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ABSTRACT: Approximate electronic trial wave function taken as the
antisymmetrized product of strictly localized geminals (APSLG) is implemented
for semiempirical analysis of molecular electronic structure of “organic”
compounds and for calculations of their heats of formation. This resulted in an
O(N)-scaling method. Using the MINDO/3 form of the semiempirical
Hamiltonian with reparameterized βAB values in combination with the APSLG
form of the wave function yields the computational procedure BF’98.
Calculations on the heats formation and the equilibrium geometries for a wide
range of molecules show that the APSLG-MINDO/3 approach is more favorable
than its self-consistent field-based counterpart. Also, the APSLG formalism
allows to interpret molecular electronic wave function in chemically sensible
terms. c© 2001 John Wiley & Sons, Inc. J Comput Chem 22: 752–764, 2001
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bond properties

Introduction

M odern ab initio methods of quantum chem-
istry when applied to molecular objects of

practical interest achieve acceptable results by ex-
tending the basis set of one-electron states, and by
taking into account a great deal of electron correla-
tion corrections of higher orders. These approaches
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require considerable computational resources that
increase like N5 ÷ N7 (where N is the dimension of
the basis of one-electron states involved) when the
system size grows. This reduces the applicability of
ab initio methods to the systems of real interest (es-
pecially to their chemical transformations).1 Semi-
empirical methods employing the self-consistent
field (SCF or Hartree–Fock) approximation for the
trial electronic wave function attain chemically rea-
sonable results by using sophisticated parameter-
ization schemes. Nevertheless, the required com-
putational resources in this case also grow as N3.
Therefore, even the application of semiempirical
methods to large systems may as well become prob-
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lematic. That high requirements to the computa-
tional resources do not allow applying the quantum
chemical methods to the massive calculations of po-
tential energy surfaces (PES) of molecular systems
of practical interest. These calculations may become
necessary, for example, in the context of molecular
dynamics studies on reactivity of large molecules.
Thus, it is important to develop quantum chemical
methods with a weaker dependence on the size of
the system than the cubic one. Preferably it should
be O(N)-scaling methods, i.e., those with a linear de-
pendence of the required computation resources on
the system (basis) size. Several attempts to construct
such methods are reported in the literature. In refs. 2
and 3 it was proposed to eliminate the diagonaliza-
tion of the matrices of the size N × N by ignoring
matrix elements of the Fock matrix between the ba-
sis functions centered on distant atoms. This leads
to the O(N)-scalability of the resulting procedure,
but the elimination of the matrix elements of the
Fockian was not counterbalanced. Another way to
the methods with smaller computational costs has
been proposed in ref. 4. It is constructed to get the
local one-electron states directly from the SCF equa-
tions. The electron correlations can then be more
effectively taken into account in the basis of the lo-
cal one-electron states than it can in the basis of the
delocalized canonical MO LCAOs. There are also
other approaches aimed to accelerate the calcula-
tions based either on the pseudodiagonalization5, 6

or on other assumptions.7, 8

The O(N)-scalability can be also achieved by em-
ploying the basis of one-electron states that are
obtained without performing the Hartree–Fock step
at all. The latter can be avoided by making use
of some different form of the trial electronic wave
function. Semiempirical quantum chemical meth-
ods can be constructed for arbitrary form of the
electronic trial wave function; the specific choice
of its form is stipulated by the class of molecules
the method is designed for, and by the class of
physical properties or phenomena it has to de-
scribe. Thus, for description of chemical transfor-
mations the trial wave function has to assure a
correct asympthotic behavior when chemical bonds
are cleaved or formed. Meanwhile, the trial wave
function of the SCF MO LCAO approximation is
generally known to have a wrong asympthotic be-
havior at large interatomic separations, which is
evident from the example of the hydrogen molecule:
the electronic wave function in the SCF approxima-
tion (in the valence basis, of course) does not de-
pend on the distance between the hydrogen atoms,
and thus, the weights of ionic and covalent con-

figurations in the ground state remain equal (and
constant) for all internuclear separations. It leads to
the physically absurd description of the system at
large interatomic distances. This problem obviously
persists for all homolytic cleavages of σ -bonds.

With the above example in mind, we consider
a theory of separate electron pairs with the trial
wave function of the ground state of 2n-electron sys-
tem taken as the antisymmetrized product of spin
geminals9 as a starting point for constructing a semi-
empirical theory alternative to the SCF. The concept
of two-electron bond wave functions (geminals) is
due to Fock10 as the concept of single determi-
nant wave function is. That construction takes into
account different contributions to the bond wave
functions—the covalent and ionic ones—with the
amplitudes of these contributions determined by
variation of the total energy. Such a wave function
includes the intrabond correlations, and has correct
asympthotic behavior for the homolytic cleavage of
σ -bonds.

In the well-known PCILO approach11 the strong
intrabond electron correlations are taken into ac-
count with use of the perturbation theory. There
is, however, no real reason to use the perturba-
tional approach in this case, because the intrabond
correlations can be alternatively taken into account
variationally. For this end one must solve a set
of quantum mechanical problems for each of two-
electron bonds (electron pairs) in the subspace of
one-electron functions ascribed to each bond. By
this we arrive at a theory that gives the optimal local
two-electron wave functions (geminals), represent-
ing chemical bonds. Such treatment of electron pairs
in the molecules corresponds to the intuitive Lewis
concept of two-electron bond.12 In this framework
the Lewis’ picture appears as a result of optimiza-
tion of the total energy in a specific class of elec-
tronic trial wave functions.

Variational methods using strictly local orbitals
are also known in the literature. These orbitals
are localized on the bonds or on the electron lone
pairs, and do not contain tails on the other atoms
of the molecule. Such MOs are called strictly lo-
calized (SLMO).13 For saturated organic molecules
the canonical MOs can be localized satisfactorily
by standard methods.14 – 18 The orbitals relevant to
the SLMO approach turn out to be close to the
LMOs obtained by localization of the canonical (de-
localized) MO LCAO, which are solutions of the
Hartree–Fock–Roothaan equations. These a posteri-
ori transformations from the atomic basis to the
hybrid one are ambiguous. There exist several cri-
teria for it, based on the geometry factors, when one
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either attempts to direct the hybrid orbitals (HOs)
towards the other end of the bond19 or tries to max-
imize the overlap between the HOs, belonging to
different ends of the bond.20 However, it is more
consistent to evaluate the HOs on the basis of the
variational principle (i.e., from the energy minimum
condition) together with other parameters of the
trial wave function.

An approach using geminals representing chem-
ical bonds has been used in the work.21 It has been
implemented with use of the ab initio Hamiltonian.
This approach uses Pauling’s HOs to construct the
geminals. It restricts the flexibility of the wave func-
tion, and does not allow obtaining the hybridiza-
tion on the ground of variational principle. This
approximation is called according to the type of
the trial wave function employed, i.e., that of anti-
symmetrized product of strictly localized geminals
(APSLG). The APSLG approximation is similar to
other pair theories like the generalized method of
valence bonds (GVB)22 and its descendants—those
making use of perfect pairing22 and complete ac-
tive space.23 The difference between these methods
lays in the way of determination of the one-electron
states to be used for the bond function and, there-
fore, in the degree of localization of the wave func-
tion.

The ab initio APSLG approach21 was tested only
for a limited series of simple molecules. Results ob-
tained there do not allow to derive unambiguous
conclusion about the validity of this approximation
for larger molecules, because, even in the case of the
CH3F molecule, the electronic energy of the APSLG
approximation is significantly higher than that for
the SCF method (in the same basis).24 The calcula-
tion of the potential curve for dissociation of one
C—H bond in methane molecule shows that for the
C—H separations close to those at the equilibrium
the APSLG approximation results in a lower energy
value than the GVB but for the dissociation limit
the reverse is true.21 In this context we considered
the possibility of semiempirical implementation of
a quantum chemical method using the trial wave
function of the APSLG approximation.25

Semiempirical implementation requires assess-
ing a set of parameters to be used in calcula-
tions. We have used the well-known MINDO/3
parameterization26 as a starting point for parame-
ters evaluation. This set of parameters, when used
with the trial wave function of the HFR approxi-
mation for the valence electrons, gives an adequate
set of the energy characteristics and the equilibrium
geometries for organic molecules. Furthermore, as
it was noticed in ref. 27, the one-center parameters

of the MINDO/3 method are close to their esti-
mates derived from the spectra of free atoms and
ions28 and/or those made in the framework of the
theory of the effective valence shell Hamiltonian.29

This allows conclusion that the one-center parame-
ters are quite universal, and do not depend on the
type of the trial electronic wave function. In this ar-
ticle we construct the energy functional with use of
the trial wave function of the APSLG type and with
the MINDO/3 type of parameterization for atomic
and two-center integrals. The variation of this func-
tional gives the estimate of parameters of the wave
function and the electronic (and total) energy of the
system in question.

Theory

WAVE FUNCTION AND THE HAMILTONIAN

The wave function of electrons in the APSLG ap-
proximation has the form:

|8〉 =
∏

m

g+m|0〉, (1)

where the mth geminal (i.e., the two-electron func-
tion of the mth bond) is expanded through the
operators creating electrons with the spin projec-
tions σ on the “right” and the “left” HO of the
appropriate bond, respectively:

g+m = umr+mαr+mβ+vml+mαl+mβ+wm
(
r+mαl+mβ+l+mαr+mβ

)
. (2)

The normalization and orthogonality conditions for
the geminals read:〈

0
∣∣gmg+m′

∣∣0〉 = umum′ + vmvm′ + 2wmwm′ = δmm′ . (3)

Such functions describe singlet states of electron
pairs. The quantities um and vm are the amplitudes
of the ionic contributions to the geminal of the mth
bond, and wm is proportional to the amplitude of the
covalent contribution. If the HOs |rm〉 and |lm〉 are
symmetrical, the latter is the Heitler–London wave
function. If all the amplitudes are accidentally equal
then the function obtained is the spin restricted SCF
wave function built on the HOs |rm〉 and |lm〉. Elec-
tron lone pairs represent special case of geminals.
For them, only one ionic contribution to the gemi-
nal does not vanish: for the sake of definiteness we
assume that the lone pair geminals have the um am-
plitudes equal to unity.

The electronic energy in the APSLG approxima-
tion is

E = 〈8|H|8〉, (4)

754 VOL. 22, NO. 7



LOCALIZED GEMINALS FOR MOLECULAR ELECTRONIC STRUCTURE ANALYSIS

where |8〉 is defined by eqs. (1) and (2).
The HOs |rm〉 and |lm〉 result from orthogonal

transformations applied to the initial set of AOs
for each “heavy” (nonhydrogen) atom. Unlike most
modern methods that use the HOs, satisfying some
external localization criteria we determine the HOs
variationally, i.e., by applying the minimum con-
dition to the energy functional. For each heavy
atom (A) it is necessary to determine six indepen-
dent angles which define the matrix hA ∈ SO(4) of
the orthogonal transformation in four-dimensional
space spanned by one s- and three p-orbitals per
heavy atom.30 The annihilation operators for the
HOs are:

tmσ =
∑
i∈A

hA
miaiσ ; t = r, l. (5)

The Hamiltonian for a molecular system in the
MINDO/3 approximation can be presented as a
sum of one- and two-center contributions:

H =
∑

A

HA + 1
2

∑
A 6= B

HAB. (6)

Molecular integrals for the MINDO/3 approxima-
tion are originally known in the basis of the valence
s- and p-AO. As the geminals are expressed through
the HOs, all the integrals have to be transformed to
the HO basis, as well.

Suppose that |tm〉 is any of the HOs (|rm〉 or |lm〉)
belonging to the mth geminal. At the same time the
HO |tm〉 belongs to the subspace spanned by the va-
lence (s- and p-) orbitals centered on the atom A (this
is denoted as tm ∈ A). The parameter Ut

m represent-
ing the attraction of an electron on the HO |tm〉 to the
core of the atom A has the form:

Ut
m =

∑
i∈A

(
hA

mi

)2Ui(A), (7)

where the index i enumerates the s- and p-AOs
belonging to the heavy atom A and Ui(A) is the
attraction of an electron on the ith AO to its own
core. The attraction of electron to other cores and
repulsion of electrons on the orbitals of different
atoms do not depend on the angular momentum
(azimuthal) quantum number l. Thus, the energy
shifts of the one-electron states on the atom A due
to the Coulomb interactions with the atomic cores
are equal for the s- and p-AOs, and therefore, for
all their linear combinations. Thus, they can be ex-
pressed through the Coulomb two-center integrals
γAB and the core charges ZB as in the standard
MINDO/3 method.

There are only a few integrals characterizing the
repulsion of two electrons on one atom, essential for

the energy estimates with use of the APSLG wave
function. These are:(

t
m

t
m

∣∣ t
m

t
m

)A =
∑
i∈A

(
hA

mi

)4(ii|ii)A + 2
∑

i<j∈A

(
hA

mih
A
mj

)2

× [(ii|jj)A + 2(ij|ij)A]; (8)

(
t

m1
t

m1

∣∣ t′
m2

t′
m2

)A =
∑
i∈A

(
hA

m1ih
A
m2i

)2(ii|ii)A

+
∑

i<j∈A

[(
hA

m1ih
A
m2j

)2

+ (hA
m1jh

A
m2i

)]
(ii|jj)A

+ 4
∑

i<j∈A

hA
m1ih

A
m1jh

A
m2ih

A
m2j(ij|ij)A; (9)

(
t

m1
t′

m2

∣∣ t′
m2

t
m1

)A =
∑
i∈A

(
hA

m1ih
A
m2i

)2(ii|ii)A

+ 2
∑

i<j∈A

hA
m1ih

A
m1jh

A
m2ih

A
m2j(ii|jj)A

+
∑

i<j∈A

[
2hA

m1ih
A
m1jh

A
m2ih

A
m2j

+ (hA
m1ih

A
m2j

)2

+ (hA
m1jh

A
m2i

)2](ij|ij)A. (10)

The summation indici i and j in these sums refer to
the s- and p-AOs of the heavy atom A.

The resonance integral between the right (cen-
tered on the atom A) and the left (centered on the
atom B) HOs is expressed through the resonance in-
tegrals in the AO basis:

βm =
∑
i∈A

∑
j∈B

hA
mih

B
mjβ

AB
ij . (11)

To evaluate the electronic energy we use the
second quantization technique. The fermion oper-
ators related to the HOs obey usual anticomutation
relations. The contributions to the molecular Hamil-
tonian eq. (6) in terms of these operators have the
form:

HA =
∑
tm∈A
σ

(
Ut

m −
∑

B 6= A

γABZB

)
t+mσ tmσ

−
∑

tm1 ,tm2∈A
m1<m2

∑
σ

βAA
m1m2

(
t+m1σ

tm2σ + h.c.
)

+ 1
2

∑
tm1 ,t′m2

∈A

t′′m3 ,t′′′m4∈A

∑
στ

(
t

m1
t′

m2

∣∣ t′′
m3

t′′′
m4

)A

× t+m1σ
t′′+m3τ

t′′′m4τ
t′m2σ

, (12)
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where βAA
m1m2

is the resonance integral correspond-
ing to electron transfer from the HO of the gem-
inal m1 to the HO of the geminal m2 in the case
if these HOs belong to the same (heavy) atom.
Next

HAB = −
∑

tm1∈A
t′m2
∈B

∑
σ

βAB
m1m2

(
t+m1σ

t′m2σ
+ h.c.

)

+ γAB

∑
tm1∈A
t′m2
∈B

∑
στ

t+m1σ
t′+m2τ

t′m2τ
tm1σ , (13)

where βAB
m1m2

is the resonance integral correspond-
ing to electron transfer between the HOs cen-
tered on different atoms. (Here and above h.c.
stands for hermitian conjugation.) If m1 = m2,
the previous resonance integral transforms to
the βm integral for the mth geminal [(bond)
eq. (11)].

ELECTRONIC ENERGY IN THE
APSLG-MINDO/3 APPROXIMATION

Now let us consider the contributions to the en-
ergy from the one-center terms 〈8|HA|8〉. To do so
we evaluate the averages of the operators with the
APSLG wave function. The one-center part of the
Hamiltonian contains the operators proportional to
the number of electrons operator. The contribution
from it to the energy can be presented as:

E1 =
∑

A

∑
m

(
Ut

m −
∑

B 6= A

γABZB

)∑
σ

Ptσ
m , (14)

where

Ptσ
m =

〈
0
∣∣gmt+mσ tmσg+m

∣∣0〉 (15)

and Ptσ
m are expressed through the amplitudes of the

mth geminal:25

Prσ
m = u2

m + w2
m, Plσ

m = v2
m + w2

m (16)

and does not depend on σ . (Hereinafter we drop the
σ superscript in one-electron densities.) Thus:

E1 = 2
∑

A

∑
tm∈A

(
Ut

m −
∑

B 6= A

γABZB

)
Pt

m. (17)

The contribution from the Coulomb repulsion of
electrons located on the same atom is:

E(1)
coul =

∑
A

[∑
tm∈A

(
t
m

t
m

∣∣ t
m

t
m

)ARt
m

+ 2
∑

tm1 ,t′m2
∈A

m1<m2

(
2
(

t
m1

t
m1

∣∣ t′
m2

t′
m2

)A

− ( t
m1

t′
m2

∣∣ t′
m2

t
m1

)A
)

Pt
m1

Pt′
m2

]
.

(18)

It is proportional to the averages of the form [see
eq. (12)]:〈

8
∣∣t+m1σ

t′+m2τ
t′′m3τ

t′′′m4σ

∣∣8〉
= δm1m2δm3m4δm1m3 (1− δστ )Rt

m1

+ [δm1m4δm2m3 (1− δm1m2 )

− δm1m3δm2m4 (1− δm1m2 )δστ
]
Pt

m1
Pt′

m2
, (19)

where the relevant elements of two-electron density
matrix are:

Rr
m =

〈
0
∣∣gmr+mβr+mαrmαrmβg+m

∣∣0〉 = u2
m (20)

for the right HO and

Rl
m =

〈
0
∣∣gml+mβ l+mαlmαlmβg+m

∣∣0〉 = v2
m (21)

for the left HO of the mth geminal.
The contribution to the energy from the reso-

nance term of the Hamiltonian is proportional to the
spin bond order between the HOs of the mth gemi-
nal:

Qσ
m =

〈
0
∣∣gmr+mσ lmσg+m

∣∣0〉 = (um + vm)wm. (22)

The bond order is also σ -independent for the sin-
glet geminal. The overall contribution to the energy
from the resonance interaction is:

Eres = −4
∑
A<B

∑
m∈A,B

βmQm. (23)

The contribution from the Coulomb interaction of
electrons located on different atoms (two-center) to
the total energy is proportional to the following ele-
ment of the two-electron density matrix:〈

8
∣∣n̂t

m1
n̂t′

m2

∣∣8〉 =∑
στ

〈
8
∣∣t+m1σ

t′+m2τ
t′m2τ

tm1σ

∣∣8〉. (24)

So, the last (Coulomb two-center) contribution to
the energy can be written as:

E(2)
coul = 2

∑
A<B

γAB

[
2

∑
tm1∈A, t′m2

∈B
m1 6= m2

Pt
m1

Pt′
m2
+
∑

m∈A,B

w2
m

]
.

(25)

Total electronic energy is a sum of the above four
terms:

E = E1 + E(1)
coul + Eres + E(2)

coul. (26)
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As we have mentioned above, the quantities enter-
ing the operators HA [eq. (12)] and HAB [eq. (13)]
depend on the SO(4) matrices hA, where A refers
to a “heavy” atom. According to ref. 30, the ele-
ments of the group SO(4) 4× 4 matrix are functions
of six angular parameters. The electronic energy of
the system is thus a function of 6L angles (L is the
number of heavy atoms in the molecule), determin-
ing the matrices hA of transformation from the AO
basis to the HO basis on each of the heavy atoms
A and of 2M parameters defining the amplitudes
of different contributions to the geminals (M is the
number of bonds). Each sextuple of angles defines
an SO(4) matrix for one atom. This matrix can be
presented as a product of six sequential rotation
matrices in different two-dimensional subspaces of
the whole four-dimensional space of atomic one-
electron states (the Jacobi matrices). Each rotation
is defined by one angle. The optimal wave function
of the system is obtained by varying these angles
αA for the matrices hA defining the HOs expansion
coefficients for the heavy atom A and those for the
amplitudes um, vm, and wm for the bond geminals.
The optimal amplitudes um, vm, and wm are obtained
by diagonalizing the effective bond Hamiltonians
for each bond geminal. Each iteration step includes
optimization of the HO parameters and of the gem-
inal amplitudes. For the set of the amplitudes um,
vm, and wm the angles determining the matrices hA

are obtained. After that, for the fixed coefficients
of the HOs the expansion coefficients of the gemi-
nals are determined. The alternating optimizations
and diagonalizations are consistent, and the con-
vergence is rapidly achieved in all variables. The
number of iterations remains approximately con-
stant and, therefore, the number of elementary steps
(diagonalizations of 3 × 3 matrices and minimiza-
tions of the functions of six angular parameters)
in the procedure of the optimization of the energy
functional for a molecule grows linearly while its
size increases.

Results

The scheme of determination of the optimal pa-
rameters of the variational APSLG wave function
described in the previous section has been imple-
mented as a program suite BF’9831 designed for
calculation of the electronic structure of organic
molecules. To estimate the validity of the APSLG
approach we, first, performed calculations with use
of the BF’98 package that uses both the form of the
MINDO/3 Hamiltonian and the precise numerical

values of its parameters.26 Some preliminary results
obtained for the fixed experimental geometries were
published in ref. 25. The calculated electronic en-
ergies can be compared with the same quantities
obtained by the standard MINDO/3 calculations
for the structures optimized with use of the stan-
dard SCF-MINDO/3 method.25 Comparison of the
electronic energies allows evaluation of the rela-
tive importance of delocalization and correlation of
electrons. For the dihydrogen molecule, the APSLG
wave function is that of the full configuration in-
teraction in the basis of two s-AO. That is why
the energy of dihydrogen molecule is lower for the
APSLG function than for the SCF function for the
same bond length with the same parameterization.

For more complex molecules the APSLG elec-
tronic energy with the standard MINDO/3 para-
meters can be either higher or lower than that of
the SCF approximation. Similar picture was also ob-
tained in the nonempirical calculations21 using the
APSLG trial wave function. As for calculations on
the energy of molecules with electron lone pairs,
the effects of the intrabond correlation outweight
those of delocalization. Thus, the energy loss ow-
ing to the restriction in the flexibility of one-electron
states in the APSLG-MINDO/3 compared to the
SCF-MINDO/3 method (HOs vs. MO LCAO) is
smaller than the energy gain due to better descrip-
tion of intrabond electron correlations. At the same
time, the delocalization contribution is more impor-
tant for the molecules with bonds between heavy
atoms.

The calculated and experimentally observed
heats of formation are shown in Table I. Compari-
son of the results of the APSLG-MINDO/3 method
with the standard MINDO/3 parameterization (col-
umn 3) with the experimental ones (column 2)
shows that its accuracy is not sufficient even for
description of the simplest organic compounds. It
is thus necessary to modify the parameters for the
APSLG method. Indeed, the forms of the varia-
tional wave functions underlying, respectively, the
SCF-MINDO/3 and the APSLG-MINDO/3 method
are quite different. The SCF-based semiempirical
theories, on the other hand, usually assume that
all electron correlations can be absorbed by their
parameters. However, the parameterization cannot
reproduce the qualitative features of the electronic
structure that depend on correlation. For example,
when the parameters are fixed, the dissociation en-
ergy (the valley depth) of, say, the H2 molecule
obtained by the SCF method, is always larger than
that obtained with use of variational function allow-
ing for correlation. In the MINDO/3 method this
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TABLE I.
Heats of Formation (kcal/mol) of Test Molecules Obtained Experimentally and Calculated with the Use of the
SCF-MINDO/3 and APSLG-MINDO/3 Methods.

1Hf 1Hf MINDO/3 1Hf Modified 1Hf MINDO/3
Molecule (Expt.) (APSLG) (APSLG) (SCF)

H2 0.0 −1.475 −0.101 0.131
CH4 −17.8 −5.655 −8.430 −6.275
C2H6 −20.04 −8.254 −19.514 −19.849
C3H8 −25.00 −5.500 −25.185 −26.527
n-C4H10 −30.00 −2.226 −29.993 −32.655
iso-C4H10 −32.00 5.351 −22.379 −24.710
n-C5H12 −35.09 1.027 −35.225 −38.973
neo-C5H12 −40.15 22.811 −12.126 −14.632
Cyclopropane 12.7 41.000 18.472 8.524
Cyclobutane 6.8 33.459 −8.867 −8.088
Cyclopenthane −18.3 12.694 −28.193 −27.795
Cyclohexane −29.49 19.855 −29.166 −32.505
NH3 −11.0 −21.245 −4.529 −9.125
CH3NH2 −5.5 4.583 −1.034 −4.615
C2H5NH2 −11.3 2.007 −11.777 −15.708
n-C3H7NH2 −16.8 5.270 −16.776 −21.874
iso-C3H7NH2 −20.0 6.940 −14.718 −18.341
tert-BuNH2 −28.9 22.597 −6.757 −13.215
(CH3)2NH −4.4 33.488 5.535 4.310
(CH3)3N −5.7 68.316 19.136 21.027
N2H4 22.8 1.792 21.307 3.166
CH3NHNH2 22.6 24.637 23.102 8.366
(CH3)2NNH2 20.1 56.978 33.039 22.242
CH3NHNHCH3 22.0 50.517 27.588 15.019
H2O −57.8 −60.451 −55.677 −53.611
CH3OH −48.16 −33.099 −48.549 −50.573
C2H5OH −56.21 −36.503 −60.167 −64.292
1-C3H7OH −60.98 −33.325 −65.113 −70.417
2-C3H7OH −65.19 −34.383 −66.008 −69.117
tert-BuOH −74.7 −24.387 −63.509 −65.614
(CH3)2O −60.3 1.337 −33.905 −51.191
H2O2 −32.5 −38.670 −32.720 −29.265

discrepancy with the experiment is partially cured
by adjusting the corresponding βAB parameter. Ad-
ditionally, a special functional form for the core
repulsion is introduced and parameterized in the
MINDO/3 method for heavier atoms as well. The
APSLG-MINDO/3 method by construction explic-
itly takes some fraction of correlation into account.
Thus, the βAB parameters must be readjusted.

To find the resonance parameters conforming
to the APSLG form of the trial wave function we
performed calculations on electronic structure for
the test set of molecules containing hydrogen, car-
bon, nitrogen, and oxygen atoms. This set was
taken from previous works devoted to the para-

meterization of semiempirical methods MNDO,32

AM1,33 and PM3.34 These articles also contain a
set of experimental data on the heats of forma-
tion of the molecules involved. The parameters βAB

were adjusted to reproduce the experimental val-
ues of the heats of formation for the test set of
molecules taken at their optimized structures by the
APSLG-MINDO/3 method. The optimization cri-
terion was based on the reproducing the energy
increments for the homologic series rather than
the heats of formation for each member of a se-
ries. The resulting set of the βAB parameters of the
APSLG-MINDO/3 method compared to those of
the SCF-MINDO/3 method is given in Table II.
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TABLE II.
Parameters βAB of the APSLG-MINDO/3 and
SCF-MINDO/3 Methods (eV).

A B βAB (APSLG) βAB (MINDO/3)

H H 0.243007 0.244770
H C 0.315839 0.315011
H N 0.353716 0.360776
H O 0.414559 0.417759
C C 0.427797 0.419907
C N 0.429386 0.410886
C O 0.486514 0.464514
N N 0.379342 0.377342
O O 0.657007 0.659407

This set slightly differs from that obtained in our
previous work.25 The similarity of the parameters
of two methods using fundamentally different trial
wave functions indicates some internal consistency
of the MINDO/3 parameterization (see above). All
subsequent calculations are made with use of the
adjusted parameters βAB (Table II). Table I contains,
besides the experimental data, the heats of forma-
tion calculated by the APSLG-MINDO/3 method
(column 4) and those calculated by the standard
MINDO/3 method (column 5) at the respectively
optimized molecular geometries. In the previous
work25 we have found that the total energies are
approximately additive in the homologic series in
agreement with experiment.35, 36 The analysis of the
analogous data for optimized geometries shows
that the additivity is well fulfilled and, moreover,
the difference between them tends to the same
value (−3613 kcal ·mol−1) as in the case of the ex-
perimental molecular geometries. Data of Table I
show that the difference between the heats of forma-
tion calculated by the APSLG-MINDO/3 method
for the closest homologues—saturated hydrocar-
bons (excluding the methane–ethane pair) is about
5 kcal ·mol−1 that is in a good agreement with the
experimental data.32 The analogous increment cal-
culated by the SCF-MINDO/3 method is larger than
6 kcal · mol−1. The deviation from the experiment
by more than 1 kcal ·mol−1 causes significant diver-
gence between the experimental data on the heats of
formation and the estimates by the SCF-MINDO/3
method increasing with the number of carbon atoms
in the hydrocarbon molecule. Cyclic hydrocarbon,
in their turn, do not manifest the additivity, and
should not, because the strain energies for different
cycles differ.

The total energy increment in the APSLG-
MINDO/3 method for homologous normal amines
rapidly converges to the above value characteris-
tic for the normal alkanes. This additivity, i.e., the
linear dependence of the system properties on its
size allows to hope that the present semiempir-
ical method based on the APSLG approximation
can serve as a natural starting point for sequential
derivation of numerous additive schemes known
in the literature. The comparison with experiment
for two computational methods (see Table I) shows
that the APSLG-MINDO/3 and the SCF-MINDO/3
methods reach similar accuracy when address the
heats of formation of organic compounds. At the
same time we can note that the mean deviation in
the heats of formation given by the formulae

σ = 1
N

N∑
i= 1

∣∣1Htheor
f −1Hexp

f

∣∣ (27)

is 6.9 kcal/mol for the APSLG-MINDO/3 method
and 7.6 kcal/mol for the SCF-MINDO/3 method for
the test set of molecules. The choice of the criterion
[eq. (27)] is stipulated by the special character of the
data under consideration. The heats of formation
of branched compounds are systematically overesti-
mated in both the APSLG and SCF approaches. The
intrabond correlations in the APSLG-MINDO/3
method does not cure this defect, which is common
for both the MINDO/3 methods (and may be inher-
ent for the MINDO/3 parameterization itself). The
standard mean square deviation essentially over-
estimates the contribution from the data with sys-
tematic error. Moreover, these data give prevailing
contribution. There are different possibilities to re-
duce the contribution from the data with systematic
error. The choice of the mean deviation in the form
eq. (27) is the simplest one.

The closeness of the calculated and experimental
heats of formation cannot be the ultimate criterion
for the quality of calculation. It is also essential to
reach some consistency of the calculated minima
positions on the potential energy surfaces with the
experimental molecular geometries. Therefore, we
do not restrict ourselves by the calculations at the
selected points of the nuclear configuration space,
and have implemented the procedure of the gradi-
ent search for the local minima of the total energy.
The expressions for the energy gradients with re-
spect to the nuclear displacements were obtained
analytically. Using the adjusted values of the para-
meters βAB, given in Table II, we have calculated
the optimal geometry structures for a series of sim-
ple molecules. In the case of the hydrogen mole-
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cule the length of the H—H bond is longer than
the experimental value by 0.01 Å. The internuclear
C—H separation in the methane molecule calcu-
lated by the APSLG-MINDO/3 method coincides
with the experimental one with the accuracy of
0.002 Å (our theoretical value 1.092 Å, experiment—
1.094 Å32). At the same time, the calculated length of
the C—C in ethane equals to 1.484 Å. This is smaller
than the experimental value of 1.536 Å. However,
for propane and other higher alkanes the discrep-
ancy between the calculated and experimental bond
lengths is slightly smaller (the improvement is by
the 0.01 Å for propane and then the optimized
lengths of the C—C bonds steadily tend to the
experimental ones with the growth of the chain
length). Notice that the standard SCF-MINDO/3
method gives for the length of the C—C bond in
ethane the value of 1.474 Å and, therefore, the tran-
sition to the APSLG-MINDO/3 approach slightly
improves it. The optimized length of the C=C
bond in the unsaturated ethylene molecule equals
to 1.335 Å, which is very close to the experimen-
tal value of 1.339 Å. The SCF-MINDO/3 method
gives the value 1.313 Å, which is not as good agree-
ment with the cited experimental value. A more
interesting example is the optimization of geome-
try of quadricyclane and norbornadiene molecules,
which are isomers and differ by the bond distrib-
ution. Starting from the same geometry but differ-
ent connectivity schemes (distributions of chemical
bonds) we obtain after the geometry optimization
two significantly different geometrical structures—
one close to the experimentally observed structure
of quadricyclane [lengths of four single bonds in
the cyclobutane ring of the quadricyclane molecule
equal to 1.539 Å each (the experimental value for
clathrate of quadricyclane with deoxycholic acid is
1.530 Å)] and norbornadiene, respectively [lengths
of two double bonds equal to 1.342 Å (the exper-
imental value for clathrate of norbornadiene with
deoxycholic acid is 1.350 Å) but the distance be-
tween the adjacent carbon atoms of two different
double bonds equals to 2.460 Å (the experimental
value is 2.395 Å)]. Large discrepance (0.065 Å) be-
tween experimental and claculated estimates for the
distance between nonbonded C atoms is the conse-
quence of bad description of branched compounds.
The problems in the description of branched com-
pounds results in the both overestimated heat of
formation and incorrect valence angles for tertiary
C atoms.

Reproducing the geometrical structure of the
cyclobutane molecule is a complex problem for
molecular mechanics and quantum chemistry. For

example, ref. 37 states that the proper description of
cyclobutane requires large basis sets with polariza-
tion functions. The experimentally observed struc-
ture is nonplanar with the out-of-plane bending
angle of 27 degrees. At the same time, most of the
computational procedures (e.g., SCF-MINDO/3)
lead to the planar structure. The analysis of the
PES for the cyclobutane molecule by the APLSLG-
MINDO/3 method shows that the global minimum
on the PES corresponds to the planar configuration
as well. At the same time, the calculated PES has
the local minimum for the nonplanar configuration
with the bending angle of 22 degrees. It is possibly
due to overestimation of valence angle bending en-
ergies.

As is shown, the APSLG-MINDO/3 method
works not well enough when applied to branched
compounds or to description of the geometric struc-
ture of cyclobutane. The possible way to improve
the description of these substances is to take into
account the interactions between bonds that are
not regarded in the standard APSLG approach. The
attempt to cover dispersion and delocalization cor-
rections to the SLG wave function was made on the
ab initio level in the framework of the coupled clus-
ter method.21, 38, 39 It was found that the correlation
energy accounted for by these corrections was sig-
nificantly smaller than those accounted for by the
APSLG approach itself. In the framework of the
semiempirical APSLG-MINDO/3 method we also
have made an attempt to improve it by taking into
account perturbationally different types of interac-
tion between bonds. The result of this work will be
published elsewhere.40

Discussion

As it is mentioned in the Introduction, quan-
tum chemistry of large molecules faces an impor-
tant problem of constructing calculation procedures
with the growth of computational costs linear in N
(N characterizes the size of the system). Solution
of this problem requires applying that or another
approach to separation of electronic variables. The
standard way of doing this assumed in quantum
chemistry is the SCF (one-electron, Hartree–Fock)
approximation for the wave function of the ground
state of electrons. The requirements for computa-
tional resources of the SCF procedure grow as N3

and, hence, the latter cannot be considered as a ba-
sis for constructing methods linear in N. Moreover,
the SCF approximation requires additional account
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of correlation to become useful for description of
bond cleavage. Of course, it is not clear a priori
what is preferable: to take into account one-electron
transfers (resonance) between different AOs with
maximal completeness, and by this to get to a de-
localized form of the one-electron states and to an
incorrect description of the homolytic cleavage of
the σ -bond, or to take into account pair electron
correlations in the bonds, to get by this the correct
behavior of the trial wave function under homolytic
clevage of bonds, and to be forced to consider the
interbond one-electron transfers as corrections. At
any rate, the second way preserves the prospects
for the linear dependence of the computational costs
on the system size and allows to recover tradi-
tional (and efficient) chemical concepts of bonds and
lone pairs on the basis of direct variational calcula-
tion.

To demonstrate the computational capacities of
the APSLG-MINDO/3 method we carried out cal-
culations (for the fixed geometry) for a series
of normal saturated hydrocarbons ranging from
CH4 to C20H42 by the APSLG-MINDO/3 and SCF-
MINDO/3 methods. Figure 1 shows the depen-
dence of the computation time (in seconds) on the
number of carbon atoms in the homologue for the
both methods. It can be easily seen that the de-
pendence of computation time on the system size

FIGURE 1. Comparison of calculation times for
SCF-MINDO/3 and APSLG-MINDO/3 methods.

is essentially nonlinear in the case of the SCF ap-
proximation and is practically linear for the gemi-
nal approach. The APSLG-MINDO/3 procedure is
faster than the SCF-MINDO/3 one already for the
simplest hydrocarbons. In the case of the normal
hydrocarbon C20H42 (its semiempirical calculation
uses 122 basis functions), the computation time for
two methods differs 30 times in favor of the APSLG
approach.

The APSLG-MINDO/3 approach can be also ap-
plied to unsaturated organic molecules (but not to
aromatic ones). In this case, two different geminals
are assigned to each of the double bonds. In this
context an old question about the character of each
of two C—C bonds in ethylene41 (and other un-
saturated hydrocarbons) can be readdressed. The
APSLG-MINDO/3 method allows to construct two
different APSLG wave functions for the ethylene
molecule: one with two equivalent geminals for the
double C=C bond, which corresponds to equivalent
(bent-type or “banana”) bonds between the carbon
atoms, and another one with two nonequivalent
geminals which correspond to σ - and π-bonds. The
initial conditions of the energy minimization turn
out to be very important. The type of double C=C
bond (bent or σ–π-separated) remains unchanged
in the course of optimization. In the case of the bent-
type bonds, the optimal value of energy is higher
than that for the σ–π-separated bond, i.e., the en-
ergy calculation with use of the APSLG-MINDO/3
approach and optimized molecular geometry shows
that the electronic structure with the nonequivalent
σ - and π-bonds is energetically favorable. However,
the difference is very small, because the local min-
imum on the energy surface corresponding to the
σ–π double bond is merely by less than 1 kcal·mol−1

deeper than that of the bent-type bond. The opti-
mized bond length for the bent-type double bond
is also only slightly (by 0.0003 Å) larger than that
for the σ–π-double bond. The question about the
preferability of one or another type of double bond
was also studied in ref. 42 by the full GVB method.
In the case of the ethylene molecule, the conclusion
about closeness of the energies for the two ways
of bonding was drawn. The calculations with the
frozen core42 have shown that the σ–π-separation is
slightly more preferable in agreement with our re-
sults.

The proposed approach makes it possible to
determine naturally such bond characteristics as
ionic and covalent contributions and polarity of
bond. We can rewrite the expression for each
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geminal as:21

g+m =
Im√

2

[√
1+ λm r+mαr+mβ +

√
1− λm l+mαl+mβ

]
+ Cm√

2

[
r+mαl+mβ + l+mαr+mβ

]
, (28)

where Im is the amplitude of the ionic contribution
to the geminal, Cm and λm measure, respectively,
the bond covalency and polarity and the normal-
ization condition obviously leads I2

m + C2
m = 1.

Obtained bond characteristics allow determination
of charges on the atoms. Then for each electron pair
(bond) we can determine the electron density on
the right and left atoms of the mth bond, respec-
tively:

C2
m + I2

m(1+ λm)
2

,
C2

m + I2
m(1− λm)
2

. (29)

For each atom the sum of the contributions eq. (29)
over all its geminals including electron lone pairs
gives the electron density on the atom, and con-
sequently, the effective atomic charge. Table III
contains ionic and covalent contributions and po-
larities of the bonds and atomic charges for some
simple organic compounds calculated for the op-
timized geometries. The covalent contribution al-
ways prevails over the ionic one for all considered
molecules. The ratio of the covalent and ionic con-
tributions only slightly depends on the molecule
type. For example, the weights of covalent con-

figuration differ for highly polar HF and unpolar
H2 molecules only by 0.03. The bond polarities
themselves qualitatively correspond to relative elec-
tronegativities of different atoms accepted in the
literature. The effective atomic charges can be com-
pared with the charge distributions obtained by
other methods. The APSLG-MINDO/3 method pre-
dicts a shift of electron density in methane from
hydrogen atom to carbon atom, while the SCF-
MINDO/3 gives the reverse picture in contradic-
tion with concepts accepted in organic chemistry.43

It should be noted that the C—N bond proves
to be almost nonpolar (in the above sense). The
parameters of the C—H bond in methane and
the N—H bond in ammonia are very similar (see
Table III).

Determination of hybridization for the HOs on
the basis of variational principle is an important
feature of the proposed approach. As it can be
expected in methane, the sp3-hybridization is recov-
ered under the variational determination. The HO
of the F—H bond in the HF molecule is almost pure
p-orbital (more precisely, the hybridization of this
orbital can be represented as sp39.0, which demon-
strates an extreme unevenness of the hybridization
scale). The HOs of electron lone pairs form two pure
p-functions, and one almost pure s-function. There
is an interesting question about the form (hybridiza-
tion) of lone pairs in the molecules that have more
than one lone pair. The answer on this question is

TABLE III.
Charges, Ionic and Covalent Contributions, and Polarities of Chemical Bonds Calculated by the
APSLG-MINDO/3 Method.

Bond Ionic Covalent Bond Charge Charge
Molecule A–B Contribution I2 Contribution C2 Polarity λ A B

H2 H—H 0.434 0.566 0 0 0
CH4 C—H 0.415 0.585 −0.157 −0.260 0.065
C2H6 C—C 0.411 0.589 0 −0.126 −0.126

C—H 0.411 0.589 −0.102 −0.126 0.043
N2H4 N—N 0.363 0.637 0 −0.114 −0.114

N—H 0.415 0.585 −0.137 −0.114 0.057
NH3 N—H 0.408 0.592 −0.111 −0.135 0.045
CH3NH2 C—N 0.398 0.602 0.051 −0.145 −0.142

C—H 0.411 0.589 −0.133 −0.145 0.055
N—H 0.415 0.585 −0.148 −0.142 0.061

HF F—H 0.470 0.530 −0.699 −0.329 0.329
CH3F C—H 0.416 0.584 −0.147 0.032 0.061

C—F 0.386 0.614 0.556 0.032 −0.215
H2O O—H 0.463 0.537 −0.523 −0.484 0.242
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that for the method under consideration the mix-
ing (quantum mechanical interference) of the HOs
of different electron lone pairs (not bonds) that are
centered on the same atom does not change the
electronic energy. For example, in the case of water
molecule, the degree of mixing between lone pairs
depends on the initial conditions of optimization be-
cause this mixing does not affect the energy.

Despite the fact that the amplitudes of different
two-electron states in the bond geminal expansions
in methane and ammonia molecules are similar (see
below), the HOs in ammonia differ significantly
from the sp3 ones characteristic for methane. The
analysis of the AO to HO transformation matrix re-
veals the sp7.14-hybridization for the N—H bonds
and the sp0.58-hybridization for the lone pair.

The HOs of the carbon atoms in ethane slightly
deviate from the sp3-form. The p-character is slightly
more pronounced for the C—H bonds. The HOs of
the C—C bond are the sp2.26 hybrids but the C—H
bonds are the sp3.33 ones. Directions of maximal
density for the HOs of the C—C bonds in the cy-
clopropane molecule do not coincide with those of
the bonds themselves. As for the HF molecule, the
p-character of the HO participating in the chemi-
cal bond increases, but the electron lone pair has
essentially the s-character. The C—F bond in CH3F
has essentially covalent character, and it is less po-
lar than the H—F bond in HF. The amplitudes of
the geminal expansion of the C—H bond are not
very sensitive to its environment, and are the same
for CH4, C2H6, and CH3F. The C—H bonds in C2H6
and CH3F differ mainly due to hybridization of the
orbitals involved. It is interesting that the HOs of
fluorine in CH3F are pretty close to those in HF
(sp37.9 vs. sp39.0).

Conclusions

A semiempirical method of calculations on mole-
cular electronic structure is developed in this work.
The method uses the trial wave function of the
antisymmetrized product of strictly localized gem-
inals approximation. The calculations with the stan-
dard MINDO/3 parameterization have revealed
that the APSLG wave function has quality compa-
rable with that of the SCF version of the MINDO/3
approximation for the range of characteristic in-
tramolecular interatomic distances and, moreover,
have correct asympthotical behavior in the limit
of cleaved bonds. It has been demonstrated that
the slight modification of the pair resonance pa-
rameters βAB makes it possible to obtain some-
what better agreement of the heats of formation

and the equilibrium geometries calculated by the
APSLG-MINDO/3 method with the experimental
data than the SCF-MINDO/3 procedure permits.
The APSLG-MINDO/3 method satisfies the O(N)-
scalability condition and permits calculating the
electronic properties of very large organic mole-
cules. In the framework of the present approach
based on the variational wave function of the AP-
SLG approximation, it is possible to recover the
intuitive chemical concepts like bonds, their ionic
and covalent components, polarities, hybrid or-
bitals, and lone pairs, which are not so transparent
in the SCF-type approaches. Also, the form of the
electron lone pairs and bond hybrid orbitals is deter-
mined unequivocally on the basis of the variational
principle.
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