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A new model for the electric conductivity in quasilone-dimensional organic metals is proposed. 
The conductivity is attributed to electron hopping between the separate segments of the 
one-dimensional donor stacks. The metalliclike behavior of the conductivity at the room 
temperature as well the low temperature condudtivity maximum are explained. The relation of 
the model with the Anderson’s-confinement hypothesis is briefly discussed. 

I. INTRODUCTION 

In recent years there has been considerable progress in 
preparation of organic and organometallic highly conduct- 
ing materials (for reference see Refs. l-3 ). Most of the 
materials of that type have as their precursors either large 
planar molecules forming long stacks or long polymer mol- 
ecules with conjugated rr system. ‘A These precursor mate- 
rials are partially oxidized in order to obtain the desired 
conducting material. The electric properties of these niate- 
rials allow one to describe the whole class of the corn- 
pounds as “organic metals” or “molecular metals.” .The 
band theory (often the lower dimensional tight binding 
model) is widely used as a theoretical framework for the 
analysis of the properties of organic metals. 

There are, however, strong objections against this pic- 
ture, both experimental and theoretical ones. Careful anal- 
ysis of experimental data reveal that the actual behavior of 
the said materials noticeably deviates from that of normal 
metals. At low temperatures most of organic metals expe- 
rience phase transitions of different type which (now it is 
generally accepted) do not fit in the tight-binding picture. 
The magnetic susceptibility is remarkably enhanced over 
its Pauli value’*- and sometimes strongly depends on tern-. 
perature,1’516 the feature- absolutely unappropriate for a 
normal metal. 

The main theoretical objection comes from the paper 
by Anderson,7 where he proposed that the Coulomb repul- 
sion of dectrons in the quasi-one-dimensional materials 
completely changes the electronic states and makes impos- 
sible the coherent motion of electrons (the. band forma- 
tion) in the transverse direction (“confinement”). He sug- 
gested to reinterpret all the body of the data on 
conductivity in organic metals from this point of view. 

Recently Tchougreeff and Misurkingv9 have noticed 
that, since the structure defects like the Coulomb repulsion 
also cause the electronic states in quasi-one-dimensional 
systems to be absolutely different from the Bloch states of 
the conventional tight-binding model1@13 the description 
of conductivity in ‘organic metals” normally given in 
terms of the Fermi velocities and relaxation times’k’7 gen- 
erally should not apply. 

In this paper we present a model designed to resolve 
the above-mentioned contradictions and to incorporate di- 
verse experimeiltal facts concerning transport properties of 
“organic metals.” The paper is organized as follows: In 

Sec. II we briefly outline the current state of the problem 
and present basic ideas of the model. In Sec. III we present 
a derivation of the formula for the dc conductivity adapted 
to pick up the specific features of our model. There we also 
study an important specific case and make some numerical 
estimates for the conductivity. Some discussions and re- 
marks are given in Sec. IV. The derivationd of the cutiber- 
some general formulas are given in Appendices A and B. :. z 

II. STATE OF THE PROBLEM AND BASIC IDEAS 

A. Review of the problem / 

All the highly conduct@g “organic metals” are actu- 
ally salts (in the chemical sense) formed by their. organic 
or organometallic precursors (Fig. 1) and small molecules 
of inorganic oxidants. Thus the “organic metals” present a 
specific case of a broader class of materials known as 
charge-transfer molecular crystals. When a charge-transfer 
crystal is formed electrons are transferred from the organic 
or organometallic (donor) precursors to the acceptor com- 
ponent (in our case to an inorganic molecule). In the crys- 
tal of an “organic metal” the flat organic molec+s are 
partially oxidized aid form stacked arrays whereas small 
inorganic anions occupy the cavities between the; bulky 
organic molecules [see Figs. 2(a) and 2(b)]. 

The most studied materials of this type are probably 
the derivatives of tetramethJltetraselenafulvalene 
(TMTSF) better known as Bechgaard salts (TMTSF),X, 
where X is an inorganic anion like PF;, AsFc , or SbF; , 
or closely related to them derivatives of bisethylenedithia- 
tetrathiafulvalene (BEDT-TTF),*” or metallaphthalocy: 
anineiodides MPcI, where M is a divalent metal; M=Ni, 
Co, Cu, and Hz, other metallophthalocyanine derivatives 
like NiPc(BF,JY or NiPc(ClOJ,, and similar compounds 
with chelating ligands other than phthalocyanine‘? (see 
Fig. 1). 

The view upon these materials and many other similar 
systems as upon metals is substantiated by the optical and 
conductivity measurements performed on these com- 
pounds. The presence of the plasma-edge-like features in 
the reflectance spectra, high room-temperature conductiv- 
ity along the stacks ( cII ca. lo3 + lo4 a-’ cm- ’ ), metallic 
type of the temperature dependence of the conductivity 
(da,, /dT < O), and the positive and linearly incr&ase with 
the temperature Seebeck coefficient (S--T) strongly sup- 
port the general trend to fit all the data concerning “or- 
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FIG. 1. Building blocks foi the stacked quasi-on&dimensiolral materials. 

ganic metals’: to the simple~,tight-binding theory with- 
organic/organometallic units considered. as sites. (It is. 
worthwhile to note that the the alternative approximation 
treating the organic stacks as continuous one-dimensional 
wires and leading to the Ginzburg-Landau-type descrip- 
tions of organic metals”131’8 with all its poticr nevertheless 
is not able to succeedingly take into account the structural 
data.) 

In the one-dimensional tight-binding picture each do- 
nor molecule supplies its highest occupied molecular or- 
bital (HOMO) to form a .oneidimensional band and the 
parameter of oneielectron hopping between the HOMOs of 
the two adjacent molecules in the stack 4 is ‘directly re- 
lated to the bandwidth I+‘=&,, . Before the crystal is 
formed the HOMOs of all the donor molecules are doubly 
occupied. In the process of crystal formation some part of 
electrons (consistent with the overall stoichiometry and 
the actual structure of the inorganic anions to be formed) 
moves to the acceptor molecules and each donor unit ac- 
quires the average positive charge qe (where e is the unit 
charge) :, Tbe average charge 4 is related’ to the density of 
electrons ps 2-q, to*.the band occupancy p/2 and to the 
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FIG. 2. Structural mode for the typical spatial arrangement of the donor 
(large cirl~) and acceptor (small balls) moieties in organic metals; (a) 
the most typical p&z&i&g mode; (b) view along the stack direction; (c) 
arrangement of the adjPcent segments of the neighbor stacks. 

Fermi wave.number 2kF=z-p/d, where d-is the intermo- 
lecular separation along the stack. 

In the case of Bechgaard salts with the stoichiometry 
(TMTSF) ZX each inorganic molecule X captures one elec- 
tron from the donor stack of TMTSF molecules. The av- 
erage charge of TMTSF unit is l/2, p=3/2, and the band 
occupancy is -3/4. In the compounds of the MPcI family 
iodine atoms form the linear 13 anions in the channels 
between the MPc stacks. Each I3 unit captures one electron 
from the donor stack and the average charge is l/3, 
p=5/3, and the band occupancy is 5/6. 

The conventional tight-binding model allows one to 
have simple expressions for the basic experimental quanti- 
ties through W, p, and other parameters of the model (see 
Refs. 4, 17, 19, and references therein), 

WP 
(fiw,)2=4Ngw sin VP/2 ’ (1) 

2?i2 tiBT cos ~-p/2 
SF-- 

3 e Wsin2~p/2’ (2) 

NAP=& 
,XPauli = 7rW’siIi7rp/2 j (3) 

all =e2~2f18J7+F), 1 

OF= ( Wd/2fi)sin %-p/2; . . - (4) 

./tr(EF) = (TrT-c tll sin 7Tp/2) --I. . 

In’the listed formulas wp is the plasma edge frequency, NC 
is the carrier density, kB is the Boltzmann constant, xpsUli 
is the mole paramagnetid susceptibility, NA is the 
Avogadro number, PB is the Bohr magnetron, g, is the 
electronic g-factor, vF is the electron velocity on the Fermi 
level, rF is the scattering time for an electron on the Fermi 
level, ;V( eF) I is the density of electron states at the Fermi 
energy per unit volume, and .YC-is the volume of the unit 
cell. The characteristic time rF describes all the possible 
mechanisms of electron scattering (for example, due to 
phonons) and contains different types’ of the temperature 
dependence of the conductivity. .-. 

The first three formulas [Eqs. ( 1 )-( 3 )] are pai%cularly 
important because they enable one to relate the measurable 
quantities to the parameters of the tight-binding model and 
to check its consistency. The results of that comparision 
are, however, contradictive. Though the Seebeck coefficient 
is linear with temperature above -20 K for both Bech- 
gaard salts’ and .H,PcI~ (Ref. 4) and the values of the 
bandwidths obtained from the thermoelectric power 
(TEP) measurements are in perfect agreement with those 
derived from the reflectance spectra the measured. para- 
magnetic susceptibility is two or three times enhanced over 
its Pauli value Eq. (3) and in the case of the Bechgaard 
salts remarkably depends on temperature, It increases by a 
factor 1.8 while the temperature increases from 100 to 300 
K.5*6 The susceptibility enhancement is frequently attrib- 
uted to the electron-electron repulsion (see, for example, 
Ref. 20), which must be rather strong as compared to the 
bandwidth (r/W- l/2) to account for the observed factor 
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- ( 1 -~/W) -I, which is probably beyond the area where 
the theory” applies. Moreover, the electron repulsion does. 
not explain the temperature dependence of the susceptibil- 
ity in the Bechgaard salts (for more details see Ref. 9). 

Additional problems arise when one tries to incorpo- 
rate into the tight-binding picture the results of the con- 
ductivity measurements. Experimentally the longitudinal 
resistivity p = (ali ) -I of organic metals is characterized as 
proportional to Ta, where a ranges from 1 to 2 for the 
temperatures above - 15 + 20 K. This type of temperature 
dependence is attributed15-17 to a cooperative action of two 
scattering mechanisms-the one-phonon scattering with 
T$ - kBT and the two-libron scattering with 
rG’- (kBT)2. According to Ref. 17 the one-phonon con- 
tribution to the total resistivity dominates at low temper- 
atures whereas at the room temperature the two ‘are ap- 
proximately equal. The model,17 however, fails to describe 
the low-temperature drop of the conductivity of organic 
metals which .happens at the temperatures ,- 15+=20 K. In 
the Bechgaard salts this drop is attributed to the transitions 
of different nature (antiferromagnetic or structural, de- 
pending on the type of the inorganic anion X) which ac- 
tually take place in these compounds. However, the same 
low-temperature drop is observed in H,PcI and NiPcI 
where no phase transition has been found. In the CuPcI 
compound, having, l/2-spins localized in the copper sites, 
that interact with the itinerant n electrons of the stacked 
PC rings, the conductivity drop takes place far above the 
temperature of the magnetic transition whose precise na- 
ture and .relation,to the conductivity remains unclear until 
now.“’ _. 

Another group of problems arises when one makes an 
attempt to incorporate in the one-dimensional tight- 
binding picture the data on the electric conductivity and 
other properties obtained on the irradiated samples of or- 
ganic metals.22-26 ” . 

It is known that electronic states in the infinite one- 
dimensional stack are delocalized. Any defects change the 
electronic structure of a one-dimensional system drasti- 
cally. Even a small concentration of defects leads to the 
complete localization of the electronic states (for review 
see Refs. 10 and 13) and, respectively, even small irradia- 
tion damage (or small concentration of substituents in the 
case of alloying) has to result in sharp changes in the 
transport and other electronic properties of 0rgani.c metals. 
The quasi-one-dimensionality (i.e., the presence of the 
weak transverse hopping of the strength tl ) slightly mod- 
ifies the. above conclusion -I derived. for purely one- 
dimensional systems. The electronic states in a quasi-one- 
dimensional system localize when tl /ql < (k&)-l, where 
1 is the mean free path, the average separation between the 
defects.‘o1’3 _ The critical’ defect concentration ni above 
which the mentioned drastic changes in the transport prop- 
erties are expected to happens is then estimated n,=rptl / 
24 . In contrast with this prediction all the characteristics 
(with the only exception, the superconducting T,) of the 
irradiated samples of Bechgaard salts vary smoothly with 
the irradiation ‘dose (or with the fraction of the alloying 
molecules). No sharp transition from the neat to the irra- 

diated crystal is observed. At the same time it is clear27 that 
for the high irradiation doses the electronic states of the. 
quasi-one-dimensional systems are localized. That suggests 
that the irradiation merely provides the defects additional 
to those which persisted in the crystal before and arose 
during its preparation. The zero irradiation. dose corre- 
sponds not to zero but to some’ finite defect concentration 
no which in its turn is larger than the critical concentration 
n,. The very existence of the &rite defect concentration in 
the neat crystals of “organic metals” does not seem sur- 
prising in view of the way these materials are obtained. The 
Bechgaard salts are synthesized by means of electrochem- 
ical precipitation from the solution at the room .tempera- 
ture; the metallophthalocyanine iodides are obtained by 
cosublimation of the metallophthalocyanine and iodine at 
an elevated temperature. Under the cited conditions either 
vacancies or dislocations of the organic molecules or other 
structure defects may well appear. So both the methods 
mentioned above (and may be any.other) are to give a 
considerable defect concentration, which, we believe, sat- 
isfies the condition no > It,. 

We arrive to a certain contradiction; the high- 
temperature conductivity, TEP, and optical data fit nicely 
into the one-dimensional tight-binding theory, whereas the 
low-temperature conductivity, magnetic susceptibility; and 
the data obtained on the irradiated samples do not fit into 
it at all. The problem is to describe all these data within a, 
single model. Recently an approach alternative to the one- 
dimensional tight-binding theory to the magnetic proper- 
ties of the “organic metals” has been proposed.sV9 Within 
that approach the authors succeeded in the uniform de- 
scription of the magnetic susceptibility data in the neat and 
irradiated samples of Bechgaard salts by introducing inci- 
dentally an alternative description for the electronic. struc- 
ture of the material. In the present paper we apply the 
same ideas (see. below) concerning the electronic structure 
to the transport properties of “organic metals.” .- ._ 

B. Bsisic~ick~s atid kumptions . . 
Any satisfactory theory should organize into a single 

picture the following facts briefly reviewed just above: (i) 
The temperature dependence of the longitudinal conduc-. 
tivity is metalliclike in the high-temperature region. (ii) 
One electron states are perfectly-localized (the system is in 
the highly doped regime n > n,) . 

As, we have mentioned ‘in the previous section the 
quasi-one-dimensional materials are usually considered as 
assemblies of one-dimensional infinite stacks. The stacks 
are formed by the flat donor (organic or organometallic) 
molecules. Bach molecule supplies its HOMO (most com- 
monly of the r type with respect to the molecular plane) 
for the delocalized Bloch states would be possibly formed. 
We accept this. description of the local structure of. the 
separate stack but supply it with (i) the structure defects 
occurring randomly in the stacks; (ii) the intersite electron 
hopping in the transverse (interstack) direction; and (iii) 
with an equilibrium phonon heat bath. According to Refs. 
8 and ‘9 we consider only such structure defects which are .,^ the ynsurmountable.barriers for the one-dimensional (lon- * 
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gitudmal) motion of electrons. One electron states are thus 
extended only over the separate segment rather ‘than over 
the entire stack as the Bloch states were. The wave func-. 
tion of the system is then an antisymmetrized product of 
the segment functions. 

The segments segregated by the defects on the same 
stack do not interact. On the other hand the transverse 
electron hopping results in the interaction between the ad- 
jacent segments on the neighbor stacks [Fig. 2(c)]. The 
transverse intersite hopping leads to transitions between 
the one-electron states of the adjacent fragments and al- 
lows one to introduce the electric current operator. The 
conductivity is then determined by the rate of the decay of 
the corresponding elements of the total density matrix of 
the system and the electron-phonon interactions are in- 
cluded in order to provide the necessary relaxation terms. 

To find the relaxation rates we must make certain as- 
sumptions concerning the phonon spectrum of the organic 
metal. It seems reasonable to assume that the-vacancies in 
the donor stacks do not affect the phonon spectrum signif- 
icantly. This assumption can be substantiated if we treat 
the vacancy as a molecule with zero mass. In this case the 
local modes emerging from the acoustic bands have the 
frequencies higher than all the frequencies in the bands.28 
The number of the local modes is proportional to the num- 
ber of the vacancies n and thus it is small. The long-wave 
acoustic modes remain unaffected. This allows us to take 
the phonon Hamiltonian of organic metal as the lattice 
Hamiltonian of the ideal charge-transfer molecular crystal. 
We also assume that the matrix elements of the one elec- 
tron Hamiltonian between the electronic states are linear in 
the lattice deformations. 

111. THEORi 

A. One-electron states of a separate segment 

In the previous section we assumed that the simplest 
approximate wave function of the ground state of the crys- 
tal of an “organic metal” is the antisymmetrized product of 
electron functions confined to the segments. We consider 
the one electron states of the segments (see Refs. 8, 9, 29, 
and 30). For the sake of simplicity we assume that the 
planar donor molecules form a rhombohedral lattice with 
parameters a, b, and c containing one donor molecule per 
unit cell having the volume PTC=abc. We also assume that 
the donors are stacked along the a direction and thus this 
parameter is the intermolecular spacing d within the donor 
stack IEqs. (l)-(4)]. For the sake of definiteness we as- 
sume that the defects in our case are simple vacancies in 
the donor stacks.. _ . _’ 

Let the subscripts a number the vacanicies. Then the 
sites with radius-vectors r, are vacant. The segments of the 
stacks are bound by the randomly distributed vacancies. 
For a given configuration of the defects the radius-vector of. 
the m iddle of the ath segment is R,=(r,+r,+,)/2 and 
the segment length alv, = ra+ i - r, . [we assume here that 
the ath and (a-+ 1)st vacancy occur in the same stack so 
only their a coordinates are different.] The number of sites 
in the ath segment is N, . If the mole fractionof vacancies 

is n the average number of the sites (donor molecules) in 
a segment (N) is n-r. 

In the tight-binding approximation the one-electron 
(Hiickel) Hamiltonian of the separate fragment coincides 
with that of the linear polyene of the same length.31 If the 
number of sites in the segment is N the one-electron ener- 
gies are given by 

N 
e(j)=-2tll mcos- N+l’ j=l+N (5) 

and the coefficients in the expansion of the jth state over 
the site states are given by 

l/2 rrkj 
SinW. (6) 

The one electron states of the segment are either sym- 
metric or antisymmetric with respect to its center. For that 
reason the mean value of the radius vector of an electron in 
any one of one-electron states of the ath segment is R, and 
coincides with the m iddle of the segment. 

If the density of electrons is p, the number j, of the 
occupied one-electron level in the segment of the length N 
is Np/2. The energy gap between the highest occupied 
( jH) level and the lowest empty (jr= j,+ 1) one is 

A=+, . sin(s-p/2)/N. (7) 

The many-electron states of the system are the prod- 
ucts of the local states. The ground state Y, of the system 
of the segments is the product of the segment groundstates 
y(a) g ’ 

Yg’ n iy’ . 
a 

The many electron states of the segments V$’ are in their 
turn the Slater determinants of the occupied one-electron 
states with j<j,, 

where a&, are the operators of creation of an electron with 
the spin projection (T in the respective one-electron states. 

The excited states of the system can be obtained by 
transfers of electrons from the occupied states to the empty 
ones. The low energy states correspond to the transfer of 
one electron. The excited state 1 m), m  = (ia + jp), is ob- 
tained by transfer of an electron from the ith state in the 
ath segment to the jth state in the 0th segment (/3 may 
equalto a ) . The states of the lowest energy are those where 
an electron is transferred from the highest occupied (jf;> 
state’to the lowest unoccupied state (j$J. The energies of 
the states of this type are ( Aa+ A,)/2, where A, and A,s 
are given by Rq. (7) with N equal to N, and ND, respec- 
tively. 
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B. The velocity operator in the system of segments 

Specific properties of organic metals are reflected in the 
theory through the electron velocity operator having the 
form characteristic for this system. 

As we mentioned in Sec. III A, the one electron states 
in organic metals are localized and confined to the seg- 
ments and the donor stacks are broken in by the vacancies. 
The mean value of the spatial coordinate of an electron in 
any one-electron state localized in the ath segment equals 
that of the m iddle of the segment R,. For that reason the 
electronic transitions between the one-electron states con- 
tlned to the same segment do not contribute to the velocity. 
On the other hand the transitions between the segments 
contribute to the velocity. So we can write 

iSv=iti= [r,H] 
(8) 

v= -iP i z (&---R$ -z T$ff’(a&,qqc-$j~aiJ~ (I 
where R, and Rg are the vectors of the m iddles of the ath 
and @h segments; T&f!’ - tl is the matrix element of the 
electron hopping between the ith-one-electron state of the 
ath segment and the jth state of the /3th segment, 

In the above definition of the electron velocity the sum- 
mation is formally extended to all pairs of the fragments 
existing in the sample. The hopping matrix elements T&f) 
reduce the number of the terms in the sum, because the 
nonvanishing hopping elements occur only between the 
segments of the adjacent donor stacks which in addition 
must satisfy the following geometrical condition: 

which means that the ath component of the separation 
vector between the m iddle of fragments a and fi are shorter 
than half of the sum of the segment lengths. This condition 
ensures that .two segments a and p contain donor sites 
which are immediate neighbors of each other in the trans- 
verse direction. Then the matrix element of the transverse 
electron hopping between the one-electron states of two 
fragments reads 

T!t@) = - tl 2 ‘A;$$;, IJ i- 

where the donor sites with numbers k, and ks in the re- 
spective segments are the immediate neighbors of each 
other in the transverse direction and the prime at the sum- 
mation sign indicates that the sum is extended to such pairs 
of neighbor sites. A’=’ and AW’ are given by Eq. (6) with 
N=N, or NB, respectively. 

C. The dc cond.uctivity in the system of segments 

Now an estimate for the dc conductivity in the system 
of the segments can be obtained from the general 
Greenwood-Kubo formula3”4 (for the details of the der- 
ivation see Appendix A). The conductivity at the fre- 
quency o is given by [FQ. (A9)] 

FTG. 3. Regular body centered tetragonal lattice built of the equivalent 
stack segments. 

a(@> 

=& Z W m Z  
Ivmm~12[1-exp(-~~,~,)ly,~, 

m  +--w,~,>2+ h?lvn>2 * 
(10) 

The main contribution to. a( w ) comes from the terms with 
w,,,~,,,=w in the sum over m ’. If fiw(kBT we have (see 
Appendix B) 

(11) 

where the prime at the sum over m ’ means that the sum- 
mation is extended to the states with E,I = E, . 

The formula for the dc conductivity E!q. ( 11) can be 
evaluated in some model situations and the conclusions 
concerning electric conductivity of organic metals can be 
derived. 

We assume that the vacancies are regularly distributed 
in the sample. This means that all the segments between 
two consequent vacancies have the same number of donor 
sites N and thus the same length Na. Following Ref. 8 we 
assume that the segments in the adjacent stacks are shifted 
with respect to each other by one-half of their length so 
that each segment has eight other segments adjacent to it 
and the body centered tetragonal lattice is formed where 
the segments themselves take part of the sites (see Fig. 3). 

In this model the energies of the one-electron states do 
not depend on a; the number of the segment. If we accept 
the simple Hiickel approximation (see Sec. III A) for the 
electron structure of the segments the estimate for the en- 
ergies of the lowest excited states I m}, m  = ( j# + j@), is 
A and this -energy does not depend -on a and fl. If the 
energy gap is large as compared to kBT we can be sure that 
the excited states involving the electron transfers from the 
deeper one-electron levels to the higher ones do not con- 
tribute to transport effects and we can restrict ourselves 
with the states of the type (js-, jJ3). The statistical 
weight of all thestates m=(jH,jfip> is w,-exp(-A/ 
k$?. 

The intersegment hopping matrix elements between 
the jL-states also can be estimated 

N/2 
TF:‘=--t, c A d. k N,2Z--tl/2. k=, JL JL + 
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With these estimates we have for the matrix element of the 
electron velocity 

vm,~=--(i/2)(t~ @)(Rp--Rp), 

where m=(js+jfi)’ and m ’=(js+jfl) and the 
fragments fl and B’ are the adjacent ones. 

Now we are ready to employ all the estimates made for 
the system with the regularly displaced defects in order to 
find the dc conductivity of this system with use of Eq. 
( 11). It is easy to perform the summation over m ’ first. 
For any given state m= (j@-+jJ3) the only accessible 
states m ’ are those m ’= (js-jfl), where p’ runs over 
eight segments adjacent to the segment /3 in the bee lattice 
of the segments (see above). For the symmetry reasons the 
relaxation factors Dmtm do not depend on the mutual dis- 
placement of the segments a, fl, and p’ so they can be 
factorized from the sum over m ’. Inserting the velocity 
matrix element one can see that the squares of the hopping 
vectors (RF, - R$ j2 are the same for all allowed pairs of 
the states m  and m ’ and for the dc conductivity tensor one 
obtains 

e2 tfD 
qtv(O) =&jj (kBT>2y CR;, - $I2 (12) 

or 

%(O> =q (0) (13) 

2 <D 
d?) =a1 b(P) =x (kBT)2r (14) 

and the conductivity anisotropy becomes 

alI /oL b= (aN)2/4b2. 

To estimate the last sum in the brackets we recall that only 
the excited states of the lowest energy A contribute to the 
sum over m. This, sum is equal to g * exp ( - A/k,T) , where 
g is the number of the excited states with energy A in the 
sample of the volume Y. Each of Y/NY, segments can 
be ionized, however it is unrealistic to think that the ex- 
tracted electron can go far away from the parent segment 
(a). The Coulomb forces trap it in certain proximity of the 
latter so that the extracted electron can be placed only on 
the segments (/3) which environ the parent segment a. The 
number of the allowed segments p is JY~~. The number 
of the excited states g is then YflcJYJV and the con- 
ductivity becomes 

2 <D aiV 
ff’r-=i 4(k,T)’ bc - ~c,,,J e$( - A/kBT). ” . : 

(15) 

At the high temperatures, exp( - A/k,T) z 1- A/k,T, 
the longitudinal conductivity becomes 

e2 4 D aN I- 
?’ ==-ti~4(kBT)’ bc ~..i --,/lr,,(l-A/kBT). (16) 

The longitudinal conductivity reaches its maximum at the 
temperature k,T, = A/2, 

(17) 

Below T, the conductivity rapidly drops to zero whereas 
above T, there is a long tail - T-’ m imicking the normal 
metallic behavior. 

The numerical estimates of the parameters entering the 
theory can be done by fitting the experimental data on the 
longitudinal conductivity tid the conductivity anisotropy. 
For the H,PcI the intermolecular separation along the 
stack a= 3.25 A, and that in the transverse direction b=c 
= 14 A. With these data the. experimental conductivity 
anisotropy4’35 ali’/oL ti 500 is reproduced. if N~200. In 
H2PcI the conductivity maximum is observed at T,= 15 
K and q max- -3800 a-* cmY1.4*35 There is no universally 
adopted values of the transversal hopping parameter r, . 
For the salts (TMTSF),X two types of values are known, 
tl =30 K (Ref. 8) and tl =300 K (Ref. 36). Both values 
seem to be reasonable for the H,PcI compound as well. 
Then the experimental ~11 max can be reproduced with 
LxRr,, equal, respectively; to either 15 or 0.15. The value 
of dvad estimated for the Coulomb trap in polyacety-, 
lene3’ is - 10, so that D is either 1.5 or 1.5 X 10m2, and 
both values seem to be reasonable. 

The room-temperature conductivity (~11 (300) of 
H2PcI is -700 Q-‘cm-’ (Refs. 4 and 35) -so that 
q (3owq max is 0.2. The calculation with-our parame- 
ters gives an order of magnitude lower estimate 0.02, which 
indicates .certain problems within the proposed approach. 
Another problem arises when we try to-estimate indepen- 
dently the characteristic energy A. Taking tll = 1.3 eV from 
the reflectance measurements4935 and N=200 (see above) 
we get A= 100 K. Since A appears in the exponent the 
discrepancy,with the value of A obtained from T, is sig- 
niflcant. It should be noted, however, that the summation 
over the excited states in the sample leading to the expo- 
nential expression in Eq. ( 15) is very approximate. It is 
probably correct at low temperatures Tz T, . At room 
temperature, when k,T#A, multiply excited states may 
well be important. It suggests that the summation over m  
in Eqs. (12)-( 14) are to be performed more carefully. 
This work is in progress now. 

IV. COMMENTS 

In the present paper we develop a model for the hop- 
ping conductivity in the system of @rite seg-ments each of 
those is described within the simple tight-binding approx- 
im@on. <The proposed model is applied to the electric con- 
ductivity in a quasi-one-dimensional “organic metal,” 
which, we think, can be considered as a system of such 
segments bound by the structure defects. 

The electric properties of materials of this type are 
usually considered within a standard one-dimensional 
tight-binding model, which was successful in the descrip- 
tion of the metalliclike temperature dependence of the con- 
ductivity. We, however, managed to show, that the con- 
ductivity increase with the temperature decrease is not the 
feature characteristic for the normal metals only. The hop- 
ping conductivity may also increase with temperature de- 
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crease (see also Refs. 38, 39, and references therein) and 
thus the property do/dT < 0 is not an unequivocal indica- 
tor of the metallic behavior. 

We also’describe the conductivity maximum on or- 
ganic metals occurring at low. temperature within our 
model. These maxima are normally attributed to the metal- 
insulator phase transitions of different nature (magnetic or 
structural) taking place in one-dimensional stacks. There 
are, however, at least several examples (H2PcI, NiPcI) 
when the conductivity maxima are not related to any phase 
transition, which simply do not exist in these materials40’41 
(see also the Introduction). We believe that our approach 
explains the conductivity maxixmum without evoking the 
phase transitions but does not contradict to their possibil- 
ity (for more detail see Ref. 8). 

It is interesting to discuss the relation between our 
analysis of the conductivity in quasi-one-dimensional or- 
ganic metals and the proposal due to. Anderson7 to re- 
examine the transport properties of these systems from the 
point of view of his hypothesis of “confinement.” Ander- 
son’s reasoning is based-on’& fact that the point r=O (y 
is the electron++ctron interaction) is a singular point for 
the one-dimensional system of electrons. At y=O the de- 
localized Bloch states present the exact answer of the 
many-electron problem. At any r#O the one-electron 
states in the one-dimensional system are localized. This 
singular behavior strongly affects the perturbational treat- 
ment of anisotropic two-dimensional systems with tl < tll . 
According to Ref. 7 the parameter space ( tL ,r) falls into 
two areas. In the area where tl > y the correct description 
can be obtained perturbatively from the delocalized de- 
scription by turning on .first tl and then y. In the area 
where tl < y the confined regime occurs. In this regime the 
correct description cannot be got if one starts from the 
delocalized states and turns on tl . In this area the inter- 
action should be taken into account tirst, which leads to the 
localization in one dimensional system. The quasi-one- 
dimensional systems, where tl ( tll and-t11 ~7, seem to fall 
in the confined regime so that the response in these systems 
must come -entirely from the virtual hopping between the 
stacks, not from the real transitions. 

To reveal the relation between the work by Anderson7 
and ours one should note that there is at least one more 
relevant variable with respect to which the one- 
dimensional many electron problem is singular. That is the 
defect concentration. If the defects and interaction are ab- 
sent (y, n=O) the delocalized description using the Rloch 
states is the precise answer. Any nonvanishing concentra- 
tion of defects destrois this picture, and all one electron 
states in one dimension become localized. It is easy to see 
that there is a certain analogy between the effect of the 
electron-electron interaction and that of defects upon the 
electronic states of a one-dimensional system. In that con- 
cern a question arises if the Bloch’ description of a separate 
stack without defects applies as a zero approximation. for 
the anisotropic system with defects. It is. obviously so for 
the modest values of the anisotropy parameter tll /tl , and 
the defects can be treated as a perturbation. By contrast the 
quasi-one-dimensional organic metals are characterized by 

very strong anisotropy tll /tl - 102. For such an anisotropy 
first the defects must be taken into consideration, and then 
the interstack hopping can be included perturbatively. The 
analogy with the approach by Anderson is obvious. We 
have taken into account the defects from very beginning, 
considering the one-electron states of the separate seg- 
ments. As a result we have got the response function (the 
conductivity) entirely due to the virtual hopping. 
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APPENDIX A: THE KUBO-GREENWOOD FORMULA 
WITH RELAXATION 

Here we derive the Kubo-Greenwood formula for the 
electric conductivity in the system of segments. We follow 
here the general scheme of the derivation of the Kubo- 
Greenwood formula given in Ref. 28, but retain the relax- 
ation terms explicitly like in Refs. 34 and 42. We use the 
technique of the Liouville superoperator presented, for ex- 
ample, in Ref. 42. 

The density matrix of the electronic subsystem p obeys ’ 
the equation of motion in the Liouville representation . 

dp/dt=b=--iJ?p+kp, (AlI 
where the Liouville superoperator E is defined by 

kp=Hp-pH. 

Here HAis the Hamiltonian of electrons only. The superop- 
erator R describes the relaxation effects due to interactions 
with the phonon heat bath. 

Now let the electronic Hamiltonian H be a sum H,, 
+H’ (t), where a weak external perturbation H’(t) -exp( 
- imt). The density matrix then becomes p = p. + p’. The 
total density matrix p obeys the following equation of mo- 
t&Ii: 

._ 

p= -i( &+Z’)p+kp, 

where 
fi~o=Hop-pHo; 

%Z’p=H’p-pH’. 

L42) 

We insert the. above expansion for p in the equation of 
motion and take into account that the matrix p. pbeys the 
equation of motion with the Liouville operator Lo. Then, 
retaining only the terms linear in i’ we get for the first 
order correction to the density matrix 

p’= -iL’po-iLop’+i?p’. (A3) 
The time dependence of the first order correction p’ to the 
density matrix coincides with that of the perturbation it- 
self; p’ - exp ( - iwt) so taking of the time derivative gives 
the multiplier -iw, c;; :7 
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-icop’= -ii’po-ii20p’+Rp’. (A41 

The solution of the latter equation with respect to p’ can be 
formally written as 

p’=(wf-&-i~)-12’po, (A51 

where f is the superoperator unity. 
To find the inverse of the superoperator in the brakets 

we consider the equation of motion for p in the represen- 
tation of the eigenstates of the electronic Hamiltonian Ho, 

’ P??Zlt?l = --i~,~,p,,,~,+ z K,wP,,~~~,, , 
n’n 

bw 

where w,~, = (E,r -E,)/fi and E, is the energy of the 
electronic eigenstate 1 m} of the unpecurbed Hamiltonian 
Ho. For the relaxation superoperator R we accept the sec- 
ular approximation (see Ref. 42)) 

R mQ?ln’n=&7&?l~n~n( l-&J wmn--Gm~n~SmnYmfm * 

In this approximation the off-diagonal (in the above rep- 
resentation) elements of the density matrix become the 
eigepvec@s of both the time evolution, super-operator 
-iLo+ R with the eigenvalues - iw,,,,, - ?/mlm and of the 
inverse superoperator with the eigenvalues (w - w,~, 
+ iymtm)-‘. Since the unperturbed density matrix p. is 
diagonal in the basis of the eigenstates of the Hamiltonian 
Ho and its matrix elements are w, the perturbation Liou- 
villeoperator 2’ gives (fi~‘p~)~,~ = Hk,,( w, - wm,). Fi- 
nally we have for the off-diagonal correction to the density 
matrix 

fip;,, = 
H~t,hc--o,~) 
co-~m~m+iy~~m * L47) 

To find the electric conductivity we introduce the-per- 
turbation through the electric vector potential - iEe-‘Of/o 
and the electric current operator J= -ev, where v is the 
operator of the velocity of electrons2* The perturbation 
operator reads 

H’ = - ieD&- iot/o 

so that the amplitude of the external field is E and the 
electronic operator is - iev/w. The average current density 
in the sample is j = - ev/Y, where Y is the volume of the 
sample. For its mean value we have 

W  =tr(pj) 

=tr(p’j) 

(A81 

and the real part of the conductivity reads 

u(o)=& ;:, .(w*;;;7;;-;;;j;m)2 

I %m?z~ 12[1-exp(--fipw,~,)ly~,, 
x $ (6p--W m ,m-y”~ ,t,12+ (?$J2 , tAgI 

where the complex relaxation rate reads ymrrn = yk,, 
+ iyi,,, and we accepted the relation wmt/wm 
=exp( -@?cv,,,) for the statistical weights [as usual 
P=(kBT)-‘1. 

APPENDIX B 

-Here we (following Ref. 42) derive the estimates for 
the relaxation rates of the off-diagonal elements prn,i of the 
electronic density matrix. Assume that the interaction op- 
erator responsible for the relaxation processes in the sys- 
tem has the form 

V= c Qyp, 
P 

where the operators Qp act on the variables of the system 
and the operators Fp on the variables of the heat .bath. 
According to Ref. 42 then the relaxation rates ymtrn can be 
expressed in terms of the quantities I’&ln, 

rLk~~=fi-~C <mlQplk>C~lQq14 
P4 

X 
s m  dtexp(-iq,t)(F,(t)F,), 

0 

J?;kln=fi-2C <mlQplk>(~lQp14 
P4 

X dtexp(-iiw,kt)(F~ptt)), 

ymlm= F t IY;,~~~, -t L-;~~,) - rrf;m m ,m, - rim ,,,, . 
We assumed (see Sec. II B) that the relaxation.in our 

case appears because of the electron-phonon interaction, 
so that the operators Q, act on-the electron variables and 
operators Fpm on the phonon ones. The phonon Hamil- 
tonian can be taken in the model form 

Hph= c +hqtb;b,+ li2), 
w 

(Bl) 

where osq are the phonon frequencies of the mode with the 
wave vector 4 and the polarization s; b&(6,) are the cre- 
ation (annihilation) operators of the corresponding pho- 
nons. The linear in lattice deformation matrix element of 
electron-phonon interaction has the form 

H=-!;= c ~q’%&+b&. . %P U32) 
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The electron-phonon operator Eq. (B2) has the de- 
sired form of the interaction operator Y. We assume that 
the phonon correlation functions (F,(t)F,) have the form 

where ns4 is the number of phonons, and r@ is the corre- 
lation time for the interaction between electrons and the 
heat bath.4z In this case the integral multipliers simplify to 
rph (n,+ n,) and the quantities r,$kln become 

r:k,n= (Tph/g) c ~~,@!&‘$+$-q), 
w (B3) 

r,,ln = b-ph/fa ; Pm,k&q(nsq+%qL 

For 3/m+,, we have 

Ym’m=~ph/~; (%q-l-ns-q) [ ; (em,‘“&~‘+r$Q$ 

-(~P~+e”,“e”,‘“‘,] 034) 

and the relaxation rates 3/mfrn are-real ($,, = 0). 
The temperature dependence of ymlrn immediately fol- 

lows from IQ. (B4). It is determined by that of the number 
of phonons. The main contribution comes from the low- 
energy phonons with ficLSqg kBT and nsq= k,T/+im,. Per- 
forming formally the summations over sq and k and fac- 
torizing kBT/fi we get 

y,n~m=W~T~+i)D,~m, (B5) 

where the dimensionless relaxation factors D,l’, are given 
by 

D,l’,=rp& c w,;’ 
w [ 

; tCq’k@G’+ P;&-> 

- Ky~~+e”,“Qy~]. 
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