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The electronic structure of a graphite monolayer with electron count corresponding to the graphite intercalation
compound (GIC), described by the extended Hubbard Hamiltonian, is studied in the unrestricted Hartree-
Fock approximation. We also interpret the data on observed STM images of graphite intercalation compounds.
The well-known (and puzzling) pattern of graphite STM images with only three of the six atoms of each
carbon hexagon visible is tentatively explained by the formation of a charge density wave (CDW) state of the
surface graphite monolayer, which is an intrinsic feature of its electronic structure, rather than invoking well-
known attributions of the observed effect to structural differences between the sites and/or to interactions
external to the monolayer. A tentative, purely electronic, explanation for the Moire´ patterns is proposed as
well.

I. Introduction

The surface of graphite and of its intercalation compounds
(GIC) has been the subject of many scanning tunneling
microscopy (STM) studies.1-4 In most STM images of graphite
one observes only three of the six carbon atoms forming the
well-known carbon hexagons of the graphite lattice or at least
the tunnel currents differ significantly for the adjacent sites in
the lattice. In the case of highly oriented pyrolytic graphite
(HOPG) this feature conforms to its structure. The interactions
between the layers make the carbon atoms of the surface layer
nonequivalent. The A-type carbon atoms have an atom from
another layer immediately under them, whereas the B-type atoms
are located above the centers of the hexagons of the layer
beneath. Atoms of one of these two types are believed to be
more protruded on the STM images of graphite surfaces.1 This
structural asymmetry, however, disappears when alkali metal
atoms are intercalated between the graphite layers, yielding the
stage-1 GICs of the general formula MC8, where M) Na, K,
Rb, and Cs. The STM experiments on GICs5,6 were designed
to prove that the observed STM images of neat HOPG arise
from differences in electron density on the A- and B-sites, which
in turn are driven by the structural differences of these sites in
HOPG. Since in the GICs the structural difference between
A- and B-sites in graphite monolayer disappears, the STM
images of GICs predicted by the LDA calculation7,8 were not
supposed to show the period of 2.46 Å, normally seen in the
STM images of HOPG, corresponding to the above structural
asymmetry. The outcome of the experiments,5,6 however, was
in sharp contrast with these expectations. The STM images of
stage-1 GIC KC8 still bear the features with the period of 2.46
Å, as do the STM images of HOPG and of the graphite
monolayer deposited on the Pt(111) surface.9 This structural
pattern exists in addition to the superstructure with a period of
4.9 Å (which matches the K-K separation in KC8), despite the
fact that the structural asymmetry between the A- and B-sites
of the graphite monolayer is removed in GICs and in the
monolayer deposited on the Pt surface.
It has been recently proposed10 that the observed STM images

of HOPG, GICs, and the graphite monolayers deposited on the
Pt(111) surface all manifesting the famous three-for-a-hexagon

pattern do so due to intrinsic features of the electronic structure
of the graphite monolayers themselves rather than because of
the interaction with the underlying layers or due to an action of
any other external forces. It has been shown10,11 that the
graphite monolayer can itself have an asymmetric electronic
ground state with either charge or spin density waves (CDW
or SDW). The existence of these states depends on specific
values of parameters of electron-electron interactions in the
layer. For realistic values of these parameters the CDW state
was shown in ref 10 to have the lowest energy. However, the
calculations in ref 10 have been performed for the case of the
graphite monolayer with exactly one electron per carbon site
rather than for a GIC. In the former case graphite is a gapless
semiconductor, and its filled and empty bands touch each other
at the points(k0 of the Brillouin zone (BZ) wherek0 ) (2π/3,
-2π/3). This feature was considered a prerequisite for forma-
tion of unsymmetrical states and was a basis for the early
explanation of the observed STM images of graphite by
Tersoff.12 It is almost generally accepted today that the three-
for-a-hexagon pattern observed in the STM images of graphite
monolayers in different situations is due to some electronic state
with the nonuniform density distribution (CDW state).5,6,10,12-14

The current controversy is related to the origin of the state with
a nonuniform charge distribution observed by the STM method.
The main difference between the various explanations is the
driving force of the nonuniform distribution. The authors10

suggest that the electron-electron interaction in the layer is itself
this driving force, whereas other authors are inclined to ascribe
the observed features to actions of some forces external to the
layer. In the latter case the STM images of graphite and GICs
have to be very sensitive to any variation of its close environ-
ment, which apparently does not happen: neither deposition
on the Pt(111) surface nor intercalation changes the observed
basic STM pattern (see above).
In this paper we consider the electronic structure of graphite

monolayer in the case where some number of electrons is
dumped from the alkaline atoms to the graphiteπ-band. With
excessive electrons the monolayer is not a gapless semiconductor
but a metal,15 and the reasoning12 does not apply to it. However,
the equations describing the electronic structure of the monolayer
in the Hartree-Fock approximation still have asymmetric
solutions even for the average number of electrons per carbonX Abstract published inAdVance ACS Abstracts,July 15, 1996.
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site not much different from unity. In ref 14 it has been
suggested that the Coulomb interaction with the intercalating
metal cations is responsible for the charge localization in the
layer. However, the calculation in ref 14 was done in such a
way that the intersite electron hopping ultimately responsible
for the smearing of electron density in the layer was not taken
into account, and in that respect the effect of localization was
overestimated. On the other hand, the Coulomb interaction
between the electrons on the adjacent sites that played a key
role in the electron localization in ref 10 was omitted in ref 14.
Moreover, it turns out that the most energetically favorable
charge distribution in ref 14 corresponds to an STM image
without the 2.46 Å period. This most localized distribution has
the periodicity of the underlying potassium cation layer and can
account for the 4.9 Å period only. The next less energetically
favorable distribution had very weak features with a period of
2.46 Å, which also does not agree with experiment,5,6 where
this structure is well pronounced. To summarize, the approach14

does not allow the superimposition of the two most important
characteristic features of the STM image of the graphite
monolayer in GICsthe 4.9 and 2.46 Å periodssand does not
permit them to be together in a single solution for the electronic
structure of a monolayer. That is what we provide in this paper.
In what follows we consider, first, the theoretical STM image
as seen from the CDW state of the graphite monolayer withn
) 9/8 with no external field; second, we describe the effect of
perturbation induced by the metal cations on theπ-electrons of
the layer on the STM images of the GIC surface; and, third, we
describe a tentative purely electronic origin of the Moire´ patterns
observed in the STM images of graphite.

II. Extended Hubbard Model for Graphite Monolayer

The extended Hubbard model Hamiltonian has been known
for years in the area of conjugatedπ-systems and won
considerable attention in recent years in the context of high-Tc
superconductors. It is flexible enough and allows a ground state
with a nonuniform charge distribution (the charge density wave
state, CDW) when repulsion between electrons occupying
adjacent sites is strong enough (see below and ref 10). We
will use this model in the present paper in order to describe
possible ground states of the graphite monolayers in GIC.
The structure of the graphite monolayer is shown in Figure

1. The unit cell contains two equivalent carbon atoms A and

B. (One has to note that the site labels A and B in our case are
merely labels and have no structural relevance). Letarσ and
brσ be the operators annihilating electrons with spin projection
σ ) (1/2 on the A- and B-sites, respectively, in ther th unit
cell. Using these operators, we can write the extended Hubbard
Hamiltonian for the graphite monolayer:

The first term (proportional toâ) describes electron transfer from
A- and B-sites in ther th unit cell to adjacent sites both inside
and outside the unit cell (h.c.) Hermitean conjugate). The
second term (proportional toγ0) is the Hubbard on-site electron
repulsion term. The third term (proportional toγ1) describes
the repulsion between electrons occupying adjacent sites. The
last term describes the attraction of electrons to the cores of
the adjacent carbon atoms, andx andy are the unit cell vectors.
To find the ground state of a graphite monolayer described

by the Hamiltonian eq 1, we use the equation of motion method
combined with the Hartree-Fock approximation (see ref 10 and
references therein). Within the Hartree-Fock approximation
some products of three fermion operators occurring in the
equation of motion method are replaced by expressions contain-
ing averages over the ground state. The general form of the
averages is usually chosen on the basis of physical assumptions.
Let us assume the averages to have the symmetry of the original
lattice, so that the total magnetic moment of any unit cell is
zero. That assumption leads us to the following form of the
“on-site” averages:

where the parametersδσ must be determined from self-
consistency conditions (see below). The averages of the
electron-hopping operators of the form〈aσ

+bσ〉 are set toPσ for
all types of pairs of the adjacent sites, both intracell and intercell
ones. To assure the conservation of the total spin projection of
the system, the averages of the form〈cσc-σ〉 are set to zero.
We also restrict ourselves in the present work by the spin
symmetric states and do not consider the SDW state. With this
additional condition we have

After the Hartree-Fock approximation is applied and the
averages of eqs 2 and 3 are inserted, the equations of motion
for the one-electron operators become

where

In terms of the Fourier transforms (Bloch sums) of the site
operators,

Figure 1. Structure of a graphite monolayer in the stage-1 GIC MC8.
The enlarged 2× 2 unit cell, which consists of four original unit cells,
is shown. The A- and B-types of atoms are merely labels and have no
relevance to the actual crystal structure.
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(k ) (kx, ky) is the wave vector in the Brillouin zone (BZ);N
is the number of unit cells) the equations of motion take the
form

The solutions of these equations (Bloch states) can be written
in the form

Corresponding dispersion laws (orbital energies) are

The coefficientsxk andyk satisfy the conditions

The averages introduced above must be expressed as sums over
the occupied states. We assume for the moment that the only
effect of intercalation on the graphite monolayer is transfer of
electrons from alkaline atoms to theπ-bands of the layer. The
filling of the states is then as follows: The Blochf-states
corresponding to the minus sign in the dispersion law are all
occupied. This corresponds to the electron count of one electron
per carbon atom.10 Additional electrons are placed in the Bloch
g-states (corresponding to the plus sign in the dispersion law).
In the vicinity of the(k0 points we introduce a new wave vector
variableq ) k - k0; then in the vicinity of the band edges the
dispersion laws become

and expanding the square root, we get

where

Diagonalizing the quadratic form inq’s we get

with

In two dimensions the density of states is constant (provided
the dispersion is quadratic in wave vector variables). According
to ref 16 the effective mass entering the two-dimensional density

of states is the geometrical average of the two masses, and we
can write for the Fermi energy measured from the bottom of
the Hg-band

It is easy to check that each doubly occupied Bloch f-state
contributes 2|xk|2/N to the electron density on each A-site,
2|yk|2/N to that on each B-site, and 2xky*k/N to the bond order
between the A- and B-sites. Each doubly occupied Bloch g-state
contributes 2|yk|2/N to the density on the A site, 2|xk|2/N to that
on the B-site, and- 2xky*k/N to the bond order. Now one can
easily see that

where the summation is extended to the values ofk for which
εk

+ g εF (i.e. to the emptystates). Equations 5, 10, and 16
form the system of self-consistency equations. This system
always has a uniform state withδ ) 0 as its solution. However,
for the parameter values adopted in ref 10 (â ) 2.4 eV,γ0 )
6 eV, γ1 ) 2.5 eV) the CDW solution with the charge
asymmetry between the A- and B-sites can be obtained also
for the electron count corresponding to the complete transfer
of electrons from potassium atoms to the layer (n ) 9/8). We
performed respective calculations and found that for the
parameter set given above and for the complete electron transfer
from the metal atoms to the layer the CDW state indeed appears
and the value of the parameter of charge asymmetryδ is 0.16;
∆ ) 1.47 eV;B ) 2.89 eV;W) 3.02 eV; andεF ) 0.51 eV.

III. Ground State and STM Image of GIC

In the previous section we obtained a CDW state for the
graphite monolayer with 9/8π-electrons per carbon atom. Now
we consider what effect this feature of the electronic structure
of GIC could have on its observed STM image. According to
ref 17, the observed STM image is proportional toF(x,εF), the
local density of states (LDOS) of the surface at the Fermi energy.
In our case, the LDOS we are concerned with is that of a
graphite monolayer with some electron count 1e ne 9/8. The
general form for the LDOS is given by18

where the one-electron Green’s function is a formal solution of
the respective eigenvalue problem:

whereF is the self-consistent Fock operator. In the coordinate-
energy representation it is given by

whereψν(x) is theνth eigenstate of the eigenvalue problem with
the Fock operatorF in the coordinate representation andεν is
the corresponding orbital energy. One can easily check the
following:

whereE is a real energy at which the LDOS is to be found. In
the site representation the coordinatex on the surface can be

akσ ) 1

xN∑r exp(-ikr )arσ

(6)

bkσ ) 1

xN∑r exp(-ikr )brσ

i∂akσ/∂t ) -B(1+ eikx + eiky)bkσ + (R - ∆)akσ
(7)

i∂bkσ/∂t ) -B(1+ e-ikx + e-iky)akσ + (R + ∆)bkσ

fkσ ) xkakσ + ykbkσ

gkσ ) -y*kakσ + x*kbkσ (8)

|xk|2 + |yk|2 ) 1

εk
( ) R ( Rk, Rk ) x∆2 + B2ε0

2(k)
(9)

ε0
2(k) ) 3+ 2 coskx + 2 cosky + 2 cos(kx - ky)

|xk|2 - |yk|2 ) ∆/Rk, xky*k ) B(1+ e-ikx + e-iky)/Rk (10)

εk
( ) R ( (∆2 + B2(qx

2 - qxqy + qy
2))1/2 (11)

εk
( ) R ( ∆ ( w(qx

2 - qxqy + qy
2) (12)

W) B2/2∆

εk
( ) R ( ∆ ( W(3/2qê

2 + 1/2qη
2) (13)

qê ) (qx - qy)/x2; qη ) (qx + qy)/x2 (14)

εF ) x3πW(n- 1)/4 (15)

δ ) (1/2)∑(|xk|2 - |yk|2)
(16)

P) ∑xky*k

F(x,εF) ) 2/π Im G(x,x,εF) (17)

G(z) ) (zI- F)-1 (18)

G(x,x′,z) ) ∑
ν

ψ*ν(x) ψν(x′)/(z- εν) (19)

F(x,E) ) 2/π Im G(x,x,E) ) 2∑
ν

ψ*ν(x) ψν(x) δ(E- εν) (20)
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replaced by an indication of the unit cell vectorr and by
specification (A or B) of the site in the unit cell.
For the graphite monolayer considered in the previous section

the Fermi level is located in the upper band and the summation
is extended to the Bloch states gk with εk

+ ) εF, which are all
located in the vicinity of the two characteristic minima of the
band(k0. The Fermi surface is formed by two ellipses (one
with the center atk0 another at-k0) defined by the equation

or parametrically

so the summation (or integration) must be performed along these
two ellipses in the BZ. From the explicit form of the Bloch
g-states eq 8 we see that the LDOS of interest isr independent
but depends on the site in the unit cell:

(due to theδ-functions, the summation here is effectively
restricted to the states on the Fermi surface and the expression
is multiplied byN in order to work with the LDOS per unit
cell). One can easily see that for thedifferenceof the LDOS
at the B and the A sites the following relation holds:

Substituting eq 10 for (|xk|2 - |yk|2), we get in the vicinity of
the Fermi energy

On the Fermi surface the wave vector variablesqê andqη satisfy
eq 21 so that the above difference becomes a constant:

This must be multiplied by 2 and by the ellipse lengthL )
4bE(x2/3), whereE is the full elliptic integral of the second
kind.
We can see now that the LDOS of the graphite monolayer

with the electron countn g 1 is not symmetric with respect to
the A- and B-sites in the unit cell provided the ground state of
the layer is a CDW state driven by an electronic instability
described above. According to Tersoff,17 this means that the
tunnel current from such a surface must depend on the tip
position above the latter and its STM images must manifest a
pattern with the period 2.46 Å (the famous three-for-a-hexagon
pattern), in fair agreement with experiment.5,6 An important
remark should be given here. It is mentioned in ref 14 that the
experiments on the alternation of the bias voltage sign could
be an important probe of the driving force of the CDW
formation in the graphite monolayers since they allow probing
of the LDOS of the surface both slightly above and slightly
below the Fermi energy. It is absolutely true. However, it was
stated in ref 14 that the variation of the bias voltage sign had to
result in the change of the peak registry if the CDW state is
driven by the intrinsic electron instability of the layer. This is
not true, as one can easily see from a generalization of the above

expression eq 23 for the LDOS’s difference at the A- and
B-sites. For any energyE in the vicinity of the Fermi energy
the LDOS’s difference is given by

It is a slow varying function of energy (as it must be, by the
way, for any metal) so that it is not going to abruptly change
its sign (which would correspond to the change of the peak
registry) whenE crosses the Fermi level, which is by no means
chosen among other energy values. That is exactly what
happens in experiment5,6 when the sign of the bias voltage is
changed: the STM images of the KC8 surface have the same
peak registry for either sign of the bias voltage, but in contrast
to the statement of ref 14 it does not mean that the CDW is not
driven by electron-electron interactions.
Finally we address the LDOS of a real stage-1 GIC. In the

real compound the electronic structure of the surface graphite
monolayer with 1e ne 9/8 is perturbed by the Coulomb field
of the metal cations intercalated between the surface layer and
the one beneath. The Coulomb interaction between the electrons
in the layer and the metal cations gives an additional potential
so that all the electronic states are shifted down in energy.
However, the one-center attraction is renormalized by this
interaction to a slightly different extent depending on whether
the carbon atom at hand belongs to a six-membered ring just
above a metal cation or it is an atom joining these rings (there
are two of them per an enlarged unit cell of eight carbon atoms).
The difference of these potentials gives the nontrivial part of
the perturbation which is proportional toV. The electrons in
the joining sites are effectively pushed up in energy byV. The
perturbation operator takes the form

where the summation is extended to the unit cell vectorsr , both
components of which are even integers. These vectors enumer-
ate the unit cells of the enlarged 2× 2 lattice of the perturbed
problem. To study the effect of the perturbation, it is more
convenient to use the representation of folded bands corre-
sponding to the enlarged unit cell (for more details see ref 19).
In this representation instead of the two bands and wave vectors
in the Brillouin zone (BZ) we have eight bands and wave vectors
confined to the reduced Brillouin zone (RBZ). Any wave vector
of the BZ can be presented uniquely in one of the formsk(0) )
(kx, ky), k(1) ) (kx - π, ky), k(2) ) (kx, ky - π), andk(3) ) (kx
- π, ky - π) for eachk ) k(0) ) (kx, ky), provided the wave
vectork is confined to the RBZ subject to the conditions 0e
kx, ky e π. In this representation the f and g Bloch states of
the above CDW solution are labeled by a wave vectork ∈ RBZ
and by a new quantum numberi ()0, 1, 2, 3) as follows:

The Bloch f-states are filled for allk andi. The Fermi levelεF
crosses the g-bands fori ) 1, 2. The characteristic points(k0
of the BZ acquire, respectively, the following forms:

where the wave vectorsK1 ) (π/3, 2π/3), K2 ) (2π/3, π/3)
belong to the RBZ. The Fermi surface consists of two ellipses,
K i + q, i ) 1, 2, with the wave vectorq subject to the above
condition in eq 21 with the understanding that each of the two
segments of the Fermi surface appears in the respective band
gik.

(3qê
2 + qη

2) ) x3π(n- 1)/2 (21)

qê ) a cosæ; qη ) b sinæ; b2 ) x3π(n- 1)/2;

a2 ) b2/3

F(A,εF) ) 2∑k|yk|2 δ(εF - εk
+)

F(B,εF) ) 2∑k|xk|2 δ(εF - εk
+) (22)

F(B,εF) - F(A,εF) ) 2∑
k

(|xk|2 - |yk|2) δ(εF - εk
+) (23)

(|xk|2 - |yk|2) ) 1/(1+ W(3qê
2 + qη

2)/2∆) (24)

(|xk|2 - |yk|2) ) 1/(1+ x3π(n- 1)B2/8∆2)

F(B,E) - F(A,E) ) 16b(E)E(x2/3)/(1+ (E- εk0
+)/W) (25)

H′ ) V∑r ,σ
′ (arσ

+arσ + br+x+yσ
+ br+x+yσ) (26)

fik ) fk(i), gik ) gk(i) (27)

k0 ) K1
(1); -k0 ) K2

(2) (28)
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For eachk ∈ RBZ the perturbationH′ (eq 26) couples the
Bloch states with the wave vectorsk(i). It also shifts all the
states byV; however, it does not couple the Bloch states fik

and gik for the samei. One can easily check that the diagonal
part of the perturbation operatorH′ equalsV for all k; that is,
it is the uniform shift of all levels byV. Hereinafter we omit
the diagonal part of the perturbation operatorH′ and consider
only the nontrivial (off-diagonal) part of the perturbation.
Now we consider the LDOS of a perturbed monolayer. As

we mentioned above,G(z) ) (zI - F)-1. According to the
general formula the Green’s function for the perturbed Hamil-
tonian (or Fockian),H ) H0 + H′ (F ) F0 + H′), is
approximately given in terms of the Green’s functionG0 ) (zI
- F0)-1 for the unperturbed problem:18

The imaginary part of first term in the above approximate
expression for the Green’s function gives the LDOS of the
unperturbed monolayer, and that of the term quadratic inG0

gives a correctionδF(x, E) to it. Using the general formula eq
19, we have

Then we have

Due to theδ-functions, the sum overk in the formula for Im
G0 is restricted to the valuesK i + q, whereq is confined to the
ellipse defined by eq 21 andi ) 1, 2.

To evaluate the latter expression, we assume, first, that theq
dependent orbital energies in the denominators are only weakly
different from their value atq ) 0 and can be replaced by the
latter. One can easily check that for anyj * i the orbital
energies are given by

For the purposes of estimating we also replaceεF in the
denominators byεk

0

+ ) R + ∆ and obtain

To evaluate the numerator, we replace all the matrix elements
by their values in the respective pointsK i

(j) assuming again that
the effect ofq is weak when the ellipse is not large and replace
the summation overq by multiplying the expression under the
summation sign by the length of the ellipseL.

In the perturbed system only the quarter of the original unit
cell vectors corresponding to the cells of the enlarged 2× 2
lattice can be used. The enlarged unit cell contains, in turn,
the A- and B-sites with the lattice vectorsr + t, wheret takes
four values:0, x, y, andx + y. In the representation of the 2
× 2 lattice sites the states|x〉 have the form|r , t, A〉, |r , t, B〉.
One can check that the LDOS in the perturbed system isr
independent. It is also easy to establish that, fori ) 1, 2,giK i

) bK i
(i), or, in other words,yK i

(i) ) y(k0 ) 0; xKi(i) ) x(k0 ) 1. For
that reasonδF(A, t, εF) ) 0 for any positiont in the enlarged
unit cell. The LDOS on the A-sites in the perturbed system
does not differ from that in the unperturbed system. For the
B-sites we have

Calculating the above sum for four values oft labeling different
B-sites in the enlarged unit cell we get the following:

We see that the resulting LDOSF + δF retains the characteristic
feature of the 2.46 Å period, which is fixed by the unperturbed
LDOS eqs 22 and 23. At the same time even within extremely
simplified approximations that we adopted when evaluating the
correctionδF to the LDOS it has a lower symmetry and depends
on the positiont in the enlarged unit cell. According to our
result, the STM image of the enlarged unit cell must consist of
four bright spots corresponding to the four B-sites in it. One
of these spots must be brighter than the other three provided
the sign of the perturbation parameterV is positive. Thus the
total LDOS has the periodicity of the 2× 2 lattice. This all
fairly corresponds to the observed STM image of the GIC
surface.5,6 The periodicity of the observed STM image is that
of the 2× 2 lattice (4.9 Å). For any unit cell of the surface
four bright spots are observed. One of them is the brightest
p-site of refs 5 and 6 corresponding in our notation to thex +
y B-site; the other three (two p′- and one p′′-sites of refs 5, 6)
are the sites of lower LDOS and of the lower brightness.
Another feature that could be observed as well in a tunnel

experiment on GIC is the gap well below the Fermi energy.
There are no states in the forbidden band of the width∆ below
the bottom of the g-band. With the parameters accepted in ref
10 our approach predicts a gap of 1.47 eV when the bias voltage
Vbias ) εF/e grows stronger than 510 mV. However, the
parameters of the electronic structure like the charge assymmetry
parameterδ, the Fermi energyεF, and the gap∆ determined
by the Hartree-Fock approach are very sensitive to the
parameters of the Hamiltonian. If we fixâ andγ0 at their values
adopted above and scanγ1, we see that the CDW state
disappears for the values ofγ1 of 2.4 eV and smaller. Just above
the threshold of the CDW state formation (γ1 ) 2.41 eV) we
find the following parameters of the electronic structure for the
n ) 9/8 filling: δ ) 0.08;∆ ) 0.72 eV;B ) 2.98 eV;W )
6.13 eV; andεF ) 1.04 eV. These figures correspond to the
gap of 0.72 eV at the bias voltage stronger than 1000 mV. From
these data we can conclude that in a scanning tunnel spectros-
copy (STS) experiment on a stage-1 GIC like KC8 one could
expect a gap of the width 0.5 to 1.5 eV somewhere 0.5 to 1.5
eV below the Fermi energy. It is difficult to say more from

G(z) ) (zI- F0 - H′)-1 = G0(z) + G0(z)H′G0(z) (29)

G0(z) ) ∑
i,k

{|fik〉〈fik|/(z- εik
-) + |gik〉〈gik|/(z- εik

+)} (30)

Im G0(εF) ) -π∑i,k|gik〉〈gik|δ(εF - εik
+)

ReG0(εF) ) ∑i,k{|fik〉〈fik|/(εF - εik
-) + |gik〉〈gik|/(εF - εik

+)}
(31)

δF(x,εF) ) 〈x|Im G0(εF)H′G0(εF)|x〉 ) -π∑q ∑i)1,2∑j*iδ

(εF - εiK i+q
+ ){〈x|giK i+q

〉〈giK i+q
|H′|fjK i+q

〉〈fjK i+q
|x〉/(εF -

ε jhK i+q
) + 〈x|giK i+q

〉〈giK i+q
|H′|gjK i+q

〉〈gjK i+q
|x〉/(εF -

εjK i+q

+ ) + 〈x|fjK i+q
〉〈fjK i+q

|H′|giK i+q
〉〈giK i+q

|x〉/(εF - ε jhK i+q
) +

〈x|gjK i+q
〉〈gjK i+q

|H′|giK i+q
〉〈giK i+q

〉〈giK i+q
|x〉/(εF - εjK

i+q

+ )}

(32)

εjK i

( ) R ( x∆2 + 4B2 (33)

(εF - εjK i

( ) ) ∆ - x∆2 + 4B2 (34)

δF(t, B, εF) )

-πLVδ/B2 ∑
i)1,2

∑
j*i

exp(i(K i
(i) - K i

(j))t)(-1)(δj,1+δj,2) (35)

δF(0, B, εF) ) δF(x, B, εF) ) δF(y, B, εF) )

-2πVδL/B2 ) -πV/W

δF(x + y, B, εF) ) 6πVδL/B2 ) 3πV/W (36)
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the purely theoretical point of view since the parameters of the
Hamiltonian are not known with sufficient precision. On the
other hand, according to ref 5, the STM image of KC8 does not
change up to the bias voltage of(750 mV, thus indicating the
lower limit for εF g 0.75 eV.
The CDW state of GIC manifests itself not only in the tunnel

experiments but also in some others. For example, the C 1s-
core excitation shows an additional absorption 0.7 eV above
the absorption edge.20 The ionization potential of a core electron
is apparently sensitive to the population of theπ-orbital on the
same site. In the CDW state two types of core states with the
energy shift of 2δΓ exist. (HereΓ is the Coulomb interaction
between the core electron and theπ-electron.) Our calculation
on KC8 reproduces the observed splitting withΓ ≈ 5 eV, which
seems to be a reasonable estimate.21 On the other hand, the
calculation with the same parameter set, but withn) 7/6, which
corresponds to the LiC6 GIC, does not give any CDW solution,
but only a uniform state withδ ) 0. Incidentally the C 1s-
core absorption spectrum of LiC6 has only one peak at the
ionization threshold.20

IV. Moiré Patterns and Fermi Surface Nesting

The formation of the low-symmetry states driven by intrinsic
interactions in an extended system is usually attributed to a
specific property of the related noninteracting model that is
called “Fermi surface nesting”. When the nesting takes place
for any wave vectork on the Fermi surface and for some wave
vectorQ called the “nesting vector”, the following holds:

It is widely believed (see, for example, ref 14 and references
therein) that the low-symmetry states with the superstructure
wave vectorQ appear only when the nesting occurs andVice
Versa. This is not, however, completely true. The nesting
criterion for the formation of the low-symmetry states is rather
a more useful hint than an exact theorem. Even for the systems
with nesting the low-symmetry states do not appear if the
interaction is weaker than the critical one, and this critical value
depends on dimensionality of the system and details of its
structure. On the other hand, the low-symmetry states may
occur without nesting, as we have seen in the present paper
(see also ref 10). In effect, there is no nesting that could lead
to the formation of the CDW state with the period 2.46 Å.
Nevertheless, as we show numerically in the present paper, for
the realistic set of parameters of the extended Hubbard Hamil-
tonian the CDW state appears as a solution of the self-
consistency equations eqs 5, 10, and 16 for the graphite
monolayer with electron countn ) 9/8 per carbon atom. This
CDW state exists despite the fact that the nesting criterion
apparently is not fulfilled for the graphite monolayer.
One can easily check, however, that in our problem there is

a nontrivial wave vector for which the nesting condition is
fulfilled. As we already mentioned, the Fermi surface of the
graphite monolayer withn g 1 in the CDW state consists of
two segments: two ellipses encircling respectively the points
k0 and-k0 in the BZ. The two segments of the Fermi surface
are connected by the nesting vectorQ ) 2k0. For any wave
vectorq in the vicinity of the pointk0 in the BZ we have

which is, by definition, the nesting condition for the two
segments of the Fermi surface. According to ref 22, the
interaction coupling the Bloch states in the vicinity of the two

segments of the Fermi surface may result in a low-symmetry
state with the periodicity corresponding to the same wave vector
Q. To estimate the possible effect of nesting on the observed
STM images of GIC surface we apply again the Green’s function
method. According to the general formula, the Green’s function
for the perturbed HamiltonianH ) H0 + H′, where the
perturbationH′ is an electron-electron interaction,

treated in a self-consistent manner is given in terms of the
Green’s functionG0 for the unperturbed problem and the so-
called self-energy part∑(z) by the following expression:

or

where the self-energy part

is itself a functional of the Green’s function to be found. The
only difference of eq 39 from eq 29 is that the one-particle
operatorΣ is itselfG dependent and eqs 39 or 40 and 41 form
a system of equations forG that have to be resolved self-
consistently. We, however, are not going to do it here, and we
shall only estimate the correctionδF to the LDOS using eq 29
with Σ(z) inserted instead ofH′ in the assumption that a
nontrivial solution of the above system exists.
For our purposes we can rewrite the unperturbed Green’s

function eq 30 as follows:

since only the Bloch g-states in the vicinity of the Fermi surface
are involved. The Green’s function eq 42 can be presented as
a sum of 2× 2 diagonal matricesG0(q,z) for each value ofq.
The interaction we are concerned with is the Coulomb interac-
tion between electrons in the vicinity of the two respective
segments of the Fermi surface in the reciprocal (k-) space. The
corresponding perturbation operator reads

and the corresponding self-energy acquires the form of a sum
overq of 2 × 2 matrices as well:

The off-diagonal matrix elements of the density matrixPpτ
+ -

are related to the off-diagonal elements of the 2× 2 matrices
of thep components of the exact Green’s function eq 40, which
are called “anomalous averages” in this context.22 Using the

εk+Q ) εk

εk0+q
+ ) εk0-Q+q

+ ) ε-k0+q
+ (37)

H′ ) ∑
µνλκ

(µν|λκ)ψµ
+ψνψλ

+ψκ (38)

G-1(z) ) G0
-1(z) - Σ(z) ) (zI- F0 - Σ(z)) (39)

G(z) ) (zI- F0 - Σ(z))-1 (40)

Σµν(z) ) ∑λ,κ[(µν|λκ) - (µκ|λν)]Pκλ

(41)
Pκλ ) 1/2πi∫-∞

∞
dEGκλ(E)

G0(z) ) ∑q{|gk0+q〉〈gk0+q|/(z- εk0+q
+ ) +

|g-k0+q
〉〈g-k0+q

|/(z- ε-k0+q
+ )} (42)

H′ ) ∑q,p,σ,τ(k0 + q, -k0 + q| - k0 + p, k0 +

p)gk0+qσ
+ g-k0+pτ

+ gk0+pτ (43)

Σ(z) ) ∑qΣ(q,z), Σ(q,z) ) ∑p,τ |gk0+q〉〈g-k0+q
|(k0 + q,

-k0 + q| - k0 + p, k0 + p)Ppτ
+ - (44)

Ppτ
+ - ) 〈g-k0+pτ

+ gk0+pτ〉
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approximate form for the Blochg-states in the vicinity of the
(k0 points and the symmetry-conditioned independence of the
anomalous averages onp and τ, we easily get for theq
components of the self-energy

The quantity¥ is an order parameter22 nonvanishing in the low-
symmetry state with the nesting vectorQ. Finally we get the
LDOS correction coming from the ordering with the vectorQ
using eqs 29-31:

Due to theδ-functions the sum overk in the formula for ImG0

is restricted to the values(k0 + q, whereq is confined to the
ellipse defined by eq 21. For the LDOS correction we have

We finally see that in the low-symmetry state with the order
parameter¥ the LDOS correction for the B-sites has the wave
vectorQ, and thus the STM image must have a superstructure
with the same wave vector. The nesting vectorQ ) 2k0 results
in the 3-fold lattice parameter of the observed STM image.
Combined with the cell doubling due to the interactions with
the metal cations in the stage-1 GIC this results in the lattice
constant 6 times as large as the original constant of 2.46 Å.
The corresponding characteristic length amounts to about 15
Å, which fairly corresponds to the lower limit (about 17 Å) of
the Moiré superstructures observed experimentally.23 We do
not mean to say that the Moire´ patterns appear exclusively due
to the ordered states with theQ ) 2k0 nesting, but we would
like to attract attention to such a possibility. Of course, the
tentativeQ ) 2k0 nesting (if any) must manifest itself in a
variety of ways. One of them must be a depletion of the DOS
at the Fermi level due to formation of the ordered state, which
is now tentatively detected by the tunnel experiments as the
Moiré pattern.

V. Discussion

In the present paper we substantiated numerically the pos-
sibility of formation of the electronically driven CDW state in
a graphite monolayer with an electron count corresponding to
the stage-1 GIC and considered theoretically the STM images
of the latter. The nonuniform distribution of the electron density
in the graphite monolayer also has its consequences for the
LDOS at the Fermi energy and thus for the observed STM
images of GICs. We derived explicitly the LDOS of the
monolayer in three cases. First, we considered the LDOS of
the monolayer withn ) 9/8 but without external field. This
LDOS manifests the most important feature characteristic for

the all STM images of graphite observed in various situations:
the 2.46 Å periodicity or the three-for-a-hexagon pattern. In
our approximation the LDOS is largely concentrated on the
B-sites, and thus they look to be more protruded on the STM
images. Moreover, the LDOS obtained in our paper has an
important property as a function of energy. The LDOS
difference between the B- and A-sites that corresponds to the
registry of the bright and dark spots on the STM image does
not change its sign when the energy at which the LDOS is
probed switches from a value slightly above the Fermi energy
to that slightly below it. According to ref 14, the switching of
the polarity of the bias voltage had to result in change of the
peak registry if the CDW state of the monolayer is intrinsically
driven. One can see from eq 25 that it is not true since the
sign of the LDOS difference does not depend on the probe
energy (at least in the vicinity of the Fermi energy), and thus
the peak registry need not change when the bias voltage changes
its polarity even in the case of the intrinsically driven CDW.
The effect of the external field induced by the metal cations

on the LDOS of the monolayer is in remarkable agreement with
the experiments.5,6 We note that under the influence of the
cations’ field the LDOS is asymmetrically redistributed from
three B-sites of the enlarged 2× 2 unit cell of the monolayer
to its fourth B-site, which becomes much more protruded than
the three. This corresponds to the brighter spots on the p-sites
which emerge with a period of 4.9 Å on the observed STM
image of the GIC surface.5,6 At the same time the other three
B-sites correspond to the p′- and p′′-spots of lower intensity
also observed in refs 5 and 6. The external field, however, does
not affect the LDOS on either A-site in the enlarged unit cell,
and they remain weakly protruded on the STM images, in fair
agreement with experiment. We see that in our approach we
reproduce satisfactorily the localizing effect of the external field
of the metal cations on the LDOS, which was recently
mentioned in ref 14. However, our approach allows the
reproduction in a consistent manner of also the inherent
periodicity of 2.46 Å related to the intrinsic features of the
electronic structure of the graphite monolayer not sensitive to
its environment. These features are ultimately controlled by
the Coulomb interactions between electrons occupying the
adjacent carbon sites, which were neglected in ref 14, as were
the terms describing the electron hopping between the site, the
crucial terms in any description of electronic structure of
extended systems.19

Finally we considered what effect the formation of a low-
symmetry (ordered) state could have on the observed STM
image of GIC provided the ordering is due to the interactions
between electrons located in the vicinity of the two segments
of the Fermi surface of the monolayer. It turned out that the
resulting pattern can have a modulation period remarkably close
to the lower bound of the observed Moire´ patterns.23 However,
the general situation with the latter is not clear, since some strong
indications supporting their artificial origin due to the STM
sampling procedure were given recently.23 If, however, any
evidence of the real existence of the Moire´ patterns and precise
measurements of their characteristics appear in the future, the
purely electronic driving force of their formation proposed in
the present paper can be reconsidered among others.
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Σ(q,z) ) |gk0+q〉〈g-k0+q
|¥ + h.c.

(45)
¥ ) 2γ0/N∑p,τPpτ

+ -

G(z) = G0(z) + G0(z)ΣG0(z)

Im G0(εF) ) -π∑k|gk〉〈gk|δ(εF - εk
+) (46)

ReG0(εF) ) ∑k|gk〉〈gk|/(εF - εk
+)

δF(x,εF) ) 〈x|Im{G0(εF)ΣG0(εF)}|x〉 )

-π∑qδ(εF - εk0+q
+ ){〈x|gk0+q〉〈gk0+q|∑|g-k0+q

〉〈g-k0+q
|x〉/

(εF - εk0+q
+ ) + 〈x|g-k0+q

〉〈g-k0+q
|Σ|gk0+q〉〈gk0+q|x〉/
(εF - εF - εk0+q

+ )} (47)

δρ(r , B, εF) ∝ Re¥ exp(iQr ) (48)
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