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Abstract 

The high-spin-low-spin (HS-LS) transition in iron(II) complexes was studied by the recently developed quantum chemical 
effective Hamiltonian method. This method uses a trial wave function which is an antisymmetrized product of the fully correlated 
function of d-electrons and of the Slater determinant of the ligand MOs instead of the conventional Hartree-Fock single 
determinant trial wave function built of the molecular orbitals spread over an entire complex. This approach allowed us to 
explicitly take into account the d-electron correlations, the weak covalence of the metal-ligand bonds, and the electronic structure 
of the ligands. The cooperativity effects in the HS-LS transition occurring in the crystals are briefly discussed and the contribution 
from the Coulomb forces to the intermolecular interaction responsible for the cooperativity is estimated. 

1. Introduction 

The transition between a low-spin (LS) low-tem- 
perature state and a high-spin (HS) high-temperature 
state observed in a series of the transition metal com- 
pounds (spin-active compounds) both in the crystal 
phase and in solution has attracted the attention of the 
researchers during the last two decades (for recent 
reviews see Refs. [ 1,2] ). The most studied spin-active 
compounds are those containing the iron(II) ion. In 
quite a few compounds of that type the transition is 
cooperative (see below) in the crystal phase. Despite 
the extensive studies on spin transition, there were no 
attempts to apply quantum chemical approaches to 
study these molecules until recently [3]. The reasons 
are quite obvious: first, the molecules under consider- 
ation are usually very large, which makes any appli- 
cation of the standard quantum chemical techniques 
difficult. Second, but not less important, transition 
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metal complexes are known to present certain chal- 
lenges [4] for quantum chemistry. The main reason 
why quantum chemistry faces problems when address- 
ing transition metal complexes (TMC) is that the fun- 
damental quantum chemical approximation, the 
self-consistent field approximation (SCF, Hartree- 
Fock, or single determinant approximations) fails 
when applied to TMC. The main problems the SCF 
approximation encounters are the following (for more 
detailed discussion see Ref. [5] and references 
therein): 

(i) Koopmans' theorem is not valid for the states 
with large contributions from the atomic d-states; 

(ii) The Au3'bauprinzip is frequently violated for the 
orbitals with significant contributions from the atomic 
d-states; 

(iii) The iteration procedures implied by the SCF 
approximation converge very slowly or oscillate. 

The violation of Koopmans' theorem is the most 
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Table 1 
d--d excitation energies for the test complexes 

Transition E calc (cm- 1 ) E °bs (cm- J ) 

[Fe (py) 6 ] 2 +, ground state 5T2g 
5T2g~SEg 5700 

-o3Tlg 9400 
~ lAjg  11200 
~ 3 T ~  11700 
---)3Tlg 14100 

IFe(bipy)~12+,ground state IAtg 
IAig---~3Tig 11500 

---~ST2g 14800 
""~3T2g 15400 
--*lTjg 17400 

11500 

spectacular among the problems listed above. The the- 
orem appears as a consequence of the SCF approxi- 
mation where each electron is treated as if it moved in 
a mean field induced by nuclei and other electrons. The 
ionization potentials are then equal to negative energies 
of electrons in such a potential (negative orbital ener- 
gies). This picture is an approximation since the mean 
field itself changes when an electron is removed from 
the system or added to it. The difference between the 
negative orbital energy which must be the ionization 
potential according to Koopmans' theorem and the real 
ionization potential is called the orbital relaxation 
energy. Usually for organic molecules the relaxation 
energies are small and the whole picture remains con- 
sistent. In the case of TMC the relaxation energies can 
reach values from 10 to 20 eV when the levels with 
some significant contribution from d-orbitals are 
involved [6]. This suggests that the real behavior of d- 
electrons in TMC does not fit the picture where inde- 
pendent electrons move in some external mean field 
induced by the nuclei and other electrons but by con- 
trast they trace any motion of one other very carefully. 
In other words d-electrons are strongly correlated. At 
the same time namely d-electrons are known to be 
responsible for the ground state total spin and for the 
low energy excitations (d-d excitations) of TMC 
whereas the description of electrons in the ligands 
seems to be less problematic. 

For the reasons cited the correct description of the 
ground state spin multiplicity as a function of some tiny 
coordinate displacements which are known [ 1,2] to 
cause the spin transition should be a difficult problem 

for quantum chemistry. In the present paper we apply 
a new method [5] recently designed to take into 
account the specific features of the electronic structure 
of transition metal complexes for the description of 
compounds exhibiting spin-transitions. Another prob- 
lem we briefly consider here is the cooperativity of the 
spin-transitions in the crystal phase. 

2. Account of the effective Hamiltonian method 

Specific properties of transition metal complexes 
(TMC) are known to be determined by the d-electrons 
of the transition metal ion. Their low energy excitations 
are responsible for the absorption bands in the optical 
spectra and for the magnetic properties. The ground 
state spin depends on the balance between the electron 
repulsion of d-electrons and their interaction with the 
ligands which provide some external field. The exci- 
tations of the ligands have much larger energies than 
those in the d-shell and incidentally they have a closed 
electronic shell so that the ligands cannot directly affect 
the spin multiplicity of the complex. Practically this 
distinction between the ligands and the d-shell of TMC 
led to an idea to describe d-electrons and electrons in 
the ligand orbitals employing different levels of inclu- 
sion of the electron correlation effects. The following 
features must be included in the method simultane- 
ously: ( 1 ) the multiplet structure of d-electrons in the 
central ion (to do so the correlation effects in the d- 
shell must be included); (2) the electronic structure of 
the ligands must be treated realistically, but the single 
determinant approximation is sufficient for them; and 
(3) the weak covalency resulting from the metal- 
ligand interactions must be included as well. 

All the conditions and ideas formulated above appar- 
ently correspond to the situations covered by the crystal 
field theory (CFT) where all the interesting events take 
place in the d-shell of the transition metal ions whose 
ligand environment remains inert [7]. The picture pro- 
vided by CFT is correct to a large extent; we remind 
that the majority of magnetic and optical experiments 
on TMC can be interpreted in the framework of the 
CFT operating with the multiplets of some fixed num- 
ber of d-electrons in the external field of appropriate 
symmetry (see for example Ref. [ 8 ] ). The reason why 
the CFT is that successful is the correct form of the 
electronic wave function which is implicitly used in it. 
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It obviously takes the wave function of the complex as 
an antisymmetrized product of the multiplet (full CI) 
state for some fixed number of d-electrons and of some 
closed shell state of the remaining electrons. However, 
the wave function of this remainder has never been 
considered explicitly and that is the reason why the 
splitting parameters of the CFT cannot be satisfactorily 
calculated within itself. 

In the effective Hamiltonian method [5 ] all the con- 
cepts mentioned were put to work. Two most important 
features of the electronic structure of TMC, namely, 
the presence of an isolated group of strongly correlated 
d-electrons on the metal atom and the existence of the 
closed shell ligands are taken into account explicitly. 
The formal derivation proceeds as follows [5]. We 
separate the whole set of the valence atomic orbitals 
(AO) of the TMC (it includes the 4s, 4p and 3d AOs 
of the metal and the valence AOs of the ligand atoms) 
into two parts. The first part contains only 3d orbitais 
of the transition metal atom (d subsystem). The second 
part contains 4s and 4p AOs of the transition metal and 
the valence orbitals of the ligand atoms (ligand sub- 
system or ~ subsystem). Then the total Hamiltonian 
for the TMC can be written as follows: 

H=Hd +He +H~ +Hr,  (1) 

where Ha is the Hamiltonian for the d-electrons in the 
field of the atomic cores of TMC, He is the Hamiltonian 
for the electrons of the ~ subsystem in the field of the 
atomic core of the transition metal ion, Hc and Hr are 
respectively the Coulomb and the resonance interaction 
operators between the two subsystems. 

For most of TMC with closed-shell ligands the exci- 
tations in the ligand subsystem are of very high energy 
as compared to the energies of the d-d excitations, and 
thus their contribution to the ground state is negligible. 
Thus the ground state of the ligand subsystem can be 
described by a single Slater determinant ~e( IAi ) with 
zero total spin. To ensure the complete description of 
the correlations in the d shell the wave function qbn of 
a TMC is taken in the following form: 

CI)~ = ( ~ C ~ ] n d k ) ) A CI)L = CI) ~ A CI) e , (2) 

where [nak) are the spin and symmetry adapted na- 
electron wave functions constructed on the metal d 
orbitals; C~ are variation parameters. Both the spin 

multiplicity and the point symmetry of the functions of 
this type coincide with the multiplicity and the sym- 
metry of the functions ~ of the d-subsystem. 

The wave functions of the type Eq. (2) correspond 
to the fixed integer number (na) of electrons in the d 
shell of the metal ion. It is not that bad from the point 
of view of description of electron distribution itself 
since for most of the complexes the total charge transfer 
between the d shell and the ligands usually does not 
exceed a few per cent of the total number of d electrons 
in the relevant valence state of the metal ion in TMC. 
A more serious problem is that all the matrix elements 
of the resonance operator Hr calculated with the func- 
tions of that type are vanishing. That prevents any cor- 
rect description of the interaction between the ligands 
and the d-shell in the above class of the trial wave 
functions with the Hamiltonian Eq. (1). In order to 
include the effects of the resonance interaction between 
the subsystems we consider the effective Hamiltonian 
H eel [ 5 ] which operates in the subspace spanned by the 
functions of Eq. (2). Its eigenvalues coincide with 
those of the exact Hamiltonian ( 1 ): 

H cff = PHoP + HRa, 

Ho=no + n e + n c ,  

HRR = PHrQ( E Q -  aHoa  ) - I a n r P .  (3) 

Here P is the projection operator on the subspace of 
functions with fixed number of d electrons; Q = 1 - P. 

The approximate eigenfunction ~ ,  (2) of the effec- 
tive Hamiltonian H eff can be found from the pair of 
interconnected equations for the functions ¢,] and ~e 
(see Refs. [5,9] ): 

n e f f t h n  _ n n o ~o  - E o ~ a ,  

H~ ff cl)e = Ee q)e , (4) 

with the effective Hamiltonians for the subsystems 
given by 

H~ ff =Ha + (qbe Inc +HRR I I~/)e ) , 

n ~  ff =He + (cI)~ ]nc + H R R  [ t ~ l )  • ( 5 )  

Since the/? subsystem is described by a single Slater 
determinant qJe the latter must be found from the self- 
consistent field procedure applied to the Fockian F ~ff 
which is derived from the Hamiltonian H~ ff by the 
standard way [9,10]. Proceeding semiempirically we 
apply the standard CNDO parameterization scheme 
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[10] for all ligand atoms and insert into Eq. (5) an 
initial density matrix p of the d subsystem of the form 

P~u = ~und/5 , 

which describes a uniform distribution of electrons in 
the d orbitals of the metal atom. This gives the effective 
Fockian F ~ff which coincides with that of the CNDO 
approximation for all the ligand atoms and has the core 
attraction parameters Wss and Wpp of the metal 4s and 
4p orbitals and the metal core charge ZM renormalized 
according to 

Wss ~ W~s + ridged, 

ZM ~ZM --rid. (6) 

Here gsd = (ss[dd) - (sd[ds) /2; gO is the mean value 
of the integrals gig, where i=4px, 4py, 4pz and 
/x = 3dz2, 3dxv 3dyz, 3dx2_y2, 3d,:y. 

The solution of the Hartree-Fock problem for the e- 
subsystem with the above CNDO approximate Fockian 
gives the one electron density matrix Pkt, the energies 
of the molecular orbitals (MO) e~, and MO LCAO 
coefficients c~k. These quantities completely describe 
the electronic structure of the ~ subsystem within the 
accepted approximation. They are used to construct the 
effective Hamiltonian n~l  ff Eq. (5) in the following 
way. The operators H~ and HRR are averaged over the 
ground state ~t  of the e subsystem which leads to the 
effective Hamiltonian H,] fe of the form [ 5 ] 

n ~ f f -  E _e f fa+  .i -- ~/x LI/i.o-£1/zo" 
~cr 

+½ E E (/x u] Pn)d~d~do+~d~ ~' (7) 

where the Coulomb interaction between d electrons is 
taken as in the free ion and the effective core attraction 
parameters for metal d electrons e~ f contain the cor- 
rections originating both from the Coulomb and the 
resonance interaction of d electrons with the ~ subsys- 
tem: 

fig,elf ---- Wdd "~- W i°ng. -[- W~ °v , (8) 

where 

W~"= E gg, Pi i+E (PLL--ZL)VL IzI.L 
i~: {s,p} L 

is an ionic term having the standard CFT form and 

W~V= - y" ~ 2 (  (1-nJ2)z  (nJ2)  2] 
; " AE~,i A-~,-u "] 

is a covalence term. Here P;i is the diagonal matrix 
element of the one-electron density matrix of the ligand 
subsystem; PLL = Ee ~ ePee is the electronic population 
on the ligand atom L; ZL is the core charge of the ligand 
atom L; V Luu is the matrix element of the potential 
energy operator describing the interaction between a d 
electron and an electron placed on the ligand atom L; 
n,- is the occupation number of the ith ligand MO (nl = 0 
or 2); AE~,i (AE~,) are the eigenvalues of the operator 
H o which correspond to the states with one electron 
transferred from the/~th d orbital (from the ith MO) 
to the ith MO ( to the/xth d orbital);/3~,~ is the resonance 
integral between the/~th d orbital and the ith ligand 
MO which is expressed through the resonance integrals 
/3~k between the/xth d orbital and the kth ligand A t :  

flu* = - (ld +Ik)Suk[ 3ML , 

where Id and Ik are the valence state ionization poten- 
tials, Su~ is the overlap integral between the/zth d AO 
and the kth ligand AO, and /3 ME is the only fitting 
parameter specific for each ML pair where M stands 
for a transition metal atom and L stands for a donor 
atom in the ligand (like nitrogen, oxygen, etc.). 

The covalence term dominating the d-level splitting 
is apparently analogous by its origin to the ligand field 
parameters of the angular overlap model (AOM) [ 11 ]. 
The important difference between them is that in the 
AOM all the ligand field parameters are fit to the exper- 
imental spectra for each ligand and are not transferable 
from one ligand to another even if the donor atom is 
the same. In our approach the electronic structure of 
the ligands is taken into account explicitly by the 
CNDO calculation. That allows to parameterize only 
/3 ML, i.e., the magnitude of the hopping between the 
orbitals of the donor atom L and d orbitals of the tran- 
sition metal M. The same value can be used for all the 
ligands containing a given donor atom [ 5 ]. That in turn 
makes it possible to reproduce the effects of the varia- 
tions of the ligand electronic structure (due to chemical 
substitution, for example) on the crystal field they 
induce and thus on the d-d spectrum (see below). 

After the effective Hamiltonian for d electrons is 
constructed the states of nd electrons in the d shell are 
calculated by diagonalizing the full matrix associated 
with/'/,]ff on  the basis of nd-electron wave functions. 
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Table 2 
d-d excitation energies for [Fe(bipy),(NCS),] 

IFe(bipy),(NCS),I, ground 
state “‘A,,” 

f 9000) 
,“A ,p0 -+5“TZ,” 

-+ 3”T,,” 

-+ “‘T,,” 

9100 
9800 
9300 

10200 

I 

104000 
10300 
17000 
18000 185000 
18800 

[Fe(bipy)z(NCS),I, ground 
state “‘Tze” 

5‘s T 28“ -+ %” 11900 

+3“T,,” _ 

+ “‘A,s” 10900 _ 

Table 3 
Ionic (A”‘“) and covalency (A’“‘) contributions to the d-level split- 
ting A(cm-‘) 

A’“” 167 385 
A-’ 5520 18782 
A’“‘“’ 5687 19167 
AW 18000 

The ground state of the whole complex is then obtained 
by taking the external product of the ligand Slater deter- 
minant and that of the n,-electron wave function 
obtained by the diagonalization of Hzff which has the 
lowest eigenvalue. The d-d excited states are the low 
lying excitations of the whole complex. They are 

obtained by multiplying other nd-electron functions by 
the same Slater determinant. The d-d excitation ener- 
gies can then be estimated as the differences between 
the eigenvalues of the corresponding eigenstates of the 
effective Hamiltonian Hiff. 

3. Parameter fit and spin-transition calculations 

The previous calculations [ 5,121 using the effective 
Hamiltonian method have shown that this method is 
appropriate to describe the spin multiplicity of the 
ground state and the low-lying d-d excitations of a great 
deal of TMC ranging from the hexafluoroanions 
MG- to metallocenes. In order to extend this method 
to the iron( II) spin-active complexes we have first 
chosen the [Fe(py)J2’ and (Fe(bipy),12+ com- 
plexes (here py stands for pyridine and bipy for bipyr- 
idyl), for which structural [ 13-151, magnetic and/or 
spectroscopic [ 16,171 data are available from the lit- 
erature, to find the p”“-” parameter for further use. One 
of the complexes has the low-spin and another the high- 
spin ground state. 

The experimental data and the calculation results are 
summarized in Tables 1-5. Our results concerning the 
ground and the low-lying excited d-d states (which are 
of interest for the interpretation of the spectroscopic 
and magnetic properties) of the fitting compounds are 
in good agreement with the available experimental 
data. For the nearly octahedral low-spin 

[Fe(bipy)31 2+ ion the only observed d-d transition is 
that to the 3T,, state [ 161. Both its energy and assign- 
ment are in fair agreement with our calculation (Table 
1) provided the resonance parameter for the iron-nitro- 
gen bond p”” was taken to be 1.505. The Racah 
parameters B and C for the iron( II) ion were taken to 
be 610 and 2450 cm-‘, respectively. These are the 

Table 4 
The energies AE,, (eV) of the zero order charge transfer states contributing to the d”“‘, corresponding resonance integrals & (eV) and second 
order corrections @lAE (cm- ’ ) 

Complex Charge transfer ( i +f, A& I &I @/AE 

Fe(w):+ Copy) +d(e,) 13.4 1.75 1850 
(qpy) +d(e,) 8.6 1.02 980 
(q,J -+d(e,) 8.43 0.78 580 

HOMO(q,,) + Me,) 8.40 0.90 780 
Fe(bipy):+ (Q +d(e,) 13.9 3.47 7010 

(up,.) +d(e,) 8.7 2.62 6380 
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Table  5 

Electronic structure o f  the l igand subsys tems 

[ F e ( p y ) 6 ]  2+ [Fe (b ipy )3 ]  2+ [ F e ( b i p y ) 2 ( N C S ) 2 ]  

energy gaps  e ( L U M O )  - e ( H O M O )  (eV) :  

A~ 15.80 13.16 7.99 

metal orbital populat ions:  

4s 0.40 0.40 0.42 

4p  0.24 0.23 0.25 

a tomic charges:  

Fe 0.89 0.91 0.83 

Npy - 0.23 - 0.26 - 0.22 

S - - - 0 .54 

NNcs - - - 0.43 

averages of the values for the HS and LS complexes of 
iron(II) with nitrogen containing ligands taken from 
Ref. [ 18]. In contrast with the apparently very close 
[Fe(bipy)3] 2+ ion the [Fe(py)6] 2÷ cation has the 
high-spin ST2g ground state, in perfect agreement with 
the experiment [ 17]. We were not able to compare the 
calculated d-d transition energies of the [Fe(py)6] 2+ 
cation with experimental results since its absorption 
spectrum seems to have never been measured. 

After the resonance parameter/~Ve-N was found we 
applied the effective Hamiltonian method to the spin 
active cis- [ Fe (bipy) 2 (NCS) 2] complex. It undergoes 
an abrupt transition from the high-spin to the low-spin 
form at Tc = 176 K. For the two spin isomers of this 
compound the molecular geometries are known from 
single-crystal X-ray diffraction [ 13]. It is known from 
experiment [ 18] (and it is one of the methods to 
observe the spin transition) that the optical absorption 
spectra significantly differ for the two spin isomers. 
Our method can fairly describe this picture. First, the 
ground state geometries of the two spin isomers of cis- 
[Fe(bipy)2(NCS)2] are different only by the F e N  
bond lengths; they are about 0.2 ,~ longer in the HS 
isomer. The interatomic distances within the ligands 
remain the same in both spin isomers. The calculation 
by the effective Hamiltonian method for the LS geom- 
etry gives the singlet (low-spin) ground state and that 
with HS geometry gives the quintet ground state. For 
the HS ground state we found several spin-allowed 
transitions with the energies close to the observed ones. 
For the LS ground state the allowed singlet-singlet d-  
d transition has much higher energy. The excited singlet 
states originate from an octahedral T~ term. It can be 

easily seen that our calculation gives a triple of singlet 
excited states having an energy close to the energy of 
the observed d-d transition (Table 1). 

4. Coulomb contribution to the intermolecular 
interaction 

The cooperativity observed in some spin-transition 
compounds presents another problem not attacked by 
quantum chemical methods until now. The theories 
existing in this area are largely phenomenological and 
do not attempt to calculate the parameters describing 
the cooperative behavior (like the abruptness of the 
transition or the thermal hysteresis width) [ 1,2]. 

It has been pointed out recently [ 19] that the Cou- 
lomb interaction might be a possible source of inter- 
action, leading to the observed cooperativity effects. 
Unfortunately, the approach adopted in Ref. [ 19] in 
order to calculate the effect of the spin transition on the 
Coulomb part of the intermolecular interaction did not 
allow one to estimate the value of the interaction param- 
eter. In this section we consider the effect of the charge 
redistribution taking place upon the HS to LS transition 
on the intermolecular interaction. 

In a pair of molecules capable of undergoing a spin 
transition either both molecules are in the LS state (and 
their interaction energy is then ELL) or one of them is 
in the LS and another in the HS state (and the interac- 
tion energy is then EHL) or both are in the HS state 
(and the interaction energy is EHH). According to Ref. 
[19] the cooperativity effects are described by the 
interaction parameter W which has the form: 

W =  EHL -- ( ELL + E , , )  / 2  . (9) 

In Eq. (9) W simply shows what is energetically pref- 
erable for an assembly of molecules in different spin 
states assuming that the interaction only occurs 
between nearest neighbors: either to arrange them- 
selves in such a way that the molecules of different 
spins are the nearest neighbors (W< 0) or to adopt a 
configuration where the molecules of the same spin are 
the nearest neighbors (W> 0). The Coulomb contri- 
bution to the interaction energy W can be estimated as 
follows. Let us denote the charges on the ith atom in 
the LS state as qLS and that in the HS state as qHS. The 
Coulomb parts of the interaction energy for the three 
possible pairs of molecules are 
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E .t °' = E 
i . j  

E Coul 
LL ~ E 

i . j  

E cOUl 
. .  = ( 1 0 )  

i . j  

where the radius vectors t'ia and r;~ correspond to the 
ith atom in the two interacting molecules. Substituting 
qyS = q ~ S +  gq~ in the above formulae easily results 
in: 

qHSq]~S i r,a _ rjn I - i ,  

q ~s q]~S irma _ rjn I - ' ,  

qHSqHS -1 
• ~ I riA--r~nl , 

Coulomb contribution to the interaction W is about 
several kelvin. Since the spin transition in the crystal- 
linecis-[Fe(bipy)2(NCS)2] is abrupt [ 1,21 ] the inter- 
action parameter F =  z W  (z is the number of neighbors 
of a given molecule in the crystal) must be about 2To, 
i.e. 360 K. We see that the Coulomb energy calculated 
with ~q~ found by the method [5] contributes at best 
to 10% of the total intermolecular interaction respon- 
sible for the cooperative character of the spin transition. 

5. Discussion and conclusion 

W c°"1= - ½ y" gqigqj  Iria -ri• I - ' ,  (11) 
i . j  

which gives precisely the Coulomb contribution to the 
interaction parameter W. 

We used the results of our calculation on the ligand 
subsystem of the LS and HS forms of cis- 
[Fe(bipy)2(NCS) 2] in order to estimate the Coulomb 
contribution W c°"1 for different structural arrange- 
ments of the two molecules occurring in the crystals. 
Though within the method [ 5 ] there is no direct cou- 
pling between the spin and charge degrees of freedom, 
so that the variation of the spin of the central ion does 
not affect per se the charge distribution in the ligands, 
the small variation of the geometry under the transition 
leads to the corresponding redistribution of the electron 
density. The absolute values of the charge variations 
~q~ do not exceed 0.02e for all atoms of the complex. 
They are the most pronounced for the nitrogen atoms 
immediately attached to the iron atom, which is in a 
line with the fact that only the iron-nitrogen distances 
change significantly under the HS-LS transition. 

It is not surprising that the absolute variations of the 
atomic charges ~q; are small. Nevertheless, the overall 
effect is noticeable. For example for the pair of cis- 
[Fe(bipy)2(NCS)2] molecules with the Fe...Fe sep- 
aration of 8.314 /~ singled out from the crystal (the 
mutual orientation of the molecules in the pair is 
retained as it was determined in Ref. [13] for the 
Fe.. .Fe, interacting pair) the value of W c'°1 equals to 
2.2 K in temperature units. On the other hand for the 
pair of the Fe...Fei type with the Fe...Fe separation of 
11.083 ,& the value of W c°ul is - 1.47 K. 

We see that even the sign of the interaction may be 
different for the different mutual orientations of the 
interacting molecules in the real crystal, and that the 

In the above treatment two problems concerning the 
spin transitions phenomena in TMC have been 
addressed. The first was the problem of the description 
of the spin transition in an isolated molecule. It turned 
out that by applying the method [ 5 ] the effects of the 
relatively small geometry variations on the crystal field 
are adequately reproduced. That allowed us to repro- 
duce as well the ground state symmetries and multi- 
plicities of the two spin isomers of the studied spin 
active compound and the energies and the symmetries 
of the low-lying (d-d) excitations of the spin isomers. 
That allows us to conclude that the effective Hamilton- 
ian method [5 ] may serve as a useful tool in the studies 
of the spin-transition phenomena in TMC. 

It is instructive to compare the results obtained by 
our method with those recently obtained in Ref. [3] by 
a version of the INDO method. As a general comment 
we mention that the calculation method used in Ref. 
[3] stresses the role of the relativistic effects rather 
than of the correlation ones. In this approach d orbitals 
are included in the general mean-field scheme and the 
effects of that have been discussed in Section 1. Con- 
cerning the results of Ref. [ 3 ] two major points deserve 
discussion here. First of all we note that the iron ions 
bear a significant negative charge (about - 0.4e in the 
LS form) in the complexes considered in Ref. [3] and 
that the LS-HS transition is accompanied by an order 
of magnitude larger electron transfer from the iron ion 
to the ligand nitrogens than our method gives. The 
overestimation of the negative metal charges is a well 
known shortcoming of the semi-empirical methods 
using Clack's parameterization scheme (for more dis- 
cussion of this point see Ref. [ 5 ] ). The large charge 
redistribution in the two spin forms indicates that the 
orbitals involved in the description of the spin-transi- 
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tion contain significant contributions of  the ligand orbi- 
tals and cannot be considered as d-states. Second, the 

difference of 0.1 Wiberg indices are reported for the 
F e - N  bonds in the LS and the HS forms, indicating that 

the bond lengths must be larger in the HS isomer. How- 

ever, the results of  the geometry optimization for both 

LS and HS forms are not reported in Ref. [ 3 ]. For that 
reason it remains unclear whether the method used in 

Ref. [ 3] is able to reproduce the correct spin multiplets 
at the experimental geometries. 

Another problem addressed in this work was the 
cooperativity between spin-active molecules, which 

may occur in the solid state. We  propose an estimate 
of the cooperativity parameter in a crystal formed by 
the spin-active molecules on the basis of  the molecular 
and crystal data. Our findings suggest that the Coulomb 

interaction accounts for only a small fraction of  the 
experimentally observed cooperativity parameter. 
These results, however, are to be taken cautiously since 
there is no solid proof  for the validity of  the naive use 
of atomic charges obtained by the method [ 5 ] for cal- 
culating intermolecular interactions. If, however, the 
charge variations ~qi obtained from our calculation are 
valid that would mean that the Coulomb forces at least 
do not dominate the interactions responsible for the 
cooperativity and the latter would then be due to some 
other interactions, for example, the spin-phonon inter- 
actions may play the crucial r61e as proposed in Ref. 
[20] (see also Ref. [21 ] ). 
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