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Charge Density Wave State of Monolayers in Graphite Intercalation Compounds
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The electronic structure of a graphite monolayer with electron count corresponding to the graphite intercalatic
compound (GIC), described by the extended Hubbard Hamiltonian, is studied in the unrestricted-Hartree
Fock approximation. We also interpret the data on observed STM images of graphite intercalation compounc
The well-known (and puzzling) pattern of graphite STM images with only three of the six atoms of each
carbon hexagon visible is tentatively explained by the formation of a charge density wave (CDW) state of th
surface graphite monolayer, which is an intrinsic feature of its electronic structure, rather than invoking well
known attributions of the observed effect to structural differences between the sites and/or to interactior
external to the monolayer. A tentative, purely electronic, explanation for the” Matterns is proposed as
well.

I. Introduction pattern do so due to intrinsic features of the electronic structure
of the graphite monolayers themselves rather than because of
the interaction with the underlying layers or due to an action of
any other external forces. It has been sh#¥hthat the
graphite monolayer can itself have an asymmetric electronic
ground state with either charge or spin density waves (CDW
or SDW). The existence of these states depends on specific
values of parameters of electroalectron interactions in the

The surface of graphite and of its intercalation compounds
(GIC) has been the subject of many scanning tunneling
microscopy (STM) studieks:* In most STM images of graphite
one observes only three of the six carbon atoms forming the
well-known carbon hexagons of the graphite lattice or at least
the tunnel currents differ significantly for the adjacent sites in
the Iatt|ce._ In the case of hlghly oriented pyrolytl_c grapr_nte layer. For realistic values of these parameters the CDW state
(HOPG) this feature conforms to its structure. The interactions )

was shown in ref 10 to have the lowest energy. However, the
between the layers make the carbon atoms of the surface layer

nonequivalent. The A-type carbon atoms have an atom from calculations in ref 10 have been performed for the case of the
another layer immediately under them, whereas the B-type atoms‘-:]raph'te monolayer with exactly one electron per carbon site
y rather than for a GIC. In the former case graphite is a gapless

are located above the centers of the hexagons of the layer - e
beneath. Atoms of one of these two types are believed to besemlconQUctor, andits f'I.IEd z_;md empty bands touch each other
more protruded on the STM images of graphite surfacésis at the pom;ftl;o of the Brillouin zone (BZ) wherdx_o - (fsz'

structural asymmetry, however, disappears when alkali metal _ 2%/3)- This feature was considered a prerequisite for forma-

atoms are intercalated between the graphite layers, yielding thelion Of unsymmetrical states and was a basis for the early

stage-1 GICs of the general formula M@here M= Na, K, explanation .of the observed STM images of graphite by
Rb, and Cs. The STM experiments on Gi€sere designed Tersoff12 It is almost generally qccepted today that the threg-
to prove that the observed STM images of neat HOPG arise f0r-a-hexagon pattern observed in the STM images of graphite
from differences in electron density on the A- and B-sites, which Menolayers in different situations is due to some electronic state
in turn are driven by the structural differences of these sites in With the nonuniform density distribution (CDW stafe): 0124
HOPG. Since in the GICs the structural difference between The current controversy is related to the origin of the state with
A- and B-sites in graphite monolayer disappears, the STM & nonuniform charge distribution observed by the STM method.
images of GICs predicted by the LDA calculafiérwere not The main difference between the various explanations is the
supposed to show the period of 2.46 A, normally seen in the driving force of the nonuniform distribution. The auth¥rs
STM images of HOPG, corresponding to the above structural suggest that the electrerlectron interaction in the layer is itself
asymmetry. The outcome of the experimetfiflowever, was this driving force, whereas other authors are inclined to ascribe
in sharp contrast with these expectations. The STM images ofthe observed features to actions of some forces external to the
stage-1 GIC K@ still bear the features with the period of 2.46 layer. In the latter case the STM images of graphite and GICs
A, as do the STM images of HOPG and of the graphite have to be very sensitive to any variation of its close environ-
monolayer deposited on the Pt(111) surféc&his structural ment, which apparently does not happen: neither deposition
pattern exists in addition to the superstructure with a period of on the Pt(111) surface nor intercalation changes the observed
4.9 A (which matches the KK separation in K@), despite the basic STM pattern (see above).
fact that the structural asymmetry between the A- and B-sites  |n this paper we consider the electronic structure of graphite
of the graphite monolayer is removed in GICs and in the monolayer in the case where some number of electrons is
monolayer deposited on the Pt surface. dumped from the alkaline atoms to the graphitband. With

It has been recently proposéthat the observed STM images  excessive electrons the monolayer is not a gapless semiconductor
of HOPG, GICs, and the graphite monolayers deposited on thebut a metal® and the reasonidgdoes not apply to it. However,
Pt(111) surface all manifesting the famous three-for-a-hexagonthe equations describing the electronic structure of the monolayer
in the Hartree-Fock approximation still have asymmetric
€ Abstract published ilAdvance ACS Abstractguly 15, 1996. solutions even for the average number of electrons per carbon
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Figure 1. Structure of a graphite monolayer in the stage-1 GICsMC
The enlarged Z 2 unit cell, which consists of four original unit cells,
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B. (One has to note that the site labels A and B in our case are
merely labels and have no structural relevance). d.gtand

brs be the operators annihilating electrons with spin projection
o = +1/2 on the A- and B-sites, respectively, in th unit

cell. Using these operators, we can write the extended Hubbard
Hamiltonian for the graphite monolayer:

H=—B% (8, + by, +h.c)+
Y0 r(Bo@radrs + Dlobiabigbig) + V1Y ¢ o(BoBrobrby, +
L P W ke 2 PN CHE
brgbr,) (1)

The first term (proportional t@) describes electron transfer from

A- and B-sites in the'th unit cell to adjacent sites both inside
and outside the unit cell (h.e= Hermitean conjugate). The
second term (proportional ta) is the Hubbard on-site electron
repulsion term. The third term (proportional @) describes

the repulsion between electrons occupying adjacent sites. The

is shown. The A- and B-types of atoms are merely labels and have no 55t term describes the attraction of electrons to the cores of

relevance to the actual crystal structure.

site not much different from unity. In ref 14 it has been
suggested that the Coulomb interaction with the intercalating

metal cations is responsible for the charge localization in the

layer. However, the calculation in ref 14 was done in such a
way that the intersite electron hopping ultimately responsible
for the smearing of electron density in the layer was not taken
into account, and in that respect the effect of localization was

overestimated. On the other hand, the Coulomb interaction
between the electrons on the adjacent sites that played a ke

role in the electron localization in ref 10 was omitted in ref 14.
Moreover, it turns out that the most energetically favorable
charge distribution in ref 14 corresponds to an STM image
without the 2.46 A period. This most localized distribution has
the periodicity of the underlying potassium cation layer and can
account for the 4.9 A period only. The next less energetically
favorable distribution had very weak features with a period of
2.46 A, which also does not agree with experinféhtyhere
this structure is well pronounced. To summarize, the apptéach
does not allow the superimposition of the two most important
characteristic features of the STM image of the graphite
monolayer in GIC-the 4.9 and 2.46 A periodsand does not
permit them to be together in a single solution for the electronic
structure of a monolayer. That is what we provide in this paper.
In what follows we consider, first, the theoretical STM image
as seen from the CDW state of the graphite monolayer with
= 9/8 with no external field; second, we describe the effect of
perturbation induced by the metal cations on:thelectrons of
the layer on the STM images of the GIC surface; and, third, we
describe a tentative purely electronic origin of the Mqedterns
observed in the STM images of graphite.

Il. Extended Hubbard Model for Graphite Monolayer

The extended Hubbard model Hamiltonian has been known

for years in the area of conjugated-systems and won
considerable attention in recent years in the context of fiigh-

superconductors. It is flexible enough and allows a ground state

with a nonuniform charge distribution (the charge density wave

state, CDW) when repulsion between electrons occupying
adjacent sites is strong enough (see below and ref 10). We

will use this model in the present paper in order to describe

possible ground states of the graphite monolayers in GIC.
The structure of the graphite monolayer is shown in Figure

1. The unit cell contains two equivalent carbon atoms A and

the adjacent carbon atoms, andndy are the unit cell vectors.

To find the ground state of a graphite monolayer described
by the Hamiltonian eq 1, we use the equation of motion method
combined with the HartreeFock approximation (see ref 10 and
references therein). Within the HartreBock approximation
some products of three fermion operators occurring in the
equation of motion method are replaced by expressions contain-
ing averages over the ground state. The general form of the
averages is usually chosen on the basis of physical assumptions.
Let us assume the averages to have the symmetry of the original

)Tattice, so that the total magnetic moment of any unit cell is

zero. That assumption leads us to the following form of the
“on-site” averages:

@ a 0=n2+0,; b b, O=n2-20, 2
where the parameterd, must be determined from self-
consistency conditions (see below). The averages of the
electron-hopping operators of the fov@t)jr b,Care set td>, for
all types of pairs of the adjacent sites, both intracell and intercell
ones. To assure the conservation of the total spin projection of
the system, the averages of the fofgc_,are set to zero.
We also restrict ourselves in the present work by the spin
symmetric states and do not consider the SDW state. With this
additional condition we have

0,=05=0; P,=P;=P 3)
After the Hartree-Fock approximation is applied and the
averages of egs 2 and 3 are inserted, the equations of motion
for the one-electron operators become

ioa, /ot = —B(b,, + by, + br-ya) + (= Az,

mmm=$@wam+%w+m+wm(®
where
o=yn2+3(n— 1)y,
B=p+yP ®)
A= (6y,— 700

In terms of the Fourier transforms (Bloch sums) of the site
operators,
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_ 1 ik of states is the geometrical average of the two masses, and we
o= mzf exp(-ikr)a,, can write for the Fermi energy measured from the bottom of
(6) the Hg-band

1 .
b, = ﬁz exp(-ikr)by, e = /31W(n — 1)/4 (15)
(k = (ks ky) is the wave vector in the Brillouin zone (BZ) It is easy to check that each doubly oc_cupied Bloch f-;tate
is the number of unit cells) the equations of motion take the contributes 2N to the electron density on each A-site,
form 2|yk|?%IN to that on each B-site, and¢gj/N to the bond order
between the A- and B-sites. Each doubly occupied Bloch g-state
ida, Jot = —B(1+ €%+ )b, + (a — A)a, contributes Bx|%/N to the density on the A site%|%N to that
) on t_he B-site, and— 2x.y;/N to the bond order. Now one can
iob, /ot = —B(1+ e ™™+ e ™a, + (o + A)b,, easily see that
The solutions of these equations (Bloch states) can be written 0= (1/2)z(|xk|2 - |yk|2)
in the form (16)
fka = Xkaka + ykbko i szyE
_ where the summation is extended to the valuek fufr which
Yo =~V T XDio (8) e = e (i.e to the emptystates). Equations 5, 10, and 16
) 5 form the system of self-consistency equations. This system
Xl ™+ W= 1 always has a uniform state with= 0 as its solution. However,
) ) ) ) ) for the parameter values adopted in ref B0 2.4 eV,yo =
Corresponding dispersion laws (orbital energies) are 6 eV, y1 = 2.5 eV) the CDW solution with the charge
N > > asymmetry between the A- and B-sites can be obtained also
e =R, R =A™+ B%(k) for the electron count corresponding to the complete transfer
) 9) of electrons from potassium atoms to the layer<9/8). We
€0 (K) = 3+ 2 cosk, + 2 cosk, + 2 cosk, — k) performed respective calculations and found that for the
parameter set given above and for the complete electron transfer
The coefficients¢ andyx satisfy the conditions from the metal atoms to the layer the CDW state indeed appears

) ) ik ik and the value of the parameter of charge asymmetsy0.16;
X = Wl"= AR, xyi=B(1l+e ™+e )R (10)  A=147eV;B=289eV;W=3.02eV; and = 0.51 eV.

The averages introduced above must be expressed as sums oV, Ground State and STM Image of GIC

the occupied states. We assume for the moment that the only . . )

effect of intercalation on the graphite monolayer is transfer of N the previous section we obtained a CDW state for the
electrons from alkaline atoms to thebands of the layer. The  9raphite monolayer with 9/8-electrons per carbon atom. Now
filing of the states is then as follows: The Blodtstates we consider what effect this feature of the electronic structure

corresponding to the minus sign in the dispersion law are all ©f GIC could have on its observed STM image. According to
occupied. This corresponds to the electron count of one electron'®f 17, the observed STM image is proportionap{@.r), the

per carbon ator® Additional electrons are placed in the Bloch ~[ocal density of states (LDOS) of the surface at the Fermi energy.
g-states (corresponding to the plus sign in the dispersion law).n our case, the LDOS we are concerned with is that of a
In the vicinity of the+ko points we introduce a new wave vector ~9raphite monolayer with some electron count h < 9/8. The
variableq = k — k; then in the vicinity of the band edges the ~9eneral form for the LDOS is given By

dispersion laws become p(Xep) = 2/ Im G(X,X,€F) a7

£ _ 2 p2n2 21172
& =a+£ (A" +B(q’ —qa,*+q,)) (11) where the one-electron Green’s function is a formal solution of

and expanding the square root, we get the respective eigenvalue problem:

— _ -1
d=atAEwei-qg+q)  (12) Ca=@-h (18)
whereF is the self-consistent Fock operator. In the coordirate
where energy representation it is given by
_p2
wW=B2A Gixx.2) =y yi() ¥,z ¢,) (19)

Diagonalizing the quadratic form ig's we get

n 5 5 wherey,(X) is thevth eigenstate of the eigenvalue problem with
€ =+ A+ W3/, + 1/2% ) (13) the Fock operatoF in the coordinate representation ands
) the corresponding orbital energy. One can easily check the
with following:

0 = (G~ Q)V2; g, = (o + a2 (14 p(xE) = 2i7 Im G(xxE) = 25 ¥ 1,09 S(E — €,) (20)

In two dimensions the density of states is constant (provided
the dispersion is quadratic in wave vector variables). According whereE is a real energy at which the LDOS is to be found. In
to ref 16 the effective mass entering the two-dimensional density the site representation the coordinaten the surface can be
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replaced by an indication of the unit cell vectorand by expression eq 23 for the LDOS's difference at the A- and
specification (A or B) of the site in the unit cell. B-sites. For any energk in the vicinity of the Fermi energy
For the graphite monolayer considered in the previous sectionthe LDOS’s difference is given by

the Fermi level is located in the upper band and the summation

is extended to the Bloch stateg @ith ¢, = €, which are all p(B,E) — p(AE) = 16b(E)E(\/2_/3)/(1+ (E— €k+0)/W) (25)

located in the vicinity of the two characteristic minima of the

band+ko. The Fermi surface is formed by two ellipses (one |t is a slow varying function of energy (as it must be, by the

with the center ako another at-kg) defined by the equation  way, for any metal) so that it is not going to abruptly change
its sign (which would correspond to the change of the peak

(3(:152 + q,72) = /3(n — 1)/2 (21) registry) wheri crosses the Fermi level, which is by no means
chosen among other energy values. That is exactly what
or parametrically happens in experimett when the sign of the bias voltage is
) ) changed: the STM images of the K8urface have the same
q:=acosg; q,=bsing; b’=+3n(n-1)/2; peak registry for either sign of the bias voltage, but in contrast
a? = b3 to the statement of ref 14 it does not mean that the CDW is not

driven by electror-electron interactions.
so the summation (or integration) must be performed along these Finally we address the LDOS of a real stage-1 GIC. In the
two ellipses in the BZ. From the explicit form of the Bloch real compound the electronic structure of the surface graphite
g-states eq 8 we see that the LDOS of interestirelependent monolayer with 1< n < 9/8 is perturbed by the Coulomb field

but depends on the site in the unit cell: of the metal cations intercalated between the surface layer and
the one beneath. The Coulomb interaction between the electrons

p(Aep) = sz|yk|2 O(eg — e;) in the layer and the metal cations gives an additional potential

so that all the electronic states are shifted down in energy.

p(Bep) = 2zk|><k|2 Oer — &) (22) However, the one-center attraction is renormalized by this

interaction to a slightly different extent depending on whether
(due to theod-functions, the summation here is effectively the carbon atom at hand belongs to a six-membered ring just
restricted to the states on the Fermi surface and the expressior@bove a metal cation or it is an atom joining these rings (there
is multiplied by N in order to work with the LDOS per unit  are two of them per an enlarged unit cell of eight carbon atoms).
cell). One can easily see that for tHé#ferenceof the LDOS The difference of these potentials gives the nontrivial part of
at the B and the A sites the following relation holds: the perturbation which is proportional ¥ The electrons in

the joining sites are effectively pushed up in energywbyThe

p(B.ep) — p(Aep) = 22(|xk|2 — VD O — &) (23) perturbation operator takes the form

H =VY, (@, a,+ b\ b 26
Substituting eq 10 for|¥|? — |yk|2), we get in the vicinity of zr’”(amam rctyorsxciyo) (26)

the Fermi energy where the summation is extended to the unit cell veatobsth

5 5 5 2 components of which are even integers. These vectors enumer-

(I%” = Iyiel?) = V(1 +W30;" + ,)/24)  (24) ate the unit cells of the enlargeds22 lattice of the perturbed

problem. To study the effect of the perturbation, it is more
convenient to use the representation of folded bands corre-
sponding to the enlarged unit cell (for more details see ref 19).
In this representation instead of the two bands and wave vectors
in the Brillouin zone (BZ) we have eight bands and wave vectors

. - . confined to the reduced Brillouin zone (RBZ). Any wave vector
This must be multiplied by 2 and by the ellipse length= of the BZ can be presented uniquely in one of the fokfis=

4bE(v'2/3), whereE is the full elliptic integral of the second (1 k), k@ = (k — 7, k), k@ = (kq, k, — ), andk® = (k,
kind. _ — z1, k, — ) for eachk = k© = (k,, k,), provided the wave

‘We can see now that the LDOS of the graphite monolayer yectork is confined to the RBZ subject to the conditionss0
with the electron count > 1 is not symmetric with respectto ik < z. In this representation the f and g Bloch states of
the A- and B-sites in the unit cell provided the ground state of {he apove CDW solution are labeled by a wave vektarRBZ

the layer is a CDW state driven by an electronic instability anqg by a new quantum numbie(=0, 1, 2, 3) as follows:
described above. According to Tersbffthis means that the

tunnel current from such a surface must depend on the tip fix = for Gk = ko (27)
position above the latter and its STM images must manifest a

pattern with the period 2.46 A (the famous three-for-a-hexagon The Bloch f-states are filled for ad andi. The Fermi leveks
pattern), in fair agreement with experimérit. An important crosses the g-bands for= 1, 2. The characteristic pointsko
remark should be given here. Itis mentioned in ref 14 that the of the BZ acquire, respectively, the following forms:
experiments on the alternation of the bias voltage sign could

be an important probe of the driving force of the CDW ko=K; —k,=K{ (28)
formation in the graphite monolayers since they allow probing

of the LDOS of the surface both slightly above and slightly where the wave vector€; = (/3, 21/3), K, = (27/3, 71/3)
below the Fermi energy. Itis absolutely true. However, it was belong to the RBZ. The Fermi surface consists of two ellipses,
stated in ref 14 that the variation of the bias voltage sign had to K; + g, i = 1, 2, with the wave vectoq subject to the above
result in the change of the peak registry if the CDW state is condition in eq 21 with the understanding that each of the two
driven by the intrinsic electron instability of the layer. Thisis segments of the Fermi surface appears in the respective band
not true, as one can easily see from a generalization of the abovegix.

On the Fermi surface the wave vector varialgjeandq, satisfy
eg 21 so that the above difference becomes a constant:

(I%J” = Ivi[) = /(1 + v3r(n — 1)BY8A?)
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For eachk € RBZ the perturbatiorH' (eq 26) couples the
Bloch states with the wave vectok$). It also shifts all the
states byV; however, it does not couple the Bloch statgs f
and g for the saméa. One can easily check that the diagonal
part of the perturbation operatét’ equalsV for all k; that is,
it is the uniform shift of all levels by/. Hereinafter we omit
the diagonal part of the perturbation operatbrand consider
only the nontrivial (off-diagonal) part of the perturbation.

Now we consider the LDOS of a perturbed monolayer. As
we mentioned aboveG(z) = (zI — F)~L According to the
general formula the Green'’s function for the perturbed Hamil-
tonian (or Fockian),H = Hp + H' (F = Fo + H), is
approximately given in terms of the Green'’s functiGp= (zI
— Fg)~1 for the unperturbed problefs:

G =(zI—Fy— H) =~ Gy(2 + Gy(QH'Gy(2) (29)

The imaginary part of first term in the above approximate
expression for the Green’s function gives the LDOS of the
unperturbed monolayer, and that of the term quadratiGgn
gives a correctiodp(x, E) to it. Using the general formula eq
19, we have

Go@) = 3 {1 Mhli(z — ) + I yl/ (2~ €10} (30)
Then we have
IM Goler) = =y /9 M| (er — 5)
ReGyler) = 3 il fyc Mhl/er — i) + 103 Wyl (e — ei(*gi)

Due to thed-functions, the sum ovek in the formula for Im
Gy is restricted to the valuds; + g, whereq is confined to the
ellipse defined by eq 21 and= 1, 2.

Sp(er) = BIM Gole)H Gl X = 75 o 5112 10
(e — EiT<i+q){ XIGik +qMDik -+l H' lfjic 4+ M -+ XEeR —
€k+q) T ik -+ MWk -+l H' 19k, + My .o XUep —
Gqum) + Dk +q Mk 49l H' Gk +qMik, +q XEUER — €5x40) T
DGk +qMik +q/H 19k +q ik -+ Wi+ XUeR — €;<i+q)}

(32)

To evaluate the latter expression, we assume, first, that the

Tchougreff

In the perturbed system only the quarter of the original unit
cell vectors corresponding to the cells of the enlarged 2
lattice can be used. The enlarged unit cell contains, in turn,
the A- and B-sites with the lattice vectarst t, wheret takes
four values: 0, X, y, andx + y. In the representation of the 2
x 2 lattice sites the statgz[dhave the formr, t, AQJ|r, t, B0
One can check that the LDOS in the perturbed system is
independent. It is also easy to establish thatjferl, 2, gi;
= by, Or, in other wordsy s = Y1k, = 0; X¢p = Xak, = 1. For
that reasomp(A, t, er) = 0 for any positiont in the enlarged
unit cell. The LDOS on the A-sites in the perturbed system
does not differ from that in the unperturbed system. For the
B-sites we have

8p(t, B, ) =

—aLVo/B® Z Y expi(K? = KM)(=1)*2 (35)
i=1,2 JZI

Calculating the above sum for four values ¢dbeling different
B-sites in the enlarged unit cell we get the following:

0p(0, B, €g) = Op(X, B, €g) = dp(Y. B, €p) =
—27VOL/B* = —aVIW

dp(x +Y, B, &) = 62VOL/B? = 3nVIW (36)
We see that the resulting LDQ5+ dp retains the characteristic
feature of the 2.46 A period, which is fixed by the unperturbed
LDOS egs 22 and 23. At the same time even within extremely
simplified approximations that we adopted when evaluating the
correctiondp to the LDOS it has a lower symmetry and depends
on the positiont in the enlarged unit cell. According to our
result, the STM image of the enlarged unit cell must consist of
four bright spots corresponding to the four B-sites in it. One
of these spots must be brighter than the other three provided
the sign of the perturbation paramekéis positive. Thus the
total LDOS has the periodicity of the 2 2 lattice. This all
fairly corresponds to the observed STM image of the GIC
surface>® The periodicity of the observed STM image is that
of the 2 x 2 lattice (4.9 A). For any unit cell of the surface
four bright spots are observed. One of them is the brightest
p-site of refs 5 and 6 corresponding in our notation toxhe
y B-site; the other three (two'-pand one p-sites of refs 5, 6)
are the sites of lower LDOS and of the lower brightness.
Another feature that could be observed as well in a tunnel
experiment on GIC is the gap well below the Fermi energy.
There are no states in the forbidden band of the widthelow

dependent orbital energies in the denominators are only weaklythe bottom of the g-band. With the parameters accepted in ref

different from their value aj = 0 and can be replaced by the
latter. One can easily check that for apy= i the orbital
energies are given by

€, = o VA® + 48 (33)
For the purposes of estimating we also replagein the
denominators by, = o + A and obtain

0

(6r =€) = A F VA® + 4B (34)

10 our approach predicts a gap of 1.47 eV when the bias voltage
Vbias = €fle grows stronger than 510 mV. However, the
parameters of the electronic structure like the charge assymmetry
parameten, the Fermi energyr, and the gapA determined

by the Hartree-Fock approach are very sensitive to the
parameters of the Hamiltonian. If we fikandy, at their values
adopted above and scam, we see that the CDW state
disappears for the valuesof of 2.4 eV and smaller. Just above
the threshold of the CDW state formatiopy (= 2.41 eV) we

find the following parameters of the electronic structure for the
n = 9/8 filling: 6 = 0.08;A = 0.72 eV;B = 2.98 eV;W =

6.13 eV; andeg = 1.04 eV. These figures correspond to the

To evaluate the numerator, we replace all the matrix elementsgap of 0.72 eV at the bias voltage stronger than 1000 mV. From

by their values in the respective poim;gs) assuming again that
the effect ofg is weak when the ellipse is not large and replace
the summation oven by multiplying the expression under the
summation sign by the length of the ellipke

these data we can conclude that in a scanning tunnel spectros-
copy (STS) experiment on a stage-1 GIC like &@he could
expect a gap of the width 0.5 to 1.5 eV somewhere 0.5 to 1.5
eV below the Fermi energy. It is difficult to say more from
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the purely theoretical point of view since the parameters of the
Hamiltonian are not known with sufficient precision. On the
other hand, according to ref 5, the STM image ofgddes not
change up to the bias voltage ©#750 mV, thus indicating the
lower limit for eg = 0.75 eV.

The CDW state of GIC manifests itself not only in the tunnel

experiments but also in some others. For example, the C 1s-

core excitation shows an additional absorption 0.7 eV above
the absorption edg®. The ionization potential of a core electron
is apparently sensitive to the population of therbital on the
same site. In the CDW state two types of core states with the
energy shift of 3I" exist. (Herel" is the Coulomb interaction
between the core electron and thelectron.) Our calculation

on KGg reproduces the observed splitting withe 5 eV, which
seems to be a reasonable estinfatedn the other hand, the
calculation with the same parameter set, but with 7/6, which
corresponds to the LKIGIC, does not give any CDW solution,
but only a uniform state witd = 0. Incidentally the C 1s-
core absorption spectrum of LiChas only one peak at the
ionization threshold®

IV. Moir€ Patterns and Fermi Surface Nesting

The formation of the low-symmetry states driven by intrinsic
interactions in an extended system is usually attributed to a
specific property of the related noninteracting model that is
called “Fermi surface nesting”. When the nesting takes place
for any wave vectok on the Fermi surface and for some wave
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segments of the Fermi surface may result in a low-symmetry
state with the periodicity corresponding to the same wave vector
Q. To estimate the possible effect of nesting on the observed
STM images of GIC surface we apply again the Green’s function
method. According to the general formula, the Green'’s function
for the perturbed HamiltoniarH Ho + H', where the
perturbationH' is an electror-electron interaction,

H = Z (v k), 3,

(38)

treated in a self-consistent manner is given in terms of the
Green’s functionG, for the unperturbed problem and the so-
called self-energy paff (2) by the following expression:

G'@=G,'@-Z@=@-F,—2(2) (39)
or
G@=(zl-F,—2@)" (40)
where the self-energy part
2,2 = 1 (uviik) — (k)P
(41)

P, = 1/27i [~ dEG,,(E)

is itself a functional of the Green’s function to be found. The

vectorQ called the “nesting vector”, the following holds: only difference of eq 39 from eq 29 is that the one-particle

operatorX is itself G dependent and eqgs 39 or 40 and 41 form
a system of equations foB that have to be resolved self-
consistently. We, however, are not going to do it here, and we
It is widely believed (see, for example, ref 14 and references gpg|| only estimate the correctiagip to the LDOS using eq 29
therein) that the low-symmetry states with the superstructure it S(2) inserted instead oH’ in the assumption that a
wave vectorQ appear only when the nesting occurs anmce nontrivial solution of the above system exists.

versa This is not, however, completely true. The nesting  For our purposes we can rewrite the unperturbed Green's
criterion for the formation of the low-symmetry states is rather fynction eq 30 as follows:

a more useful hint than an exact theorem. Even for the systems
with nesting the low-symmetry states do not appear if the G2 =
interaction is weaker than the critical one, and this critical value
depends on dimensionality of the system and details of its
structure. On the other hand, the low-symmetry states may
occur without nesting, as we have seen in the present papersince only the Bloch g-states in the vicinity of the Fermi surface
(see also ref 10). In effect, there is no nesting that could lead are involved. The Green’s function eq 42 can be presented as
to the formation of the CDW state with the period 2.46 A. a sum of 2x 2 diagonal matrice§y(q,2) for each value ofy.
Nevertheless, as we show numerically in the present paper, forThe interaction we are concerned with is the Coulomb interac-
the realistic set of parameters of the extended Hubbard Hamil-tion between electrons in the vicinity of the two respective
tonian the CDW state appears as a solution of the self- segments of the Fermi surface in the reciproka) §pace. The
consistency equations eqs 5, 10, and 16 for the graphitecorresponding perturbation operator reads
monolayer with electron coumt= 9/8 per carbon atom. This
CDW state exists despite the fact that the nesting criterion H' = zq,pyoyr(ko +0q,—kotal —ky+p kot
apparently is not fulfilled for the graphite monolayer. D .o gt 9 (43)

One can easily check, however, that in our problem there is Kotqod—kotprokotpr
a nontrivial wave vector for which the nesting condition is
fulfilled. As we already mentioned, the Fermi surface of the
graphite monolayer witm > 1 in the CDW state consists of
two segments: two ellipses encircling respectively the points
ko and—kg in the BZ. The two segments of the Fermi surface
are connected by the nesting vec@r= 2k,. For any wave
vectorq in the vicinity of the pointky in the BZ we have

k+Q = €k

Zq{ |+ q Mol (2 — 6ktﬁ—q) +
19 g+l (2 — €1Lk0+q)} (42)

and the corresponding self-energy acquires the form of a sum
overq of 2 x 2 matrices as well:

2(Z) = Zqz(qiz)! Z(Q!Z) = Zp,r |gk0+q[[@fko+q|(k0 + q!
—ko+dl — kot p, kot PPy, (44)

+ o+ o+ P;—T = |@tk0+p1:gko<l>[:n'[:|
6k0+q - 6ko—Q+q - 6—k0+q (37)
The off-diagonal matrix elements of the density mallﬁ}‘
which is, by definition, the nesting condition for the two are related to the off-diagonal elements of the 2 matrices
segments of the Fermi surface. According to ref 22, the of thep components of the exact Green'’s function eq 40, which

interaction coupling the Bloch states in the vicinity of the two are called “anomalous averages” in this conf@xiJsing the
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approximate form for the Bloclg-states in the vicinity of the  the all STM images of graphite observed in various situations:
+kg points and the symmetry-conditioned independence of the the 2.46 A periodicity or the three-for-a-hexagon pattern. In

anomalous averages gm and 7, we easily get for theq our approximation the LDOS is largely concentrated on the
components of the self-energy B-sites, and thus they look to be more protruded on the STM
images. Moreover, the LDOS obtained in our paper has an

2(0,2) = |0+ +q/= + h.C. important property as a function of energy. The LDOS
(45) difference between the B- and A-sites that corresponds to the

2= ZVO/NZF,,,P;,_ registry of the bright and dark spots on the STM image does

not change its sign when the energy at which the LDOS is
The quantity= is an order parame®monvanishing in the low- probed switches from a value slightly above the Fermi energy
symmetry state with the nesting vec@Qr Finally we get the to that slightly below it. According to ref 14, the switching of
LDOS correction coming from the ordering with the vectr the polarity of the bias voltage had to result in change of the

using eqs 29-31: peak registry if the CDW state of the monolayer is intrinsically
driven. One can see from eq 25 that it is not true since the
G(2 = Gy(2 + Gy(29=Gy(2) sign of the LDOS difference does not depend on the probe
energy (at least in the vicinity of the Fermi energy), and thus
Im Gy(ep) = —nzk|gkﬂ]@k|6(eF — e;) (46) the peak registry need not change when the bias voltage changes
its polarity even in the case of the intrinsically driven CDW.
ReGy(ep) = zk|gk[1]@k|/(eF - ef) The effect of the external field induced by the metal cations
on the LDOS of the monolayer is in remarkable agreement with
Due to thed-functions the sum ovek in the formula for ImGq the experiment88 We note that under the influence of the

is restricted to the valuetko + g, whereq is confined to the cations’ field the LDOS is asymmetrically redistributed from
ellipse defined by eq 21. For the LDOS correction we have three B-sites of the enlarged:2 2 unit cell of the monolayer
to its fourth B-site, which becomes much more protruded than

Op(x.e) = XIM{ Gy(ep) ZGo(ep)} X the three. This corresponds to the brighter spots on the p-sites
-5 Oer — & L N 1S g X which emerge with a period of 4.9 A on the observed STM
Zq ( F+ k°+q){ Gegta B z FtotaBigta image of the GIC surface® At the same time the other three
(€p = €yra) T X9 g 1/ 21T 1M 1o IXL B-sites correspond to the-pand p'-spots of lower intensity

also observed in refs 5 and 6. The external field, however, does
not affect the LDOS on either A-site in the enlarged unit cell,
and they remain weakly protruded on the STM images, in fair
agreement with experiment. We see that in our approach we
reproduce satisfactorily the localizing effect of the external field
of the metal cations on the LDOS, which was recently
mentioned in ref 14. However, our approach allows the
reproduction in a consistent manner of also the inherent
periodicity of 2.46 A related to the intrinsic features of the
electronic structure of the graphite monolayer not sensitive to
its environment. These features are ultimately controlled by
the Coulomb interactions between electrons occupying the
adjacent carbon sites, which were neglected in ref 14, as were
the terms describing the electron hopping between the site, the

the Moire superstructures observed experiment&liywe do crucial terms in any description of electronic structure of
not mean to say that the Méipatterns appear exclusively due ~ €Xtended systerﬁ§_. _

to the ordered states with ti@ = 2k, nesting, but we would Finally we considered what effect the formation of a low-
like to attract attention to such a possibility. Of course, the Symmetry (ordered) state could have on the observed STM
tentativeQ = 2ko nesting (if any) must manifest itself in a  image of GIC provided the ordering is due to the interactions
variety of ways. One of them must be a depletion of the DOS between electrons located in the vicinity of the two segments
at the Fermi level due to formation of the ordered state, which of the Fermi surface of the monolayer. It turned out that the
is now tentatively detected by the tunnel experiments as the resulting pattern can have a modulation period remarkably close

(6 — € — 6k+0+q)} (47)
0o(r, B, ) O ReE exp(Qr) (48)

We finally see that in the low-symmetry state with the order
parameteE the LDOS correction for the B-sites has the wave
vectorQ, and thus the STM image must have a superstructure
with the same wave vector. The nesting ve@o+ 2k, results

in the 3-fold lattice parameter of the observed STM image.
Combined with the cell doubling due to the interactions with
the metal cations in the stage-1 GIC this results in the lattice
constant 6 times as large as the original constant of 2.46 A.
The corresponding characteristic length amounts to about 15
A, which fairly corresponds to the lower limit (about 17 A) of

Moiré pattern. to the lower bound of the observed Mopatterns® However,
the general situation with the latter is not clear, since some strong
V. Discussion indications supporting their artificial origin due to the STM

In the present paper we substantiated numerically the pos-S&MPling procedure were given recerfflylf, however, any

sibility of formation of the electronically driven CDW state in evidence of the real existence of the Mopratterns and precise

a graphite monolayer with an electron count corresponding to measurements.of the_|r characterlsnc_s appear in the future,_ the
the stage-1 GIC and considered theoretically the STM imagespurely electronic driving force of _thelr formation proposed in
of the latter. The nonuniform distribution of the electron density the present paper can be reconsidered among others.

in the graphite monolayer also has its consequences for the

LDOS at the Fermi energy and thus for the observed STM  Acknowledgment. This work was supported by the Russian
images of GICs. We derived explicitly the LDOS of the Foundation for Basic Research (RFBR) under Grant No 94-
monolayer in three cases. First, we considered the LDOS of 03-9902. The author thanks R. Hoffmann, J.-P. Malrieu, M.-
the monolayer wittn = 9/8 but without external field. This  B. Lepetite, M. V. Basilevsky, M. A. Kozhushner, and I. A.
LDOS manifests the most important feature characteristic for Misurkin for their kind encouragement and support.
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