of the magnetic-susceptibility temperature dependence in 
Bechgaard salts based upon the present paper and paper [16] looks as follows. Below 
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the antiferromagnetic transition threshold TN the total susceptibility has finite values 
down to zero temperature. Above TN the susceptibility concerned with the SDW 
phase ordering decreases according to the Curie-Weiss law. Spin-(i/2) defects also 
give some contribution to the total susceptibility. However, the experimental data on 
the Curie tail are not sufficient[4] and we do not analyse them. At higher 
temperatures when the fragment SDW phases are disordered the thermal population 
of the triplet states of separate fragments becomes significant. Their contribution 
rapidly increasing with temperature is responsible for the observed temperature and 
pressure dependence of the susceptibility. 

The most important difference between the present approach and that proposed 
in [6,12] is the description of the electronic state of the separate fragment. The idea of 
the metallic fragments invoked in[6,12] fails to explain both the low-temperature 
antiferromagnetic order and the temperature dependence of the magnetic 
susceptibility. Our approach uses the insulating SDW states to describe the 
electronic structure of the separate fragment. This approach is consistent with the 
well-known dielectrization of the metallic state in one dimension [15, 23]. 

Previously theoretical models of two types both based upon the band picture have 
been considered [4] to explain the unusual magnetic properties of BS. The models of 
the first type attribute the observed enhancement of the susceptibility above the 
Pauli band value to the Coulomb interactions. The Coulomb interactions in different 
approximations indeed give rise to some enhancement of the susceptibility, but its 
pressure dependence remains unexplained. In our model this difficulty is naturally 
avoided and the pressure dependence of susceptibility is reproduced with reasonable 
values of the parameters. 

The models of the second type ascribe the enhancement and the temperature 
dependence of the susceptibility to polaronic effects. However, the conditions for the 
polaron model validity are not satisfied in the case of Bechgaard salts[4] and 
therefore polaronic effects seem to be insufficient to explain the experiment. 

The theory proposed in the present paper predicts strong dependence of the 
susceptibility on the average fragment length (N). As long as we know, 
investigations of the susceptibility dependence on the defect concentration have 
never been carried out. Irradiation induces magnetic defects and they will give 
contribution of the Curie type to the susceptibility masking the pure effect of 
fragment length decrease. Contrarily alloying introduces nonmagnetic defects which 
will not interfere with the susceptibility additionally. Therefore solid solutions with 
the sulphur analogs of the TMTSF molecules may be convenient objects for such 
investigations. 

4 .  - C o n c l u s i o n .  

In the present paper we suceeded in describing the experimental data on the 
paramagnetic contribution to the magnetic susceptibility of Bechgaard salts in a wide 
range of temperature and pressure, assuming that 

a) structure defects break the molecular stacks into fragments of finite 
length; 

b) finite-length fragments of the stacks are in the Mort insulating (SDW) 
state; 
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C) the spin susceptibility of each f r agmen t  is determined by  the thermal  
population of the f ragment  tr iplet  states.  

The authors are grateful  to the referee  for the deep comments  and to Prof. F. 
Bassani  for encouragement  and support .  
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