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ABSTRACT 
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transition metal ion. These spectra are successfully fit to the crystal field theory. We 
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Introduction 

ransition-metal complexes (TMC) are “large T systems” for direct quantum chemical treat- 
ment. Nevertheless, both semiempirical [l-51 and 
ab initio [6-131 methods based upon the 
Hartree-Fock-Roothaan approximation have been 
used in order to calculate the ground states and 
the excitation spectrum of TMC. With respect to the 
ground state of TMC, the problems of correct repro- 
duction of its spin multiplicity and spatial symme- 
try are particularly difficult (see below). In the case 
of ab initio calculations with large CI expansions 
[6-101 or with a special selection of configurations 
in the MCSCF wave function [ll, 121, a reasonable 
agreement of the calculated ground-state spin and 
symmetry and of transition energies with experi- 
ment can be obtained. However, such calculations 
are restricted to relatively simple systems. 

Recently, a semiempirical INDO/S-CI method for 
the calculation of the electronic transition energies 
was elaborated and extended to transition-metal 
atoms [ 21. It successfully applies to rather complex 
systems like ferrocene [3] or porphyrin complexes 
of transition metals [4, 51. However, despite rea- 
sonable numerical agreement between the calcu- 
lated and observed d-d transition energies 
obtained by this method, some fundamental 
problems remain unsolved. The success in [2-51 
was achieved by a heavy loss of the broken 
Aufbauprinzip and (as a consequence of the latter) 
by the loss of the confidence that the obtained 
Slater determinants represent the minima of the 
Hartree-Fock energy functional rather than saddle 
points. 

The main complication which arises when 
semiempirical quantum chemistry addresses TMC 
is the doubt in the validity of the fundamental 
quantum chemical approximation, the self-con- 
sistent-field (SCF) approximation, for this class of 
the molecules. The main problems the SCF approxi- 
mation encounters are the following (for more 
detailed discussion, see [ 141 and references 
therein): 

(i) The Koopman’s theorem is not valid for the 
states with large contributions from the 
atomic d-states; 

(ii) the Aufbauprinzip frequently breaks for the 

(iii) 

orbitals with significant contributions from 
the atomic d-states; and 
the iteration procedures implied by the SCF 
approximation converge very slowly or 
oscillate. 

The breaking of the Koopman’s theorem is the 
most spectacular among the problems listed above. 
This theorem appears as a corollary of the SCF 
approximation where each electron is treated as if 
it moved in a mean field induced by nuclei and 
other electrons. The ionization potentials are then 
equal to minus energies of electrons in such a 
potential (minus orbital energies). This picture is 
an approximation since the mean field itself 
changes when an electron is removed from the 
system or added to it. The difference between the 
minus orbital energy which must be the ionization 
potential according to the Koopmans’ theorem and 
the real ionization potential is called the relaxation 
energy. For organic molecules, the relaxation ener- 
gies are usually small and the whole picture re- 
mains consistent. In the case of TMC, the relaxation 
energies can reach the values from 10 to 20 eV 
when the levels with some significant contribution 
from d-orbitals are involved [ 151. This suggests 
that the real behavior of d-electrons in TMC does 
not fit in the picture where independent electrons 
move in the mean field induced by the nuclei and 
other electrons. By contrast, electrons trace any 
motion of each other very carefully. In other words, 
d-electrons are strongly correlated. 

Another problem, which is rarely recognized as 
such, is the break of the Aufbauprinzip (the rule of 
the occupation of MOS by electrons by two from the 
bottom), which frequently happens in the semiem- 
pirical calculations on TMC. In this case, as in the 
case of the Koopmans’ theorem, the orbitals which 
turn out to be unoccupied or singly occupied but 
have lower orbital energy than some doubly occu- 
pied orbitals are the orbitals formed largely by the 
d atomic orbitals. One can check (see [16] and the 
Appendix) that the Slater determinants breaking 
the Aufbauprinzip do not present a minimum of 
the Hartree-Fock energy functional but a saddle 
point. This in its turn causes the well-known but 
rarely reported problems with the convergency of 
the SCF iterations. However, more important than 
the convergency problems is the doubtfulness of 
the very idea to parametrize a semiempirical Fock 
operator for transition metals using, throughout, 
the calculation a trial wave function which is not a 
stable solution of the SCF problem. 
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From the above discussion, we see that there 
are some fundamental problems in the semiempir- 
ical description of the electronic structure of TMC. 
They appear due to the relatively important role of 
the correlations which manifest themselves pri- 
marily in the d-shells, whereas the description of 
electrons in the ligands seems to be less problem- 
atic. At the same time, d-electrons are responsible 
for the ground-state total spin and for the low- 
energy excitations of TMC. 

The instability of the Hartree-Fock solutions for 
TMC does not create any physical problem by itself. 
It simply indicates that the ground state cannot be 
presented by a single Slater determinant and some 
other configurations must be added. The problem 
which arises in this concern is that the CI series 
using the Hartree-Fock orbitals as a one-electron 
basis set converge rather slowly and thus a large 
number of configurations must be taken. A truly 
large CI expansion once obtained is very difficult 
to interpret since none of the configurations domi- 
nates it. For that reason, any qualitative picture of 
the electronic structure of TMC gets lost. 

This gloomy picture is, however, in a sharp 
contrast with a real state of things with the physi- 
cal understanding of the electronic structure of 
TMC, which is, indeed, fairly transparent. The ex- 
perimental data concerning the d-d excitation 
spectra of TMC can be successfully fit to the models 
equivalent to the crystal field theory (CFT) [17]. 
That means that specific properties of TMC are 
determined by the d-electrons of the transition- 
metal ion. Their low-energy excitations are respon- 
sible for the characteristic absorption bands in the 
optical spectra and for the magnetic properties. 
The ground-state spin depends on the balance be- 
tween the electron repulsion of d-electrons and 
their interaction with the ligands which provide 
some external field. The excitations of the ligands 
have much larger energies than those in the d-shell 
and, incidentally, the ligands have closed elec- 
tronic shells so that they do not contribute directly 
to the spin multiplicity of the complex. The fea- 
tures formulated above apparently correspond to 
the situation covered by the naive CFT where all 
the interesting events happen in the d-shell of 
transition-metal ions whose ligand environment 
remains inert [ 171. The qualitative physical picture 
provided by the CFT is correct to a large extent. The 
major part of magnetic and optical experiments on 
TMC, indeed, can be interpreted in the framework 
of the CFT operating with the muhiplets of some 
fixed number of d-electrons in the external field of 

appropriate symmetry (see, e.g., [18]). The CFT is 
that successful due to the correct form of the 
electronic wave function that it implies. Obvi- 
ously, the wave function of a complex in CFT is a 
product of the multiplet (full CI) state for some 
fixed number of d-electrons and of an unspecified 
closed-shell state of the remaining electrons in the 
ligands. This remainder was never considered ex- 
plicitly (see, however, below) and that is why the 
crystal fields could not be satisfactorily calculated 
within the CFT’S own framework. 

In the effective Hamiltonian method [14], the 
two most important features of the electronic 
structure of TMC outlined above, namely, the pres- 
ence of an isolated group of strongly correlated 
d-electrons on the metal atom and the existence of 
the closed-shell ligands, were taken into account 
explicitly. The distinction between the ligands and 
the d-shell of TMC is used in order to describe 
d-electrons and electrons in the ligand orbitals, 
employing different levels of accounting for the 
electron correlations. The following features were 
implemented in the method: (1) the multiplet 
structure of d-electrons in the central ion (to do so, 
the configuration interaction [ CI] is completely 
taken into account in the d-shell); (2) electronic 
structure of the ligands is treated realistically, but 
the single-determinant approximation suffices for 
that; and (3) the weak covalency resulting from the 
metal-ligand interactions is included by the effec- 
tive Hamiltonian technique. 

The method has been parametrized and then 
applied to the metal fluorine complexes, metal 
hexahydrate and hexamine complexes, metal hex- 
achloro and tetrachloro complexes, metallocenes, 
and mixed ligand complexes of the D4h symmetry 
[19-221. In all the cases studied, we observed per- 
fect agreement between the experimental data con- 
cerning the spin and symmetry of the ground state 
of the complex and our calculations. The spectra of 
the d-d excitations were reproduced within the 
accuracy of 2000 cm-’. In the present article, we 
apply the effective Hamiltonian-crystal field (EHCF) 
method [14] which is briefly described for some 
complexes with nitrogen-containing ligands in- 
cluding porphin which are “truly large systems.” 

Account of the Method 

The formal derivation of the EHCF method pro- 
ceeds as follows [14]: We separate the whole set of 
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the valence atomic orbitals (AOS) of the TMC (it 
includes the 4s-, 4p-, and 3d-~os  of the metal and 
the valence AOS of the ligand atoms) into two 
parts. The first part contains only 3d-orbitals of the 
transition-metal atom (d-subsystem). The second 
part contains 4s- and ~ P - A O S  of the transition 
metal and the valence orbitals of the ligand atoms 
(ligand subsystem or I-subsystem). Then, the total 
Hamiltonian for a TMC can be represented as a 
sum: 

where Hd is the Hamiltonian for the d-electrons 
in the field of the atomic cores of TMC; H,, the 
Hamiltonian for the electrons of the I-subsystem; 
and H, and H,, respectively, the Coulomb and the 
resonance interaction operators between the two 
subsystems. 

For the most of TMC with closed-shell ligands, 
the excitations in the ligands are very high in 
energy as compared to the d-d excitations, and, 
thus, their contribution is negligible. The ground 
state of the I-subsystem can be described by a 
Slater determinant @,('Al) with zero total spin. 
The wave function CPn for the n-th electronic state 
of a TMC then takes the form 

where Indk) are the spin- and symmetry-adapted 
nd-electron wave functions constructed on the 
metal d-orbitals, and C; are variation parameters. 
Both the spin multiplicity and the point symmetry 
of the functions of this type coincide with the 
multiplicity and the symmetry of the functions CP: 
of the d-subsystem. 

The wave functions of the type Eq. (2) corre- 
spond to a fixed integer number (nd) of electrons 
in the d-shell of the metal ion. It is not that bad 
from the point of view of the description of elec- 
tron distribution, since for most of the complexes, 
the total charge transfer between the d-shell and 
the ligands usually does not exceed a few hun- 
dredths of the unit charge. A more serious prob- 
lem is that all the matrix elements of the resonance 
(electron-hopping) operator H, calculated with the 
functions of that type are vanishing. That prevents 
any correct description of the interaction between 
the ligands and the d-shell within the above class 
of the trial wave functions if the Hamiltonian Eq. 
(1) is used. To include the effects of the resonance 

interaction between the subsystems, we consider 
the efective Hamiltonian H'ff [ 141 which operates 
in the subspace spanned by the functions Eq. (2). 
Its eigenvalues coincide with those of the exact 
Hamiltonian Eq. (1): 

~ ~ f f  = PHOP + HRR 
ff, = Hd f H[ + Hc 

Here, P is the projection operator on the subspace 
of functions with fixed number of d-electrons; Q 
= 1 - P .  

The variational problem for the effective Hamil- 
tonian H'ff Eq. (3) within the subspace spanned 
by the wave functions of the type Eq. (2) splits into 
a pair of interconnected equations for the functions 
(Ddn and CP, (see, eg., [14, 231): 

HjffQ: = En@" 
d d  

Hfffc$, = El@,,, (4) 

with the effective Hamiltonians for the subsystems 
given by 

Since the hubsystem is described by a single 
Slater determinant CP[, the latter must be found 
from the self-consistent-field procedure applied to 
the Fockian F / f f  derived from the Hamiltonian 
Hfff by the standard method [23, 241. Proceeding 
semiempirically, we apply the standard CNDO 
parametrization [24] to all ligand atoms. The core 
attraction parameters Us, and Upp of the metal 4s- 
and 4p-orbitals and the metal core charge Z ,  are 
renormalized according to 

Here, gsd  = (ss I dd) - (sd I d s ) / 2 ;  g p d  is the aver- 
age of the integrals gip, where i = 4px, 4p,, 4p, 
and p = 3d,2, 3dx,, 3dy,, 3d,z~~2,  3dxy. One 
can check [ 14, 161 that the renormalization accord- 
ing to Eq. (6) finally allows one to use the standard 
values of the orbital electronegativities for the 4s- 
and 4 p - ~ o s  given in [ 251. 
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The solution of the Hartree-Fock problem for 
the 2-subsystem with the above approximate CNDO 
Fockian gives the one-electron density matrix Pkl, 
the energies of the molecular orbitals (MOS) q, and 
MO LCAO coefficients cik [241. These quantities com- 
pletely describe the electronic structure of the I -  
subsystem within the accepted approximation. 
They are used to construct the effective Hamilto- 
nian Hjff Eq. (5) in the following way: The opera- 
tors H, and H,, are averaged over the ground 
state CP, of the 2-subsystem which yields the effec- 
tive Hamiltonian Hjff of the form [14] 

1 
+ ?  c (7) 

where the Coulomb interaction between d- 
electrons is taken as in the free ion and the effec- 
tive core attraction parameters for metal d-elec- 
trons L$f contain the corrections originating both 
from the Coulomb and the resonance interaction of 
d-electrons with the 2-subsystem: 

where 

is the repulsion of electrons in the d-shell from 
those in the 4s- and ~ P - A O S  of the central metal 
ion; 

is the Coulomb interaction of the d-electrons with 
the net charges on the ligand atoms, having the 
standard CFT form, and 

comes from the resonance. Here, Pii is the diagc- 
nal matrix element of the one-electron density ma- 
trix of the ligand subsystem; PLL = C,, p,,, the 
electronic population on the ligand atom L; Z,, 
the core charge of the ligand atom L; V,",, the 

matrix element of the potential energy operator 
describing the interaction between a d-electron and 
an electron placed on the ligand atom L; ni, the 
occup,ation number of the i-th ligand MO (ni = 0 or 
2); A Edi  (A  E i d ) ,  the energy which is necessary to 
transfer an electron from the d-shell (from the i-th 
MO) to the i-th MO (to the d-shell); and Ppi, the 
resonance integral between the p-th d-orbital and 
the i-th ligand MO which is expressed through the 
resonance integrals Ppk between the p-th d-orbital 
and the k-th ligand AO: 

Ppk = - ( I d  + Ik)Spk pMLi 

where Id and Ik are the valence state ionization 
potentials; Spk, the overlap integral between the 
p-th d-A0 and the k-th ligand AO; and P M L ,  the 
only adjustable parameter specific for each ML 
pair, where M stands for a transition metal atom 
and L stands for a donor atom in the ligand (like 
nitrogen, oxygen, etc.). 

The effective Hamiltonian for the d-shell Eq. (7) 
obviously has the form of the standard crystal 
field Hamiltonian. The covalence term dominating 
the d-level splitting is apparently analogous by its 
origin to the ligand-field parameters of the angular 
overlap model (AOM) [26]. The important differ- 
ence between them is that in the AOM all the 
ligand-field parameters are fit to the experimental 
spectra for each ligand and are not transferable 
from one ligand to another even if the donor atom 
is the same. In our approach, the electronic struc- 
ture of the ligands is taken into account explicitly. 
That allowed us to parametrize (see [ 14, 19-22] 
and below) only the magnitude of the hopping 
between the orbitals of the given donor atom and 
d-orbitals of the given transition metal. The same 
value can be used for all the ligands containing a 
given donor atom, thus permitting one to repro- 
duce the effects of the substitution in the ligands 
on the crystal field induced on the d-shell. 

After the effective Hamiltonian for d-electrons 
is constructed, the states of n d  electrons in the 
d-shell are calculated by diagonalizing the matrix 
associated with Hjff in the nd electron wave- 
function basis set. The ground state of the whole 
complex is then obtained by taking the external 
product of the ligand Slater determinant and that 
nd-electron wave function obtained by the diago- 
nalization of Hjff which has the lowest eigen- 
value. The d-d excited states (they are the low- 
energy excitations of the whole complex) are then 
obtained by multiplying other n,-electron func- 
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tions by the same Slater determinant. The corre- 
sponding excitation energies are then estimated as 
the differences between the corresponding eigen- 
values of the effective Hamiltonian Hjff. 

Calculation Results and Discussion 

In this article, we applied the method described 
in the previous section to calculate the electronic 
structure of the ligand sphere and d-shells of a 
series of the ML,Z, compounds where M = Fe, 
Ni; L = H,O, NH,, Py; Z = H,O, NCS-, C1-, and 
to metal porphyrins. The spin multiplicity and the 
spatial symmetry of the ground states of the con- 
sidered mixed complexes are correctly reproduced 
by our method (the parameters p M L  were found 
from the calculations [20,211 on the corresponding 
pure complexes (ML? and MLt-). 

The EHCF method supplies us  with the results of 
three types: (1) the standard quantum chemical 
description of the [-subsystem (i.e., electron densi- 
ties on atoms, orbital energies, and the orbital 
expansion coefficients); (2) the many-electron 
ground state and the excitations of the d-shell; and 
(3) the information on the particular MOS and the 
charge-transfer states which largely contribute to 
the effective crystal field induced by the 2-system 
into the d-system. Three these types of data are 
presented in Tables I-VIII. The forms of the MOS 
and the orbital energies are condensed in the con- 
tributions to the splitting, and for that reason, we 
do not give these data here. 

For all the four considered ML,Z, complexes, 
the ground state is in accord with the experiment. 
It is the ,B1, state for the Ni(I1) compounds [27,281 
and 5B,, for the Fe(I1) mixed complex [29,301. The 
charge distribution in all four complexes does not 
contradict to the intuitive ideas concerning the 
charge distributions. Note that in all the cases our 
method gives some noticeable positive charge on 
the metal ion, thus curing an old [25] problem of 
either very small positive or even negative charges 
on the central ions. The transition energies of the 
Ni compounds are in fair agreement with the ex- 
perimental assignments [27, 281. 

The absorption spectra of [Fe(py),(NCS),] de- 
serve some more detailed discussion. In accord 
with the experiment [ 291, our calculation repro- 
duces two spin-allows transitions B2,  + 5A,,, 
B,, +'Big originating from the octahedral ?,, -+ 

5 

5 

TABLE I 
Ligand systems of Ni(Py),CI, and 
[N i(Py),(H ,0),12 +. 

Ni(Py),CI, 

Frontier MOS of the /-system 

Symmetry Composition Energy (eV) 

7e,(HOMO) p, (CI) - 9.554 
3 b,, (LUMO) %- = MO(Py) 2.350 

Metal AOS populations 

4s  4PX(Y) 4 Pz 
0.500 0.285 0.356 

Effective atomic charges 

Ni N Cmeta Cortho Cpara CI 

0.573 -0.181 0.089 -0.025 0.061 -0.652 

[Ni(Py),(H,0),12+ 

Frontier M O S ~  

Symmetry Composition Energy (eV) 

b3,(HOMO) P, (0) + P, (N) - 19.820 
b,,(LuMo) P, (N) - 4.903 

Metal AOS populations 

4 Pz 
0.232 

4s  4 Px 4PY 
0.434 0.286 0.274 

Effective atomic charges 

0.774 -0.234 0.136 -0.004 0.089 -0.455 

aThe /-system has the effective symmetry D2,,, 

5E,  transition split by the tetragonal field. Their 
order is, however, inverted as compared to the 
standard assignment scheme [181 used also in [29]. 
The point symmetry labels ascribed to the excited 
states (5A,, and 5B,,) are assigned without strong 
experimental support. The reasoning given in [29] 
is based on the idea that the d,2+ and dZ2 
orbitals singly occupied in the ground state of 
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TABLE I I  
Atomic charges in some complexes. 

"i(NH,),(NCS),I 

Ni N (NH,) N (NCS) C S 

0.680 -0.281 - 0.381 0.198 -0.518 

[Fe(py),(NCS),I 

Fe N (PY) N (NCS) C S 

TABLE 111 
d -  d excitation energies for Ni(NH,),(NCS), and 
Fe(py),(NCS),. 

Transition p ' C  (cm-I) € O b s  (cm-'1 

[Fe(py),(NCS),l, ground state 5B20a 

5 ~ , g  - $ 5 ~ g  1,450 - 

+ 5 ~ l g  5,160 9,880 

- + 5 ~ l g  10,980 11,460 

0.830 -0.20 - 0.43 0.20 -0.53 Ni(NH3),(NCS),, ground state 361g 

FeP 

0.921 -0.372 0.134 -0.031 -0.069 

COP 

0.831 -0.354 0.136 -0.032 -0.067 

[Fe(py),(NCS),l are bonding. In this case, the 
stronger bonding interaction between the iron(I1) 
ion and the NCS- ligands (evident from the struc- 
tural data [141) results in a lower energy of the dZ2 

orbital as compared to a weaker bonding ~ , z - ~ z  

orbital. 
Meanwhile, in our approach, the d-orbitals are 

excluded from the uniform molecular orbital treat- 
ment, and, thus, the terms "bonding" or "anti- 
bonding" do not apply to them. The d-orbitals do 
not participate in the formation of chemical bonds 
and are therefore "nonbonding." The relative posi- 
tion of the strongly localized d-orbitals on the 
energy scale is predominantly determined by the 
destabilizing interaction with the lone pairs of the 
donor nitrogen atoms of the Py and NCS- ligands, 
respectively (see Table V). The interaction with the 
lone pairs of the NCS groups is stronger due to 
both the geometry reasons affecting the magnitude 
of the resonance factors pi, and the differences in 
the electronic structure of the two ligands. The 
ionization potential is smaller in the case of the 
N C S  lone pair and, thus, the energy of the 
charge-transfer state appearing in the denominator 
[Eq. (8)] is also smaller, thus assuring stronger 
destabilization of the dZz orbital as compared to 

8,898 10,750 
-+ 3Eg 9,422 10,750 

3 
BIg + 3 ~ 2 g  

14,372 131843 i 13,000 

j 3 E g  14,913 17,350 

+ 3 ~ 2 g  15,928 17,500 

-+ Is29 22,909 - 

23,774 

-+ kg 23,290 - 
- 

-+ 3 € ,  25,482 27,900 
j3A2g 26,211 28,000 

'lA2g 29,687 - 

a The Racah parameters: 6 = 650 cm- I ,  C = 2400 cm ~ ' 
k21. 
The Racah parameters: B = 851 cm- ', C = 4008 cm- ' 

-3 lE, 26,890 - 

[la]; Experimental data from [27]. 

that of the d , 2 - y z  orbital. It should be noted, how- 
ever, that the calculated splitting between 5Alg 
and 5B, g states is somewhat overestimated. At the 
same time, in the case of the NCS complex of Ni, 
the split between the dX2 and ~ , Z L ~ Z  orbitals is 
much less pronounced. 

Having in mind the proven success of the EHCF 
method in predicting the ground-state spin and 
symmetry for many diverse TMC (including the 
successful description of the spin-transitions in the 
Fe(I1) complexes with the nitrogen containing 
ligands reported elsewhere [221), we undertook an 
attempt to attack metal porphyrins. The SCF ab 
initio calculations on metal porphyrins systemati- 
cally give erroneous results, overestimating the 
total energy of the high-spin ground states. In the 
case of MnP (P stands hereafter for porphin), the 
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TABLE IV 
d -  d excitations in Ni(Py),CI, and [Ni(Py),(H,0),12'. 

Ni (Py),CI [Ni(Py),(H20),l2' 
Transition Ecacl a E e w b  Ecalc c E e x p  b 

3B19 +3Eg 11,570 8,993 9,442 9,750 
+ 3 ~ 2 g  12,176 1 1,682 13,896 11,780 

13,160 
12,458 12,804 13,011 13,390 

15,760 + 3 ~ 2 g  18,873 15,267 15,485 
-+ 3Eg 18,216 16,807 18,955 17,390 

o+320 1 12,642 1234471 + lAtg 

-+%g 

-+%g 

-+ lEg 23,764 21 3458 1 21,834 
21,975 2491 1 22,100 

-+lB2g 24,302 23,923 26,499 - 

-+ lEg 27,421 29,882 
28,857 - 24,862 - 

29,163 - 27,318 - 

- - 

-+'A2g 

j 3 A 2 g  

-+ 3Eg 29,401 27,174 28,470 28,000 

a Racah parameters: B = 828 cm - ; C = 3088 cm - [28]. 
Experimental data from [28]. 
Racah parameters: B = 784 cm ~ ' ; C = 3525 cm - [28]. 

high-spin 6Alx is the exact ground state [31]. How- 
ever, in the case of COP, the ground state is found 
to be quartet [32], and for FeP, the ground state 
has been shown to be a quintet [331. In both cases, 
the restricted CI when taken into account partially 
improves the situation in the respect that the ener- 
gies of the states with the required ground-state 
spin become lower; however, the ground state 
remains the high-spin one even with the extensive 
CI [33]. The EHCF method when applied to metal 
porphyrins improves the situation significantly. For 
the planar geometries of the three considered metal 
porphyrins, in all the cases, we reproduce the 
experimental ground-state spin and symmetry. An 
obvious difference between our calculation and 
those performed by the ab initio methods is the 
variance in the effective charges of the central ions. 
The ab initio works [31-331 report on the metal 
charges of about + 1 . 5 ~  In our (ultimately a CNDO) 
calculation on the I-system, the positive charge on 
the metal atoms does not exceed + l e .  However, in 
view of the low contribution the Coulomb interac- 
tion between the ligands and the d-shell gives to 
the actual crystal field induced onto the latter, the 
difference in the charge distribution reported above 

cannot account for the successful calculation of the 
ground-state spin (see below). 

General Discussion and Conclusion 

In the present article, we describe the effective 
Hamiltonian/crystal field (EHCF) method and ana- 
lyze the results of its application to the calculation 
of the d-level splitting and d-d spectra in a series 
of transition-metal complexes (TMC). The EHCF 
method allows one to perform systematic calcula- 
tions of the ligand field for various ligand environ- 
ments. The results of these calculations are in a fair 
agreement with the experimental data, particularly 
in the respect of the spin multiplicity of the ground 
states of the complexes. We were even able to 
solve some long-term problems in the transition- 
metal quantum chemistry by reproducing in a 
consistent manner the experimental ground states 
for iron(I1) porphyrin and for cobalt(I1) porphyrin, 
which either was not possible in the Hartree-Fock 
approximation or required very long CI expan- 
sions. 

The base for this success was, of course, a care- 
ful avoiding of the snares the SCF approximation 
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TABLE V 
Contributions to the crystal field in the 
ML,Z, complexes. 

P 2 1 A E  
i f AEif (ev) I P,rl (ev) (cm-') 

Charge transfer ( i  -+ f )  

Fe(py) ,(NCS) 
uNCS dz2 13.0 2.54 3980 
uNCS 11.1 1.35 1330 
uNCS 9.6 2.12 1780 
UP, dxz-yz 15.6 1.76 1600 
UPY 10.0 1.70 2340 

dz2 29.50 
18.56 
13.99 
8.40 
6.00 

dxz - y 2  29.15 
8.62 

dXY 15.18 
dx2,dy2 14.10 

10.16 
1.75 

1.19 
0.72 
0.65 
2.68 
1.28 
1.83 
2.94 
0.83 
0.58 
3.35 
0.20 

385 
223 
247 

691 6 
221 1 
923 

81 14 
369 
190 
97 

192 

dzz 18.83 
14.20 
4.48 

dx2-y2 22.26 
12.61 
6.60 

dxy 9.39 
dx,,dy, 3.28 

1.53 
0.87 
2.39 
1.45 
1.98 
2.58 
0.74 
0.47 

1009 
430 

10292 
759 

251 9 
81 40 
466 
535 

4ag(sN, SO) d22 30.43 1.70 766 
10ag(sNi, p,N) 12.69 1.04 694 
13ag(p,0) 10.27 2.16 3670 
9ag(p,N) dxz-y2 20.20 1.46 848 
14ag(p,0, p,N) 10.18 2.06 3356 
1 6ag(p, N) 5.32 2.32 8170 
3b1, ( P, N) dxy 7.90 0.69 489 

contains. It is well known that the SCF approxima- 
tion overestimates the contribution of the charge- 
transfer states as compared to the exact (corre- 
lated) ground state [341. We accepted as a fact that 
this shortcoming at least for the equilibrium ge- 
ometries of the normal organic molecules can be 

TABLE VI 
d - d excitation energies (cm - ') of FeP. 

~ 

FeP, ground state 3E (for the symmetry Ddh) 

Triplets Singlets Quintets 

3Eg --t3AAPg 1,121 
+362g 2,297 
+3Eg 8,160 
+3A2g 18,954 
+3Eg 19,317 
+3Eg 19,766 
+3Alg 19,870 
j 3 € I l g  20,270 
+362g 20,590 
+3A2g 21,310 
j 3 E g  21,892 
+361g 22,442 
j 3 A l g  22,578 
--t3Eg 23,567 
+3Eg 23,814 
+3629 23,941 
+3Alg 25,197 
+362g 26,193 
+3A2g 33,285 
+361g 35,379 
+3Eg 35,934 
j 3 A z g  41,085 

+'Alg 4,898 j 5 E g  6,137 
j l E g  6,570 j 5 A l g  6,840 
+ ' 6 I g  8,318 -+562g 7,806 
+ ' 6 p g  8,704 j561g 28,650 
+ ' 6 p g  12,308 
j l A l g  13,467 
+Ifg 14,803 
+'Apg 24,203 
j l A l g  24,765 
j ' E g  25,090 
+lSlg 26,470 

+lAqg  29,242 
+ lEg  30,294 

+ ' 6 p g  27,193 

+'61, 31,245 
+ 1 6 p g  31,621 
-"Eg 31,627 
+'Alg 31,687 
+Ifg 32,110 
+'Alg 38,805 
+lAZg 41,346 
+'61, 43,435 

covered by some parametrization (e.g., by CNDO). 
The reason is that in a normal organic molecule 
one can never distinguish the multiplet terms of 
the separate component atoms. This is the state of 
things which one could call "organic quantum 
chemistry." By contrast, the d-shell of a transition- 
metal ion in a complex largely retains the system 
of the terms that it had in the free state. When the 
d-shell is included in the general SCF-MO-LCAO 
procedure, the singly, doubly, etc., positively and 
negatively ionized states of this shell are produced 
and overestimated by this scheme. One can try to 
correct these errors by performing CI which sup- 
presses the configurations corresponding to the 
excessively charged atoms. However, these CI ex- 
pansions are performed in the basis of the MO-LCAO 
Slater determinants and it takes too many of them 
to suppress the configurations where the atoms are 
excessively charged. Indeed, in the case of the H, 
molecule, in order to suppress the charge fluctua- 
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TABLE VII 
d -  d excitation energies (cm-’) for the COP. 

COP, ground state 2Alo (for symmetry D4h) 

Doublets Quartets 

‘Alg j 2 E g  2,845 
-‘B,, 9,494 
-+‘Azg 15,790 
-+‘Big 16,848 
+‘Eg 17,462 
-’€, 17,850 
-2Alg 18,594 
-‘Azg 18,711 
-‘B2, 20,738 
-’A2, 21,562 
-‘Eg 22,032 
-+‘Big 22,492 
-‘E, 24,998 
-'Big 32,732 
-‘Aig 34,814 

-+‘B,, 35,707 
-‘Alg 36,084 
-+‘Eg 36,085 
-‘A2, 36,970 
-'Big 40,625 
-’E, 40,979 

- f2Eg 35,339 

+4Eg 5,158 
j 4 A 2 ,  5,404 
-+4B2g 6,008 
-4Eg 11,524 
-4B1g 23,989 
j 4 E g  26,328 
+4A2g 32,891 

TABLE Vlll 
Contributions to the crystal field in porphyrins. 

Chargetransfer A€;, I &I p 2 / A E  
Complex (i -f f )  (eV) (eV) (cm- 

11.8 1.26 
9.9 1.43 

21.0 3.16 
12.5 2.03 
8.3 3.68 

19.2 2.59 
10.7 1.68 
6.4 3.12 

1,082 

3,845 
2,672 

13,219 

2,815 
2,127 

12,365 

- 1,656 

tions (we follow here the terminology due to Mal- 
rieu 13511, the doubly excited configuration (u * ) 2  

must be added to the Hartree-Fock ground state 
u2.  In the context of the TMC that means that at 
least two SCF-MOS (bonding and antibonding ones) 

must be included into the active space for each 
~ - A O  in order to suppress the charge fluctuations 
in the d-shell. In effect, each of the d-Aos con- 
tributes to a much larger number of the occupied 
and empty MOS and, strictly speaking, all of them 
must be included in order to suppress the fluctua- 
tions. 

In the EHCF method, we, from the very begin- 
ning, do not allow the overcharged configurations 
of the d-shell to appear. The only allowed charge- 
transfer configurations are those where one elec- 
tron is transferred from the d-shell or into it. In 
that respect, we proceed in a line with [13]. We, 
however, do one more step and project out the 
configurations with the charge transfer. That gives 
us the effective crystal-field splitting of the one- 
electron d-levels and allows us to retain the multi- 
plets of the free ions in our consideration. This 
correct form of the wave function for TMC does not 
have the charge fluctuations, and for that reason, it 
is enough to take into consideration a small active 
space-the configurations of the d-shell only. 

Now let us turn to the limitations of the method 
and of its current implementation which also have 
to be mentioned. In the simple version of the EHCF 
method, we present here the electronic structure of 
the ligands treated within the CNDO approxima- 
tion, which is, probably, enough in our case when 
we only need to reproduce the charge distribution 
in the ligands and to estimate their orbital energies 
at the fixed experimental geometries. It will not 
suffice for the geometry optimization when, at 
least, the corrected core-core repulsion is neces- 
sary. Another problem difficult to address with 
use of the current implementation of the EHCF 
method is the spin-polarization of the diamagnetic 
ligands by the paramagnetic central ions which 
would require exchange interaction to be included 
in the theory. This work is in progress now. 

Another limitation can be, probably, considered 
as an advantage of the method. The resonance 
interaction between the d-shell and the ligands is 
taken into account perturbatively. It imposes an 
additional restriction on the energy denominators 
A Edi  and A E i d ,  which have to be positive and not 
too small. When it is not satisfied, we consider that 
as an alarm signal, indicating that the assumed 
electron distribution between the d-shell and the 
ligands is not correct and either some other elec- 
tron distribution must be assumed or some 
charge-transfer states (or, in other words, the resol- 
vent poles) intervene between the d-d excitations. 
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The latter is frequently the case for the low-valent 
metal centers like those in metal carbonyls [like 
Ni(CO), I. For them, the atomic configuration 

has a low energy and is strongly admixed. 
Incidentally, the molecules of that type are never 
considered as derivatives of the free ions with, say, 
the configuration d8 (in the Ni case) and they are 
not fit to the conventional CFT. Respectively, their 
electronic structure cannot be described by the 
EHCF method presented in this article. 
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Appendix 

Here, we present a proof that the Slater deter- 
minant breaking the Aufbauprinzip cannot be a 
minimum of the Hartree-Fock energy functional. 
We must pay credit for this proof to Prof. V. I. 
Pupyshev of the Chemistry Department of the 
Moscow State (Lomonosoff) University as it had 
been given in the lectures that he used to deliver 
and seems to be never published [361. 

Let us consider the one-electron reduced 
density matrix R for the one-determinant wave 
function: 

where +i are occupied molecular spin-orbitals 
(MSO). R is the matrix of the projector on the 

n-dimensional subspace of the occupied MSO. This 
matrix can be presented in the following form: 

R = [ + I [ + l ' ,  (A21 

where [ + I  is a column vector. It can be written 
also as 

R = li) (il, li) = c#J~. (A31 

The matrix R is idempotent and its trace is equal 
to total number of electrons: 

1 

R + = R ,  R 2 = R ,  S p R = N .  (A4) 

In the Hartree-Fock approximation, the energy 
function has the form 

E(R) = Sp[hR] + Sp[RJ(R) - RK(R)]/2. (A5) 

Here, h is the matrix of one-electron part of the 
total Hamiltonian; the matrix elements of the 
Coulomb 0) and exchange (K) operators in the 
basis of orthonormalized MSO X k  have the form 

[J(R)Iij = c (ij I kl)R,k 

[K(R)]ij = c (il I kj)R,,. 

(A6a) 

(A6a) 
k ,  1 

k, 1 

With 

G(R) J(R) - K W ,  (A7) 

one has 

E(R) = Sp[hR] + Sp[RG(R)]/2. (A8) 

The Hartree-Fock equation for the density matrix 
has the following form: 

F(R)R = RF(R), (A9) 

where F(R) = h + G(R) is the matrix of the Fock 
operator. In the basis of canonical orbitals, this 
matrix is diagonal and its eigenvalues are the 
energies of the MSO: 

F li) = ci li). (A101 

Now, we can formulate the following theorem. If 
the solution of the Hartree-Fock equations corre- 
sponds to the absolute minimum of the energy 
functional, then the Aufbauprinzip is valid, i.e., the 
energy of any unoccupied MSO is larger than the 
energy of any occupied one. 
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Proof. Let us assume that the density matrix R 
corresponds to the absolute minimum of the en- 
ergy functional. From the variational principle, it 
follows that for all R’ the inequality E(R’) 2 E(R) 
holds. Set 

R’ = R + A ,  
where 

A = I p) (PI - 19) (41, 

and p is an unoccupied MSO, and q is an occupied 
MSO. Then, 

E(R’) = E(R + A)=Sp[h(R + A)] 

+ Sp[(R + A)G(R + A)l/2 

+ Sp[AG(A)1/2. (A1 1 ) 

= E(R) + Sp[ h A ]  + Sp[ AG(R)] 

Here, we have used the relation 

Sp[AG(B)I = Sp[BG(A)I. (A12) 

Commuting the matrices under the Spur in the 
third term of Eq. (Al l )  and taking into account the 
definition of F(R), we have 

E(R’) = E(R) + Sp[F(R)A] 
+ Sp[AG(A)1/2. (A13) 

Since 1 p)  and 19) are the canonical orbitals, the 
following holds: 

Sp[F(R)AI = cp - cq, (A141 

where cp and cq are the corresponding orbital 
energies. Thus, we have 

E(R’) = E(R) + ( cp  - cq)  

- Sp[Iq) (qIG(Ip) (PI)]. (A151 

Let us evaluate the sign of the last term in this 
formula: 

Finally, we have 

E(R’) = E(R) + (cP - cq)  - a* 

cp - cq = E(R’) - E(R) + a* > 0, (A17) 

since E(R’) - E(R) 2 0 because of the variational 
principle. 
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