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The problem of developing an exact form of the junction between the quantum and classical parts in a hybrid
QC/MM approach is considered. We start from the full Hamiltonian for the whole system and assume a
speciÐc form of the electron wavefunction, which allows us to separate the electron variables relevant to the
reactive (quantum) part of the system from those related to the inert (classical) part. Applying the Lo� wdin
partition to the full Hamiltonian for the molecular system results in general formulae for the potential energy
surfaces of a molecular system composed of di†erent parts provided some of these parts are treated quantum
mechanically whereas others are treated with use of molecular mechanics. These principles of separating
electron variables have been applied to construct an efficient method for analysis of electronic structure and
d-electron excitation spectra of transition metal complexes. This method has been also combined with the MM
approximation in order to get a description for potential energy surfaces of the complexes and to develop a
consistent approach to the known problem of extending molecular mechanics to transition metals.

1 Introduction

The problem of quantum theoretical description of molecular
potential energy surfaces (PESs) is nowadays considered to be
resolved. Numerous ab initio packages available both com-
mercially or on a donation basis are able to simulate key ele-
ments of the PESs of relatively small molecules. However, the
demand of the ab initio methods for computing power is very
high for the systems which are of interest from the chemical
point of view. For this reason the attempts to bypass the Nn
scale problem in the quantum chemical studies are being
undertaken with use of the hybrid QC/MM (quantum
chemistry/molecular mechanics) approaches. These methods
are based upon a natural observation : even in the case when
reacting molecules contain hundreds of atoms the chemical
transformation itself a†ects only their small fragments. This
induced development of the methods where a part of the
molecular system where chemical transformations take place
is treated with the use of quantum chemical methods whereas
the rest which is chemically inert is treated with use of molec-
ular mechanics.1 This approach (see ref. 2È7) drastically
reduces the requirements for the computer power since only a
small fraction of the entire molecular system is treated at the
quantum level. The fundamental problem which arises in this
context is that of constructing a consistent form of junction
between the parts of the molecular system treated at di†erent
approximation levels.

This problem is closely related to the general problem of
separating electron variables in quantum chemistry. From a
fairly early time it was clear that the SCF approximation8,9 is
not the only possible way of doing that.10,11 An alternative to
the SCF approximation is that of the group functions (GF)
product presented in detail in ref. 12. According to this
approximation the whole set of N orthonormal one-electron
states is divided into M disjoint subsets (groups). The trial
wavefunction for an system in the GF approx-Ne-electron
imation is then represented as an antisymmetrized product of
M antisymmetrized functions (a \ 1, . . . , M).na-electron UaEach of these functions is a linear combination of the na-

Slater determinants constructed from the one-electron
electron states of the a-th group.

The approximation where the wavefunction is of the GF
form immediately solves the problems mentioned above. First,
when the electron variables are separated in a way that matrix
elements of the operators transferring electrons between di†er-
ent groups of electrons are vanishing one may treat the group
functions at di†erent levels of approximation. This is clearly a
prerequisite for any combined QC/MM treatment. In addi-
tion, if the size of each group is signiÐcantly smaller than that
of the whole system, the demand for the computational
resources for methods based on the GF approximation scales
as M(N/M)n i.e. it grows linearly with the growth of the
number of groups M. The GF approximation in the strict
sense applies only to the systems where the groups of elec-
trons are clearly distinguishable so that one-electron transfers
between the groups vanish. It rarely takes place exactly. In
order to reach the variable separation one has to eliminate the
matrix elements of electron transfer between the groups. Two
methods of doing that are reported in the literature. First, one
can follow the method13,14 and eliminate the intergroup one-
electron transfer matrix elements by corresponding adjust-
ment of the one-electron basis sets for each group. This can be
done either in a variational manner as in ref. 14 or per-
turbatively as it has been originally proposed in ref. 13.
Another possibility is to eliminate these matrix elements
directly from the Hamiltonian by the Lo� wdin partition.15 It
leads to the perturbative treatment as well, but in this case it
applies to many-electron wavefunctions rather than to the
one-electron states. In the present paper we employ the
Lo� wdin partition in order to reach approximate separation of
electronic variables. Then the electron wavefunction in the GF
form will be used to apply di†erent levels of approximation to
di†erent groups of electrons and to derive the form for the
PES of a molecular system composed of di†erent parts pro-
vided some of these parts are treated quantum mechanically
whereas others are treated with use of molecular mechanics.
As far as we know no derivation of that sort has been
published before. Next, several examples which use this way of
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separating electron variables will be reviewed.

2 Theory
2.1 Approximate separation of electron variables by Lo� wdin
partition

The ground state wavefunction of electrons in the GF approx-
imation has the form:12

W0\ ‰

a/1

M
Ua (1)

The sign denotes the antisymmetrized product of the‰,
multipliers. From the practical point of view it means that in
eqn. (1) all the operators creating electrons in the one-electron
states of the a-th group stand to the left from those of the b-th
group, provided b \ a. This form of the trial wavefunction is,
of course, an approximation, since, in general, the matrix ele-
ments of electron transfer between the groups are not van-
ishing. We use the Lo� wdin partition in order to derive this
approximate form for the wavefunction. To do so we start
from a general form16h18 of the wavefunction. It di†ers from
the GF approximation in the respect that the number of elec-
trons in each group is not Ðxed, and this generalized group
function (GGF) expansion is a linear combination of functions
which are antisymmetrized products of multipliers with a dif-
ferent number of electrons in the groups :16h18

W
k
\ ;

KnaL
;
KiaL

C
KiaL
k (MnaN) ‰

a
U

ia
a (na) (2)

In the expansion eqn. (2) each distribution of electronsMnaNamong the groups satisÐes the condition :

;
a

na \ Ne ; #a, na P 0

here is the i-th function where only the one-U
ia
a (na) na-electron

electron states of the a-th group may be occupied. Expansion
coefficients are thought to be determined on theC

KiaL
k (MnaN)basis of the variational principle.

The GGF representation is very general. Any many-
electron wavefunction can be rewritten in the GGF form. We
assume that we can make a justiÐed division of the one-
electron basis into the groups and that we have physical
grounds to assign speciÐc number of electrons to each group
as well. This is a usual formulation of the GF approach given
in the literature.11,12 Its exact meaning is that in the GGF
expansion eqn. (2) only the product functions with a certain
Ðxed distribution of electrons among the groups give theMn6 aNdominating contribution.

Now we consider the total electron Hamiltonian whichHŒ (q)
depends on the nuclear coordinates q parametrically. It can be
rewritten with the use of the second quantization formalism
according to the division of the one-electron basis set intro-
duced above :

HŒ (q)\ ;
a

HŒ a(q)] ;
a:b

VŒ ab(q) (3)

where contains only the products of fermion operatorsHŒ a(q)
creating/annihilating electrons in the one-electron states of the
group a. The interaction operators are those whichVŒ ab(q)
contain the mixed products of the creation/annihilation oper-
ators of the groups a and b. (There are, of course, the terms in
the Hamiltonian containing products of the operators belong-
ing to three and four di†erent groups. We, however, omit
them for the sake of simplicity. Apart from the latter
restriction the above form of the electronic Hamiltonian is
quite general.)

The separation of electronic variables is reached by project-
ing exact electronic wavefunctions eqn. (2) to the subspace
spanned by the functions with the Ðxed number of elec-(n6 a)trons in the a-th group. Let be the operator projectingPŒ Ne-

functions eqn. (2) to this subspace. The projectionelectron
operator when acting on the GGF type wavefunction cutsPŒ
o† all the states with the electron distribution di†erent from
that we have Ðxed above. The target states in the sub-ImPŒ
space here for the set of vectors of a(ImPŒ Èimage PŒ Èstands
linear space which are obtained by action of the linear oper-
ator upon all vectors of the linear vector space) have thePŒ
form:

W
k
\ ;

KiaL
C

KiaL
k (Mn6 aN) ‰

a/1

M
U

ia
a (n6 a) (4)

For the sake of simplicity we restrict ourselves with the inter-
action operator containing only one-electron transfer terms
(resonance interaction) and the two-electron interactions
which conserve number of electrons in the groups (Coulomb
interaction). Thus the interaction terms in eqn. (3) acquire the
form:

VŒ ab(q) \ VŒ abr (q) ] VŒ abc (q)

VŒ abr (q) \ ;
a | a, b | b

v
ab
r (q)(a`b ] b`a) (5)

VŒ abc (q) \ ;
aa{ | a, bb{ | b

(aa@ p bb@)a`b`b@a@

Here (aa@p bb@) is the symmetrized two-electron matrix element
of the electronÈelectron Coulomb repulsion.

The matrix elements of the operator are vanishing forVŒ abr (q)
the pair of the states when they both belong to the sub-ImPŒ
space spanned by the functions eqn. (4). The operators VŒ abr (q)
are responsible for electron transfers between the groups a
and b. When acting upon a state from the subspace theImPŒ

operator results in the states which all have distribu-VŒ abr (q)
tions of electrons among the groups di†erent from that char-
acteristic for the states from On the other hand theImPŒ .
states with di†erent distributions of electrons among the
groups are orthogonal. For that reason the matrix elements of

between two states from the subspace are van-VŒ abr (q) ImPŒ
ishing. This is obviously the defect of the GF approximation
since in fact the intergroup electron transfers do take place.
The contributions from the states with the electron transfers
between the groups are taken into account by the Lo� wdin
partition procedure :11,12,15

HŒ eff(q, E) \ PŒ HŒ 0(q)PŒ ] PŒ VŒ rr(q, E)PŒ

VŒ rr(q, E) \ VŒ r(q)QŒ RŒ (E)QŒ VŒ r(q) (6)

RŒ (E) \ (EQŒ [ QŒ HŒ 0QŒ )~1

where

HŒ 0(q) \ ;
a

HŒ a(q) ] ;
a:b

VŒ abc (q) (7)

and is the complementary projection operator. ByQŒ \ 1 [ PŒ
this the total Hamiltonian acting in the total functional space
is projected to the subspace and the intergroup one-ImPŒ
electron transfers are replaced by the virtual ones which are
included in the correction term E) containing the resolv-VŒ rr(q,
ent of the operator in the subspace. The eigen-HŒ 0(q) ImQŒ
values of the e†ective Hamiltonian by construction coincide
with those of the original Hamiltonian.

After projecting to the subspace with the Ðxed dis-ImPŒ
tribution of electrons among the groups we can seek the
ground state of electrons in the class of the wavefunctions of
the GF form eqn. (1). At this stage the GF form of the trial
wavefunction remains an approximation. The reason is that
the functions of the subspace are not the GF type func-ImPŒ
tions. They are the linear combinations of the GFs with the
Ðxed electron distribution Thus a single GF functionMn6 aN.must be selected on the basis of the variational principle. This
is completely analogous to the standard SCF approximation :
the exact wavefunction is a linear combination of the Slater
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determinants, but a single Slater determinant is used in order
to approximate the whole expansion.

Applying the variational principle to the GF trial wavefunc-
tion yields a system of interconnected eigenvalue problems
with the e†ective Hamiltonians for the functions Ua forHŒ effa
the corresponding groups. Each of the group e†ective Hamil-
tonians depends on the ground state wavefunctions of all
remaining groups :12

HŒ effa (q, E)U0a \ Ea(q, E)U0a
HŒ effa (q, E)\ PŒ HŒ a(q)PŒ ] &bEaSU0b oPŒ WŒ ba PŒ oU0bT (8)

PŒ WŒ baPŒ \ PŒ VŒ bac (q)PŒ ] PŒ VŒ barr (q, E)PŒ

Averaging the intergroup interaction terms over the ground
states of the groups leaves intact the fermion operatorsb D a
related to the a-th group itself. By virtue of this both two-
electron operators and result in renormalization ofVŒ c VŒ rr
one-electron terms in the Hamiltonians for each group a \ 1,
. . . , M. The averaging of the Coulomb interaction operator
can be easily performed following the recipe given in ref. 12 :

SU0b oPŒ VŒ bac PŒ oU0bT \ ;
aa{ | a

a`a@ ;
bb{ | b

(aa@pbb@)SSb`b@TTb (9)

where

SSb`b@TTb\ SU0b o b`b@ oU0bT (10)

The averages are the one-electron densities andSSb`b@TTbthus eqn. (9) has the standard SCF form.
The situation with the averages is moreSU0b oPŒ VŒ barr PŒ oU0bTcomplicated : the operator has the form:PŒ VŒ barr PŒ

PŒ VŒ barr PŒ \ ;
aa{ | a, bb{ | b

v
ab
r (q)v

a{b{r (q)(a`bRŒ (E)b@`a@

] b`aRŒ (E)a@`b@) (11)

Averaging the latter expansion over the ground state of the
b-th group yields the following one-electron operatorU0bacting on the electron quantum numbers of the a-th group :

SSPŒ VŒ barr PŒ TTb\ ;
aa{ | a

;
bb{ | b

(v
ab
r (q)v

a{b{r (q)a`

] SSbRŒ (E)b@`TTb a@
] v

ab
r (q)v

a{b{r (q)aSSb`RŒ (E)b@TTb a@`) (12)

One can check that despite their asymmetric appearance the
operators eqn. (12) are hermitian. The averagesSSPŒ VŒ barr PŒ TTband will be considered in moreSSbRŒ (E)b@`TTb SSb`RŒ (E)b@TTbdetail below.

2.2 Derivation of hybrid QC/MM methods
2.2.1 E†ective Hamiltonian for the combined molecular

system. As we already mentioned in the Introduction the idea
to treat the chemically transforming part at the quantum
mechanical level and to treat the rest with the use of molecu-
lar mechanics is very naturally based on the whole set of
experimental data of synthetic chemistry. More formally this
idea is expressed in an assumption that the PES of molecular
systems of interest (say, of chemically transforming large
molecules) can be presented as a sum of quantum chemical
and molecular mechanical contributions. (The origins of this
approach date back to the theory of conjugated hydrocarbons
presenting the energy as a sum of the p-electron energy and of
the r-frame energy respectively either calculated by the
quantum chemical (Hu� ckel) methods or taken in the harmonic
approximation.19 Obviously, this approach is prototypic for
the modern QC/MM techniques.) Though the above assump-
tion concerning the form of the PES function is verisimilar,
neither itself nor the form for the junction between the QC
and MM parts parametrized by di†erent authors have ever
been derived by a sequential analysis of the molecular Hamil-
tonian with explicitly formulated assumptions concerning the
form of the electronic wavefunction. In the current literature
only numerical recipes parametrizing one or another arbitrary

form of the junction have been proposed.2,4h6 The formulae
for the junction employed in these papers are introduced ad
hoc which in the Ðnal run may lead to various inconsistencies.
In this section we, using the general formalism of the previous
section, shall perform an approximate separation of electronic
variables in the molecular Hamiltonian and pass to the e†ec-
tive Hamiltonian. Next, averaging the e†ective Hamiltonian
over the ground state of the chemically inert part results in
formulae representing the PES of a molecular system, contain-
ing contributions from chemically active and inert parts in the
form allowing the standard QC/MM treatment. The junction
between the QC and MM parts of the system falls as we shall
see into parts. The Ðrst appears as contributions from the
chemically inert system which renormalize parameters of the
electronic Hamiltonian for the chemically active system. The
second renormalizes the parameters of the MM treated inert
part of the molecular system. We shall consider both contri-
butions.

Now we pass to the formal derivations. We assume that the
one-electron states forming the one-electron basis for the
entire molecular system may be ascribed either to the chemi-
cally inactive rest of the system (medium or M-states). The
numbers of electrons in the R-system (chemically active
subsystem) and in the M-system (chemically inactiveNRsubsystem) respectively, are good quantumNM \ Ne [ NR ,
numbers at least at low energies. We also assume that the
one-electron basis in both the systems is formed by strictly
localized orbitals proposed in ref. 20. The strictly localized
orbitals are orthonormalized linear combinations of the AOs
centered on a single atom. In that sense they are the classical
hybrid orbitals (HO) :

o t(A)T \ ;
q | A

hqt(A) o qT (13)

where the expansion coefficients are deÐned by somehqt(A)
procedure to be discussed elsewhere. In a degenerate case
when the expansion coefficients are equal to 0s and 1s the
HOs of eqn. (13) are the original AOs.

Applying the general technique described in the previous
section leads to the e†ective Hamiltonian with the interaction
containing two contributions : the Coulomb interaction
between the electrons of the R- and M-systems and the pro-
jected resonance interaction between the M- and R-systems.

HŒ eff(q, E) \ PŒ HŒ R(q)PŒ ] PŒ HŒ M(q)PŒ

] PŒ VŒ c(q)PŒ ] PŒ VŒ rr(q, E)PŒ

VŒ rr(q, E) \ VŒ r(q)QŒ (E[ QŒ HŒ 0QŒ )~1QŒ VŒ r(q) (14)

with

VŒ (q) \ VŒ r(q) ] VŒ c(q)

VŒ r(q) \ ;
r | R, m | M

v
rm

(q)(r`m] m`r) (15)

VŒ c(q) \ ;
rr{ | R, mm{ | M

(rr@ p mm@)r`m`m@r@

where

(rr@pmm@) \ (rr@ omm@) [ (rm@ omr@)

and

HŒ 0(q) \ HŒ R(q) ] HŒ M(q) ] VŒ c(q)

If the approximate ground state in the subspace is soughtImPŒ
in the form:

W0 \ U0R ‰ U0M (16)

the functions and satisfy the system of interconnectedU0R U0Meigenvalue problems with the e†ective Hamiltonians for the
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respective subsystems :

HŒ effR (q, E)U0R \ ER(q, E)U0R

HŒ effM (q, E)U0M \ EM(q, E)U0M

HŒ effR (q, E)\ PŒ HŒ R(q)PŒ ] SU0M oPŒ WŒ PŒ oU0MT (17)

HŒ effM (q, E)\ PŒ HŒ M(q)PŒ ] SU0R oPŒ WŒ PŒ oU0RT

PŒ WŒ PŒ \ PŒ VŒ c(q)PŒ ] PŒ VŒ rr(q, E)PŒ

At this point we must deviate from the route prescribed by
eqn. (8). The general scheme of the previous section has to be
modiÐed in order to conform the requirements imposed upon
the target QC/MM description. Indeed, our goal is to develop
a combined method in which the chemically inert part of the
system (M-system) is treated with use of the MM. The MM
approach presumes that the potential energy of the M-system
is evaluated (parametrized) without explicit calculation of the
electronic wavefunction of M-electrons. The quantities related
to the M-system itself must be independently parametrized in
a transferable fashion : the parameters describing the M-
system must be universally usable for any R-system and also
without any R-system at all as happens in the standard MM
techniques. This makes any theory which takes the wavefunc-
tion calculated in the presence of the R-system as a basicU0Mquantity inappropriate for our purposes. We notice that the
ground state of the e†ective Hamiltonian of the M-system U0Meqn. (17) is in a certain sense close to that of the free M-system
calculated without any R-system at all. Indeed, the electronic
Hamiltonian for the M-system contains the one-HŒ M(q)
electron terms describing attraction of electrons in the M-
system to the bare cores of the atoms of the R-system and
thus has the form:

HŒ M(q)\ HŒ 0M(q)]VŒ R(q) (18)

where

VŒ R(q)\ [e2 ;
A

ZAR
o r [ RA o

(The core charge of an atom A is distributed between the R-
and M-systems according to ref. 21) :

ZA \ ZAM ] ZAR (19)

The condition which speciÐes the distribution of the core
charge between the R- and M-systems is that the cores ofZAthe R-system must be as much as possible screened by the
electrons of the R-system i.e. the e†ective Hamiltonian HŒ effM
must be as much as possible close to the Hamiltonian of the
free M-system They, of course, can be reduced to theHŒ 0M(q).
electron counting rules ultimately based on the concept of the
formal oxidation state (see ref. 21 for details). The screening in
the Hamiltonian is due to the term, so weHŒ effM SSPŒ VŒ c(q)PŒ TTRcan write :

HŒ effM \HŒ 0M ] dVŒ R ] SSPŒ VŒ rrPŒ TTR
dVŒ R \VŒ R ] SSPŒ VŒ cPŒ TTR B 0

The integer positive values are to be chosen in order toZARmake the as small as possible.dVŒ R
In order to be in a position to justify the usage of an

MM-like scheme for the M-system we have to use the ground
state wavefunction for the free M-system as a multiplierU00Min eqn. (16) instead of Thus the ground state for the com-U0M .
bined system is to be sought in the form:

W0 \ U0R ‰ U00M (20)

In order to get a better description for the energy with this
trial wavefunction we have to replace the e†ective Hamilto-
nian eqn. (14) acting in the subspace eqn. (4) by anotherImPŒ

e†ective operator acting in the subspace of the functions of the
form eqn. (20). This will be done with use of the Lo� wdin
partition12,15 as well. Averaging the resulting e†ective Hamil-
tonian acting in the subspace eqn. (20) over the ground state
of the M-subsystem reduces the problem to Ðnding the eigen-
states of the e†ective Hamiltonian for R-electrons only.

To proceed further it is practical to rewrite the e†ective
Hamiltonian eqn. (14) in terms of the Hamiltonian for the free
M-system. It reads :

HŒ eff(q, E) \ PŒ HŒ R(q)PŒ ] PŒ HŒ 0M(q)PŒ ] PŒ WŒ PŒ (21)

where

PŒ Vr c(q)PŒ \ PŒ VŒ c(q)PŒ [ SSPŒ VŒ c(q)PŒ TTR
PŒ WŒ PŒ \ PŒ Vr cPŒ ] PŒ dVŒ RPŒ ] PŒ VŒ rrPŒ (22)

Now let be the operator projecting to the groundPŒ U00M Èto
state of the free M-system, and is the coprojector.QŒ \ 1 [PŒ
In the basis of the eigenstates of the bare M-Hamiltonian :

PŒ \ oU00M TSU00M o ; QŒ \ ;
pE0

oU0pM TSU0pM o (23)

The e†ective Hamiltonian acting in the subspace of the states
eqn. (20) and having the eigenvalues coinciding with those of
the Hamiltonian eqn. (14) and (21) has the form:12,15

HŒ eff(q, E, u) \PŒ HŒ eff(q, E)PŒ ]PŒ HŒ eff(q, E)

]QŒRŒ (u)QŒHŒ eff(q, E)PŒ (24)

RŒ (u) \ [uQŒ [QŒHŒ eff(q, E)QŒ ]~1 (25)

Projection operators and a†ect the quantum numbers ofPŒ QŒ
the M-electrons only and for that reason they do not change
(commute with) the Hamiltonian which depends onPŒ HŒ R(q)PŒ
the quantum numbers of R-electrons only. For that reason we
get :

HŒ eff(q, E, u) \ PŒ HŒ R(q)PŒ PŒ ]PŒ PŒ HŒ 0M(q)PŒ PŒ

]PŒ PŒ WŒ (q, E)PŒ PŒ ]PŒ PŒ WŒ (q, E)PŒ QŒRŒ (u)

]QŒ PŒ WŒ (q, E)PŒ PŒ (26)

where

PŒ HŒ effQŒ \PŒ PŒ HŒ 0M(q)PŒ QŒ ]PŒ PŒ dVŒ RPŒ QŒ ]PŒ PŒ WŒ PŒ QŒ

\PŒ PŒ WŒ PŒ QŒ (27)

(since projects to an eigenstate of the operator the cor-PŒ HŒ 0M ,
responding term in the formula just above vanishes).

In the operator eqn. (26) the description of the electronic
structure of the M-system is reduced as much as possibleÈits
exact wavefunction is replaced by the Ðxed wavefunction for
electrons for the free M-system.

2.2.2 E†ective Hamiltonian for the quantum system. In the
target QC/MM theory the wavefunction for electrons in the
quantum R-system must be found by a QC procedure.U0RAccording to the general theory this function satisÐes the
Schro� dinger equation with the e†ective Hamiltonian HŒ effR (q,
E, u) for the electrons in the R-system. This operator is
obtained by averaging the operator E, u) eqn. (26)HŒ eff(q,
over the ground state of the M-system (i.e. over the function

The latter e†ective Hamiltonian acts only on theU00M ).
quantum numbers of electrons in the R-system. With use of
the deÐnitions of the Hamiltonian E) eqn. (17) and ofHŒ effR (q,
the projecting operator eqn. (23) we get the e†ective Hamil-PŒ
tonian for R-electrons in the form:
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HŒ effR (q, E, u)\ HŒ effR (q, E)] SU00M oPŒ WŒ (q, E)

] PŒ QŒRŒ (u)QŒ PŒ WŒ (q, E)PŒ oU00M T

] SU00M oPŒ dVŒ RPŒ oU00M T

[ SU00M o SSPŒ VŒ cPŒ TTR oU00M T

] SU00M oPŒ HŒ 0M(q)PŒ oU00M T (28)

It is convenient to represent the e†ective Hamiltonian HŒ effR (q,
E) also in terms of the operator, which is the Hamilto-HŒ 0R(q)
nian for the free R-system:

HŒ effR (q, E)\ HŒ 0R(q)] dVŒ M ] SSPŒ VŒ rrPŒ TTM
dVŒ M\VŒ M ] SSPŒ VŒ cPŒ TTM B 0

Here stands for the operator of attraction of electrons inVŒ M
the R-system to the M-system cores. So that

HŒ effR (q, E, u)\ HŒ 0R(q)] dVŒ M] SSPŒ VŒ rrPŒ TTM
] SU00M oPŒ WŒ (q, E)PŒ QŒRŒ (u)

]QŒ PŒ WŒ (q, E)PŒ oU00M T

] SU00M oPŒ dVŒ RPŒ oU00M T [ SU00M o

] SSPŒ VŒ cPŒ TTR oU00M T

] SU00M oPŒ HŒ 0M(q)PŒ oU00M T (29)

The operator eqn. (28) and (29) contains renormalization
terms (1) originating from the Coulomb interaction with the
net charges in the M-system (2) originating from thedVŒ M,
resonance interaction with the M-system and (3)SSPŒ VŒ rrPŒ TTM ,
those containing the resolvent which is in fact a collec-RŒ (u),
tion of one- and two-electron operators (see below). It also
contains three c-number mean values of the operators for M-
electrons over the ground state of the M-system. They do not
a†ect the motion of R-electrons and can be omitted while the
electronic structure of the R-system is considered.

Let us consider the contributions renormalizing the Hamil-
tonian for the free R-system.

(1) This type of the renormalizing contribution to the e†ec-
tive Hamiltonian of the R-system contains the average of the
Coulomb intersystem interaction over the ground state of the
M-system:

SSPŒ VŒ cPŒ TTM \ SU00M oPŒ VŒ cPŒ oU00M T (30)

Inserting the explicit expression for the Coulomb operator we
get :

SSPŒ VŒ cPŒ TTM \ ;
rr{

r`r@
C

;
mm{

(rr@pmm@)SSm`m@TTM
D

(31)

The expression eqn. (31) is valid for arbitrary pairs of the
states in the respective systems. In the ZDO approximation
for the two-center two-electron integrals we have for arbitrary
AO pairs kl ½ A and ij ½ B:

(kl o ij)\ dkl dij(kk o jj)\ cAB (32)

For the HO pairs rr@ ½ A, mm@ ½ B we get :

(rr@pmm@)\ (rr@ omm@)\ cAB d
rr{ dmm{ (33)

due to the HOs orthonormality. Making summation over all
HOs m½M of the atom B we get the renormalization of the
one-electron parameters for the HO r ½ A in the R-system:

r`rcAB
C

;
m | B

SSm`mTTM
D

\ r`rcABPBM (34)

where is the electron density of the M-system residing onPBthe valence orbitals of the atom B. Following our general
semi-empirical approach we neglect the penetration e†ects22

and assume the matrix element of electron attraction at any
AO centered on the atom A to the core of the atom B to be
equal to Then the operator of electron attraction to thecAB .
M-system cores acquires the form:

VŒ M(q) \ [e2 ;
B

ZBM
o r [ RB o

B

[ ;
AEB

;
r | A

r`r ;
B

cABZBM

and the total contribution of the atom B to the one-electron
parameter of an HO centered on the atom equals to :ADB

cAB(PBM[ ZB) \ cAB(PBM [ ZBM[ ZBR)
\cAB(QBM [ ZBR)

where is the charge on the atom B of the M-system. OneQBMcan easily check, that the formula above is in agreement with
the intuitively transparent choice of the core charges in the
already classical example of e†ective electronic Hamiltonians
i.e. in the p-electron PPP Hamiltonian (see ref. 23).

(2) This type of the renormalizing contribution of the e†ec-
tive Hamiltonian for the R-system is due to the virtual one-
electron transfers between the systems. The term in the
e†ective Hamiltonian which takes into account these transfers
is :

PŒ VŒ rr(q, E)PŒ \ ;
rmr{m{

v
rm

(q)v
r{m{(q)

] [(r`mRŒ (E)m@`r@)
] (m`rRŒ (E)r@`m@)] (35)

The resolvent can be presented as :RŒ (E)

RŒ (E) \ ;
i | Im8

o iTSi o
E[ E

i

(36)

It has the poles at the energies of the states which di†er by
transfer of one-electron from (or to) the M-system to (or from)
the R-system. We denote the states as o k ] oT oro iT ½ ImQŒ
o o ] kT corresponding respectively to one-electron transfers
from the M-system to the R-system and vice versa. The esti-
mates for the energies of these states are andE

i
Ik [ Ao[ gkowhere Is and As are the ionization potentialsIo [ Ak [ gko ,

and electron affinities corresponding to the o and k eigen-
states of the respective systems. The renormalizing correction
is obtained by averaging eqn. (35) over the ground state of the
M-system:

SSPŒ VŒ rr(q, E)PŒ TTM\ ;
rr{

;
mm{

v
rm

(q)v
r{m{(q)

] Mr`SSmRŒ (E)m@`TTM r@

] rSSm@RŒ (E)m`TTM r@`N (37)

We notice that the resolvent operator acts in a subspaceRŒ (E)
spanned by two types of the product functions, namely by the

functions of the M-system multiplied by the(NM ] 1)-electron
functions of the R-system and by the(NR [ 1)-electron (NMfunctions of the M-system multiplied by the[ 1)-electron (NRfunctions of the R-system. It can be shown24] 1)-electron

that the above expression acquires the form:

SSPŒ VŒ rr(q, E)PŒ TTM\ ;
rr{

;
mm{

v
rm

(q)v
r{m{(q)

]
G

;
o | ImOR(NR`1)

r`o oT

] So o r@G
mm{(adv)(Ao [ E)

] ;
o | ImOR(NR~1)

r o oT

] So o r@`G
mm{(ret)(Io[ E)

H
(38)

where G(ret)(v) and G(adv)(v) are the one-electron GreenÏs func-
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tions of the M-system. (For the reference concerning the
GreenÏs function technique in the Ðnite fermion systems see
ref. 23, 25 and 26). It can be easily checked, that the renorma-
lizing contributions of the type discussed in this paragraph do
not appear in the p-electron Hamiltonians : due to the planar
symmetry the resonance matrix elements vanish. The situ-vpnation when they are crucially important will be discussed
below.

(3) The last term renormalizing the Hamiltonian for the R-
system appears due to a collection of terms eqn. (22). It con-
tains both one- and two-electron terms. In general the theory
of the polarization conditioned modiÐcation of the e†ective
Hamiltonian for the R-system parallels the theory of weak
interactions between molecules as it is given in ref. 27. The
important di†erence is that the two systems considered in the
present paper are not equivalent, whereas in the theory of
molecular interactions the interacting molecules are con-
sidered on equal footing. Nevertheless all the terms present in
the theory of weak interactions have their analogs in the
present theory with an important addition of the terms
derived from the projected resonance interaction. They are
somewhat cumbersome and thus they will be described in
detail elsewhere. The preliminary results can be found in ref.
28.

2.2.3 Potential energy surface for the combined systems.
Now we derive the combined QC/MM description for the
PES. The total PES of a molecular system U(q) is a sum of its
electronic energy and of the internuclear CoulombE0(q)
repulsion U(q) :

U(q)\E0(q)] U(q)

U(q)\ e2/2 ;
AEB

ZA ZB/RAB(q)

B 1/2 ;
AEB

ZA ZB cAB(q) (39)

where and are the nuclear (core) charges of the atoms AZA ZBand B, are the internuclear separations which dependRAB(q)
on the independent nuclear coordinates q, and are thecAB(q)
two-center electron Coulomb repulsion integrals used in the
ZDO approximation to parametrize the internuclear repulsion
as well. The electronic energy is the average of the e†ective
electronic Hamiltonian E, u) eqn. (24) which is actingHŒ eff(q,
in the subspace over the wavefunction eqn. (20) ofIm(PŒ PŒ ) W0the combined R= M-system. Taking this all into account one
obtains :12

E0(q)\ SW0oHŒ eff(q, E, u) oW0T \E0R(q)] E00M (q)

E00M (q)\ SU00M (q)oHŒ 0M(q) oU00M (q)T

E0R(q)\ SU0R(q)oHŒ effR oU0R(q)T (40)

The electronic energy of the R-system is the minimalE0R(q)
eigenvalue of the e†ective electron Hamiltonian for the R-
system eqn. (28) which has to be found with use of a QC pro-
cedure with involves an explicit construction of the
many-electron wavefunction in each point q of the nuclearU0RconÐguration space. The e†ective Hamiltonian to be used for
this end is outlined in the previous section.

The electronic energy of the M-system has to beE00M (q)
evaluated without explicit construction of the wavefunction

of its electrons by an MM-like procedure. However, weU00M (q)
notice that the MM-like approaches parametrize not the elec-
tronic energy, but the total energy i.e. the sum of the elec-
tronic energy and that of the nuclear repulsion. When E00M (q)
is supplied with the corresponding sum of the coreÈcore
Coulomb repulsion terms it becomes the PES of the M-
system. One can hope that this can be already parametrized in
an MM-like fashion (see below).

We notice also that the MM-like parametrization for the
M-system cannot coincide with any standard MM parametri-

zation since for some atoms in the combined system their AOs
are distributed between the R- and M-systems and, thus, some
part of the potential energy related to these atoms must be
treated on the basis of a QC calculation and only some other
part with use of an MM approach. Clearly, the parameters of
any MM-like scheme related to these atoms must be renorma-
lized. Let us consider the renormalization of the electrostatic
contribution to the PES Ðrst. We restrict ourselves with the
MM parametrization schemes which explicitly include the
Coulomb interaction of the e†ective atomic charges in
the expression for the potential energy and presume that the
charges are extracted from some QC calculation. The corre-
sponding (electrostatic) term in the MM type PES is :

Eelhst(q) \ e2 ;
A:B

RAB~1 QA QBB 12 ;
AEB

QA QB cAB(q)

QA \ (PA [ ZA) (41)

where is the total e†ective charge of the atom A, is theQA PAelectron density on the atom A which corresponds to the
wavefunction In the MM schemes the quantities areU00M . QAconsidered as parameters of the method.

Previously [eqn. (19)] we evoked a possibility of distribut-
ing the total e†ective charges between the R- and M-systems :

QA \ QAR ]QAM

QAR \PAR [ZAR

QAM \ PAM[ ZAM (42)

The general conditions allowing us to determine andZAR ZAMare mentioned above. It can be checked that the o†-diagonal
matrix elements of the one-electron density matrix between
the HOs of the di†erent systems are vanishing due to the
structure of the wavefunction W0 :

SW0o r`m oW0T \ SW0om`r oW0T \ 0

Then for any atom A we can write :

PA \ PAM] PAR

PAR \ ;
r | A

SSr`rTTR

PAM \ ;
m | A

SSm`mTTM

The electron density is found by a QC calculation on thePARR-system, whereas is parametrized as a sum of the aver-PAMages over all HOs m of the M-system centered onSSm`mTTMthe atom A. This scheme is nontrivial only for those atoms in
the molecular system which bear the HOs which belong to the
di†erent systems (frontier atoms or FA). However, formally it
can be extended to those atoms where all HOs belong to the
same system (non-frontier atoms or non-FA). Inserting the
expansion eqn. (42) in the above formula for the electrostatic
part of the MM-type PES eqn. (41) we get :

Eelhst(q) \ 12 ;
AEB

(QAR ]QAM)(QBR] QBM)cAB(q)

\ 12 ;
AEB

(QAR QBR] QAMQBR] QAR QBM

] QAM QBM)cAB(q) (43)

Clearly, the electrostatic contribution to the MM PES for two
non-FA atoms from the M-system is not renormalized due to
separation of the R-system. The same applies to a pair of two
non-FA atoms from the R-system. For them the electrostatic
contribution is estimated with use of the charges calculated by
the adopted QC procedure and thus must be excluded from
the MM contribution to the PES. The nontrivial renormaliza-
tion of the MM-part of the PES happens to the FA only.
Only the parts of the total e†ective charge residing on anQAMFA A must be used in the electrostatic part of the PES of the
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M-system instead of the total e†ective charges. This is how the
renormalization of the electrostatic term of the MM part of
the PES takes place.

The standard MM schemes usually involve van der Waals
(dispersion) interactions between nonbonded atoms. As it was
in the case of the electrostatic contribution the van der Waals
terms must be renormalized. It can be shown that the disper-
sion interactions between the R- and M-systems arise from the

SU00M oPŒ Vr cPŒ RŒ (u)PŒ Vr cPŒ oU00M T (44)

term in the e†ective Hamiltonian for the R-system eqn. (29).
The average of this term over the ground state of the R-system

appears in the PES of the combined system. Following theU0Rgeneral scheme formulated in ref. 12 and 27 one can reduce
the mentioned average of eqn. (44) to the sum of integrals
having the form:

EdispRM \ [ ;
pr | R, tv | M

(pp o tt)(rr o vv)

]
P
0

=
dun

rp
R (iu)n

vt
M(iu) (45)

where and are the reduced polarization propa-n
rp
R (iu) n

vt
M(iu)

gators for the R- and M-systems. In the MM context the dis-
persion interaction is normally represented by a sum of the
pair atomÈatom contributions. The simplest method to
include intersystem dispersion interactions is to add the corre-
sponding diatomic terms to the PES.4 However, in the case of
the chemically transforming R-system the di†erent electronic
terms change their relative energies and thus the positions of
the poles of the function change along the reactionn

rp
R (iu)

path. This a†ects the value of the above integral but is not
reÑected by the atomÈatomic scheme. Thus the explicit con-
sideration of the intersystem dispersion interaction may result
in noticeable renormalization of the latter. It will be con-
sidered in detail elsewhere.

In the present section we derived general formulae for the
PES of a combined molecular system comprising a chemically
transforming part of a system to be treated with the use of
quantum chemistry and a chemically inert system to be
treated with use of molecular mechanics. Applying the general
formalism of separating electron variables related to the two
systems resulted in a consistent description of the PES of the
combined system in a desired form of the sum of the QC and
MM contributions. Also the quantities usually referred to as
““ junctions ÏÏ between the QC and MM parts of the combined
system have been consistently derived. It turned out that the
junctions manifest themselves in renormalizations of the elec-
tronic Hamiltonian for the QC system and in respective modi-
Ðcations of the MM potential.

3 Implementations of electron variables separation
The previous section presents a survey of a general direction
where in our opinion the theory should evolve in order to
reach a reliable and cheap methods making electronic struc-
ture and chemical transformation of large molecular systems
available to quantum chemical treatment. In what follows we
present some examples where the aforementioned method-
ology has been applied in various situations which are difficult
for the standard quantum chemistry and where the electronic
variable separation performed in the above manner turned
out to be e†ective.

3.1 E†ective crystal Ðeld method

The main idea of the fundamental paper on the crystal Ðeld
theory (CFT)29 was to restrict the explicit consideration by
the states of the d-shell of the transition metal ion. The reason

for success of such an economical approach is that the low-
energy excitations of transition metal complexes (TMC) or
those of transition metal impurity ions in solids are the dÈd
excitations (excitations of the d-shell) and for that reason the
experimental data can be interpreted with use of the theories
operating within this restricted subspace of the electronic
states. The rest of the electrons and nuclei do not appear in
the CFT. The qualitative physical picture provided by the
CFT is correct due to the correct form of the electronic wave-
function which it tacitly uses. The implicit wavefunction of a
complex in the CFT is a GF function : it is a product of the
multiplet (full CI) state for a Ðxed number of d-electrons
(considered explicitly) and of an unspeciÐed closed shell state
for the remaining electrons in the ligands. The ligand electrons
are not considered explicitly, and that is why the crystal Ðelds
cannot be satisfactorily calculated within the CFTÏs own
framework. In order to achieve this the ECF method,30 which
brings the ligandÏs electron wavefunction into consideration
has been proposed. It gives an example of the variable separa-
tion performed with use of the Lo� wdin partition.

The formal derivation of the ECF method is described in
ref. 30. The whole set of the valence AOs of a TMC (including
the 4s-, 4p-, and 3d-AOs of the metal center and the valence
AOs of all ligand atoms) is divided into two parts. The Ðrst
contains only 3d-orbitals of the transition metal atom or
TMA (d-system). The second part contains 4s- and 4p-AOs of
the TMA and the valence orbitals of the ligand atoms (ligand
system or l-system). The d-shell takes part of the R-system of
the previous section and the rest takes part of the M-system.
Notice that the present example of the variable separation
using the technique described above illustrates the nontrivial
distribution of the core charges between the systems. In the
TMCs the border between the R- and M-systems crosses the
transition metal atom itself. The requirement of the mini-
mality of immediately leads to which means thatdVŒ d Zd\ ndthe total charge of the d-shell equals zero and thus dVŒ d \ 0.

The wavefunction for the n-th electronic state of a TMCU
nis then taken in the form:

U
n
\ Udn(nd) ‰ U

l
(N [ nd) (46)

where is the spin and symmetry adaptedUdn(nd) nd-electron
wavefunction of the metal d-orbitals, and is theU

l
(\U00M )

single determinant wavefunction for the l-(N [ nd)-electron
orbitals. Within the ECF theory30 the l-system is described by
a single Slater determinant The function is calculatedU

l
. U

lfor a charge of the central ion which corre-ZTMI] ZTMI[ Zdsponds to the complete screening of the part of the total core
charge of the transition metal ion by the d-shell. The solution
of the SCF problem for the l-system yields the one electron
density matrix the energies of the molecular orbitals (MO)P

kl
,

and MO-LCAO coefficients These quantities com-v
i
, c

ik
.

pletely describe the electronic structure of the l-system and
may be concentrated in the GreenÏs functions for the l-system.
They are used to construct the e†ective Hamiltonian HŒ deff :

HŒ deff \ ;
klp

Ukleff dkp` dlp

] 12 ;
klog

;
pq

(kl o og)dkp` dlp doq` dgq (47)

where the d-electron Coulomb interaction term is inherited
from the free ion and the e†ective one-electron parameters

contain contributions from the Coulomb and the reso-Ukleffnance interaction of the d- and l-systems :

Ukleff\ dkl UŒ dd] W klatom] W klfield ]W klcov (48)

where

W klatom\ dkl
A

;
i|s, p

gki Pii

B
(49)
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is the repulsion of electrons in the d-shell from those in the 4s-
and 4p-AOs of the metal :

W klfield\;
L

Q
L
VŒ klL

Q
L
\ P

L
[ Z

L
(50)

P
LL

\ ;
l | L

P
ll

is the Coulomb interaction of d-electrons with the net charges
on the ligand atoms, in the standard CFT form. These two
contributions appear from averaging the intersystem
Coulomb interaction over the ground state of the free l-
system. The contribution is a result of averaging theW klatomCoulomb interaction between electrons occupying the states
on the FA. The term

W klcov \ [;
ll{

bklbll{[Gll{(adv)(Id)] G
ll{(ret)(Ad)] (51)

takes into account the intersystem resonance interaction.31
Here are the resonance integrals between the k-th d-orbitalbkland the l-th orbital in the ligands. The simpliÐcation of eqn.
(38) is reached here by noticing that the ionization potential Idand electron affinity of the d-shell do not depend on theAdone-electron state from (or to) which an electron is extracted
(or added). This allows us to factorize the sum over o in eqn.
(38). Also E is set equal to zero (for details see ref. 30).

It is well known32 that correct description of the ground
state spin and symmetry of TMCs and of their d-d excitation
spectra presents a problem for semi-empirical quantum chem-
istry based on the SCF approximation. The problems are both
the poor convergency and incorrect answers. The reason is the
strongly correlated behavior of d-electrons (see below) which
precludes applying the SCF approximation to them. On the
other hand the ligands can be satisfactorily described by a
SCF based semi-empirical method. At this point the electron
variable separation becomes crucial since the di†erent levels of
description are necessary for di†erent parts of a TMC. The
d-shell must be described with correlations whereas the
ligands may be treated without it. In a series of papers33
the ECF method has been tested for a variety of TMCs. In
the ECF approach the desired variable separation is per-
formed. After that it turns out that for a series of complexes
ranging from metal hexahydrate ions to metal porphyrins the
ground state spin and symmetry are reproduced in full agree-
ment with experimental data whereas the dÈd excitation ener-
gies are reproduced with an accuracy of 1000È2000 cm~1.33
This accuracy is comparable to that of ab initio approaches
when applied to TMCs. At the same time the ECF method
currently can be applied to a TMC containing up to 250
ligand atoms34 which is clearly beyond the scope of available
ab initio packages.

3.2 Extending MM to transition metals

In the previous section we presented an account of the ECF
theory in the general context of the electron variables separa-
tion performed with the use of the Lo� wdin partition tech-
nique. It leads to a family of the methods which use a variety
of semi-empirical techniques to calculate the electronic struc-
ture of the l-system. If the method employed for calculating
the ligandsÏ electronic structure is also parametrized to repro-
duce the heats of formation and geometries of organic mol-
ecules, one may hope that a combination of such a method for
the ligands with the ECF approach for the d-shell will lead
after proper parametrization to an accurate description of the
dÈd spectra, geometries and heats of formation of TMCs.
Some work is done along this direction,35,36 however, there is
not enough experience yet on applying these methods in struc-
tural studies on TMCs. An alternative to the step by step

improvement of semi-empirical descriptions of the ligands for
the computation of the PES of TMCs is to use the MM
approximation to calculate the ligandÏs energy In thisE

l
.

approach the ECF/CNDO or ECF/INDO method are only
retained for calculating the crystal Ðeld felt by the d-shell.37,38
The ligandÏs potential energy is simply replaced byE

l
E

mm
,

estimated with use of the MM2 procedure.39 The total energy
of the n-th electronic state of a complex then has the form:

E
n
\ Edeff(n) ] E

mm
(52)

The energies of the d-shells are calculated with theEdeff(n)
ECF/CNDO method. This brings us into the area of extend-
ing the MM technique to transition metals. This is a rapidly
growing area (see ref. 40È45) of research. Two aspects are
important here : First, the sufficiently quantum character of
behavior manifested by the d-shell when many (or at least
several) electronic states of di†erent spin and/or symmetry are
accessible in a narrow energy range near its ground state.
Such a behavior must be attributed to the d-shell since for the
ligands the excited states are well separated from the ground
state on the energy scale and thus the standard MM descrip-
tion is possible. This puts the very problem of extending MM
to transition metals in the general context of the developing
QC/MM methods though it is rarely recognized by the
workers in the Ðeld. The second aspect is not only the
quantum but also sufficiently many-particle (correlated)
behavior of electrons in the d-shell. Both aspects are ade-
quately covered by the ECF/MM approach based on eqn.
(52). This distinguishes the ECF/MM approach from many
others in this area.

The ECF/MM approach has been used to study energy
proÐles of the cis-[Fe(bipy) molecule which is known2(NCS)2]to exist in two di†erent spin states.46,47 This is an important
example which demonstrates both the quantum and corre-
lated behavior of the d-shell simultaneously. The ECF/CNDO
method30 has been used for analysis of the spin states and dÈd
excitations in this molecule48 and has demonstrated the
general validity of the ECF method. It has been completed by
the MM potential representing the ligandÏs energy. The stan-
dard MM2 parametrization39 has been used for all atoms
except iron, for which no bending or torsional terms have
been used and the bond stretching potential has been modeled
by a Morse function :

EbFehN \DFehN(1 [ e~aFehN(r~r0FehN))2 (53)

The parameter values were Ðtted37 to reproduce the experi-
mentally determined positions of the PESs minima along the
FewN bond-length coordinates for the low-spin and high-
spin states. It is possible to reproduce the whole qualitative
picture of the lowest electronic terms derived from
experiment46,47 with a single MM potential for the ligands
and with the ECF/CNDO method applied to estimate the
d-shell energy. Di†erent FewN distances for the high-spin
and low-spin forms of the complex appear as a result of a
compromise between the single ligand MM-potential and the
geometry sensitive d-shell energy obtained by the ECF/
CNDO procedure for di†erent values of the total spin of the
d-shell. The d-electron energy is speciÐc for each spin state
since it is obtained by diagonalization of the e†ec-nd-electron
tive Hamiltonian of eqn. (48) in each point of the nuclear
coordinate space.

In this section we describe a simplest approach for con-
structing a hybrid QC/MM method for a speciÐc class of
molecular systems i.e. for TMCs. In a line with the general
recipe eqn. (40) the energy of a molecular system is presented
as a sum of an average of the e†ective Hamiltonian for the
quantum system (the d-shell) over its ground state (with spe-
ciÐc value of the total spin) and of the energy of the classical
system. Despite the fact that the quantum system in this
example is somewhat degenerate (no geometry of its own) as
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compared to the thinkable quantum systems displaying more
pronounced ““chemical ÏÏ behavior, all the components of the
hybrid QC/MM approach are present here. The geometry
dependence of the energy of the quantum system appears via
the geometry dependence of the contributions eqn. (48)È(51)
renormalizing the Hamiltonian for the quantum d-shell.

4 Discussion
In the present paper we described an approach to a noncon-
tradictive derivation of the hybrid quantum chemistry/
molecular mechanics (QC/MM) methods, which is based on
combining the group function formalism and the Lo� wdin par-
tition. The area of the hybrid QC/MM methods is rapidly
growing now. However, the QC/MM procedures presented in
the literature including those implemented in existing
quantum chemistry packages do not stem from any sequential
derivation.3,4 This clearly reduces the strength of this poten-
tially powerful approach. This situation must be corrected by
constructing a logical derivation based on an adequate form
of the trial electron wavefunction of a molecular system. The
choice of this form is not simple, particularly in the case when
the chemically transforming system (or more precisely, the
quantum system with a dense spectrum of electronic states) is
a part of a larger molecule, i.e. when the R-system to be
treated at a QC level is connected to the M-system treated at
the MM level by chemical bonds. At this point an alternative
appears : to set a borderline between the systems across some
bonds or to set it at some atoms. Both methods are present in
the literature. In the works which use the SCF based semi-
empirical methods5,49 the Ðrst method is adopted. This choice
predetermines further problems to be solved within the
approaches of this kind. It is necessary to decide how to share
one-electron density between two systems. Unfortunately,
there is no sequential procedure to perform such a density
sharing if the bonds are cut in half. Indeed, if a bond to be cut
is even slightly polar then the average numbers of electrons in
the R- and M-systems are not integer, which makes applying
any standard semi-empirical QC procedure to the R-system
questionable, since the existing QC methods are designed on
the basis of the SCF approximation operating with the many-
electron states which are eigenstates of the number of particles
(electrons) operator. Even if the bond to be cut is not polar
and the diagonal one-electron densities (the averages of the
number of electrons operator) can be set equal to integers and
thus the average numbers of electrons in the R- and M-
systems are integer as well, it does not change the general situ-
ation. The problem is quite general, since according to ref. 17
the one-electron density is separable only for the wavefunc-
tions of the type eqn. (4) i.e. for those where the intergroup
electron transfers are projected out. It is deÐnitely not a good
approximation for two ends of a chemical bond which by deÐ-
nition can exist only in the case of a nontrivial quantum
mechanical superposition of the states with di†erent number
of electrons on its ends. This is also known as Ñuctuation of
number of electrons50 which means that even if the average
numbers of electrons in the R- and M-systems are integer
which may serve as an ad hoc solution when a numeric pro-
cedure is developed, the numbers of particles in the R- and
M-systems are not good quantum numbers. These notions
stipulated our choice of the second method of setting the
border between the R- and M-systems. If this method is
adopted, then the derivations given in the present paper which
generalize and reÐne approaches of ref. 16, 28 and 30 propose
a noncontradictive way to approximate the electronic struc-
ture of the R- and M-systems by the eigenfunctions of the
number of electrons operators and to handle the remaining
Ñuctuations of the corresponding averages arose due to inter-
system electron transfer terms in the exact Hamiltonian with
use of the perturbative (Lo� wdin partition) approach.

Following this general direction already allowed us to
develop an e†ective approach to the problems which are tra-
ditionally difficult for standard semi-empirical quantum chem-
istry and for the computational chemistry in general. These
are Ðrst of all the quantum chemical approach to TMCs and
to extending the MM approach to transition metals. The
methods of evaluating the PESs of TMCs in the framework of
MM-like approaches which exist in the literature either do
not presume the possibility of the existence of di†erent spin
states of the complexes with open shell, or prescribe usage of
di†erent parameter sets for di†erent spin states of the same
ion. Our approach, by contrast, allows us to take into account
di†erent states of the d-shell and by this allows a single
parameter set for the MM part of the system. This is certainly
a step forward which became possible only on the basis of
electron variables separation.

In the future we are going to extend the area for the present
technique. Two directions are particularly important. First is
the systematic study of the role played by the projected reso-
nance term eqn. (35). Ironically, it does not appear in the most
known theory23,51 using the GF formalism in order to reach
the electron variable separation for p- and r-systems. Due to
the obvious symmetry reasons the intersystem resonance term
vanishes and the second component of the proposed approach
i.e. the Lo� wdin partitioning is not needed. The resonance term
is proven to be crucially important for the ECF theory30 of
TMCs. In the general low symmetry case of a hybrid QC/MM
method the resonance contribution must be important. The
second point is the renormalization of the electronÈelectron
interaction in the R-system or equivalently the MÈR disper-
sion interaction. Again in the framework of the rÈp electron
variable separation it has been shown (see ref. 23 and refer-
ences therein) that the modiÐcations of the bare Coulomb
interaction in the p-system due to polarization of the r-system
are signiÐcant. Experimentally the modiÐcation of the
Coulomb interaction in the d-shell of TMC is well known
under the name of nepheloxetic e†ect.52 However, our attempt
to ascribe this e†ect to the interaction with the ligand elec-
tronic polarization has not been successful so far.53 Neverthe-
less it seems rather verisimilar that such an e†ect must take
place in the QC/MM context.
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