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ABSTRACT: The APSLG-MINDO/3 method is evolved to reproduce the vertical
ionization potentials for organic molecules. Two different schemes—one allowing for
adjustment of the local electronic structure to the hole in each configuration and another
one with a fixed local electronic structure—are developed and implemented. These
methods are applied to a series of normal hydrocarbons. The possibility of localization of a
hole in the polyethylene cation is discussed. Vertical ionization potentials are also obtained
for a set of organic molecules with heteroatoms. Their values together with degeneracy of
ionized states are compared with the data of photoelectron spectroscopy. c© 2001 John
Wiley & Sons, Inc. Int J Quantum Chem 85: 109–117, 2001
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Introduction

C alculations of vertical ionization potentials are
usually performed on the basis of the Hartree–

Fock approximation. Most workers in the field
of photoelectron spectroscopy use the one-electron
approximation and the Koopmans theorem [1] as
primary tools to estimate the vertical ionization po-
tentials. There also exist elaborated methods for
calculating vertical ionization potentials that em-
ploy configuration interaction or perturbation ex-
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pansions. Methods based on the Green function
technique are also popular [2, 3]. The success of the
Hartree–Fock-based methods in explaining degen-
eracies of the energy eigenstates have led to a wide-
spread point of view that the observed form of the
photoelectron spectra confirms the orbital structure
and the one-electron character of the molecular elec-
tronic wave functions. Thus it is interesting to ex-
plore methods for calculating ionization potentials
that do not rely on the one-electron picture. It is also
important to investigate the capacity of a method
based on a local description of molecular electronic
structure to describe the ionic states and to repro-
duce their symmetry properties, which ultimately
are interpreted as delocalization. Some attempts in
this direction were made in Refs. [4] and [5].
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A local description of molecular electronic struc-
ture can be achieved by using the concept of gem-
inals [6]. Our previous work [7, 8] was devoted
to development of a semiempirical quantum chem-
ical method that used the trial wave function of
electrons taken as the antisymmetrized product of
strictly localized geminals (APSLG) [9 – 11]. Start-
ing from the MINDO/3 Hamiltonian, we modified
its resonance parameters and obtained a compu-
tational scheme that turned out to be more effi-
cient than the original MINDO/3 method based on
the self-consistent field (SCF) approximation. The
present work is devoted to an extension of the
APSLG-MINDO/3 approximation [7, 8] toward cal-
culation of ionization potentials.

Now we briefly recall the main features of the
semiempirical APSLG-MINDO/3 approach [7, 8].
Within this approach, the basis set of atomic orbitals
(AOs) is replaced by a set of hybrid orbitals (HOs).
The transition to the local description is carried out
by a unitary transformation (with optimized para-
meters of the latter) on each “heavy” (nonhydrogen)
atom. Each HO is assigned to a chemical bond or
an electron lone pair. Therefore, each (mth) chem-
ical bond is expanded through two HOs: |rm〉 and
|lm〉 (right and left). An APSLG-type wave func-
tion is constructed as an antisymmetrized product
of the geminals—two-electron functions. In the sec-
ond quantization language it can be written as

|�〉 =
∏

m

g+
m|0〉. (1)

Each geminal can be presented as a sum of three
singlet two-electron configurations in the basis of
four spin-orbitals assigned to this chemical bond,

g+
m = umr+

mαr+
mβ+vml+mαl+mβ+wm

(
r+

mαl+mβ+l+mαr+
mβ

)
(2)

with variable amplitudes um, vm, and wm. The first
and the second terms correspond to the ionic con-
figurations with two electrons on the same (the
right or the left, respectively) end of the chemical
bond. The third term represents the covalent con-
tribution to the geminal, i.e., it is analogous to the
Heitler–London wave function of the dihydrogen
molecule [12]. In the case of electron lone pairs, only
one of the ionic terms (the right one, for the sake
of definiteness) does not vanish. The normalization
condition is imposed on the amplitudes of the gem-
inal expansion (2):〈

0
∣∣gmg+

m

∣∣0〉 = u2
m + v2

m + 2w2
m = 1. (3)

The MINDO/3-type Hamiltonian is transformed to
the HO basis. In this case it also can be represented

as a sum of intraatom (one-center) and interatom
(two-center) contributions

H =
∑

A

HA + 1
2

∑
A �= B

HAB, (4)

where the intraatom contribution is

HA =
∑
tm∈A

(
Ut

m −
∑

B �= A

γABZB

) ∑
σ

t+mσ tmσ

−
∑

tm1 tm2 ∈A
m1<m2

βA
tm1 t′m2

∑
σ

(
t+m1σ

t′m2σ
+ h.c.

)

+ 1
2

∑
tm1 t′m2

,

t′′m3
t′′′m4

∈A

(
tm1 t′m2

∣∣ t′′m3
t′′′m4

)A

×
∑
στ

t+m1σ
t′′+m3τ

t′′′m4τ
t′m2σ

, (5)

whereas the interatom contribution is

HAB = −
∑

tm1 ∈A
t′m2

∈B

βAB
m1m2

∑
σ

(
t+m1σ

t′m2σ
+ h.c.

)

+ γAB

∑
tm1 ∈A
t′m2 ∈B

∑
στ

t+m1σ
t′+m2τ

t′m2τ
tm1σ , (6)

where h.c. stands for hermitian conjugation and |tm〉
denotes one of the two HOs (right or left) that be-
long to the mth geminal. The optimal HOs and the
amplitudes (um, vm, and wm) are determined varia-
tionally. The results of our calculations have shown
that the accuracy of the APSLG-MINDO/3 method
is comparable and somewhat better than that of the
SCF-MINDO/3 method when it is applied to the
heats of formation and equilibrium geometries of
organic molecules. The dependence of the calcula-
tion time on the size of the system (i.e., the number
of basis functions) is linear [8]. Also the APSLG (but
not SCF) approach ensures a correct asymptotic of
the wave function under bond cleavage.

Theory

Now we consider a method for deriving verti-
cal ionization potentials for the APSLG-type wave
function. In the framework of the APSLG method, it
is very natural to construct (N−1)-electron states by
extracting an electron from one of the geminals and
conserving the geminals structures for other bonds
and/or lone pairs, similarly to the way the ionized
states are constructed for the SCF method [1]. At the
same time, the states obtained by extracting an elec-
tron from a geminal with other geminals unchanged
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are not even approximately the eigenstates of the
ion. They do not permit the form of the photoelec-
tron spectra to be explained. To obtain the correct
eigenstates of the ion, we take into account the in-
teraction between these (N − 1)-electron states. The
way to construct these states is the key point of this
article.

When one electron is extracted from the geminal,
the remaining electron can occupy any of the four
spin-orbitals in the case of a geminal that represents
a usual chemical bond or one of two spin-orbitals
in the case of a geminal that represents an electron
lone pair. If we assume these spin-orbitals to be |rmσ 〉
and |lmσ 〉, we obtain configurations that strongly in-
teract due to the large intrabond resonance terms.
In this context, it is more natural to use so-called
bond orbitals (BOs), which constitute an alternative
one-electron basis set. The BOs related to a given
geminal (bond) are expanded in terms of the corre-
sponding HOs:

bmσ = xmlmσ + ymrmσ , (7)amσ = −ymlmσ + xmrmσ .

These orbitals are also normalized,

x2
m + y2

m = 1, (8)

and orthogonal,〈
0
∣∣amσb+

mσ

∣∣0〉 = 〈
0
∣∣bmσ a+

mσ

∣∣0〉 = 0. (9)

The coefficients xm and ym are determined on the
basis of the L orthogonality condition (i.e., the states
generated by the action of the BO-related fermion
operators on the ground state of the molecule in the
APSLG approximation are orthogonal):〈

0
∣∣gmamσ b+

mσ g+
m

∣∣0〉 = 〈
0
∣∣gmbmσ a+

mσg+
m

∣∣0〉 = 0. (10)

If we denote the coefficients as xm = cosϕm and
ym = sin ϕm, then the angle ϕm is determined by the
expression

ϕm = 1
2

arctan
(

2wm

vm − um

)
. (11)

Note that the orbitals defined by Eq. (7) are, respec-
tively, usual bonding and antibonding orbitals for
the mth bond. The reciprocal transition to the atomic
HOs is given by

rmσ = xmamσ + ymbmσ , (12)
lmσ = xmbmσ − ymamσ .

The geminal of the mth bond can be rewritten in
terms of bonding and antibonding BOs,

g+
m = Umb+

mαb+
mβ + Vma+

mαa+
mβ , (13)

where the new coefficients of the geminal expansion
comply with the following normalization condi-

tions for the geminals:

U2
m + V2

m = 1. (14)

Note that the representation of the geminal in
Eq. (13) is simply its natural form. By substitut-
ing Eq. (7) into Eq. (13) and comparing the result
with Eq. (2), we obtain that the coefficients in
Eq. (13) are

Um = 1
2

(
um + vm + √

(um − vm)2 + 4w2
m

)
,

(15)
Vm = 1

2

(
um + vm − √

(um − vm)2 + 4w2
m

)
.

The reverse relationship between the amplitudes of
the geminal in terms of the atomic HOs and BOs is
unique and can be written as

um = Umy2
m + Vmx2

m,
vm = Umx2

m + Vmy2
m, (16)

wm = (Um − Vm)xmym.

Both basis sets (BOs and HOs) will be used here-
after. It is necessary to mention that in the case of
electron lone pairs, we can construct only one BO
that coincides with the HO.

Now we consider a method for constructing the
ionized states. After one electron is extracted from a
geminal, the remaining electron may occupy either
the bonding or antibonding BO. All other bonds are
represented by their ground state geminals. Thus
generated (N − 1)-electron states are

∣∣�+
cmσ

〉 =
( ∏

k �= m

g+
k

)
c+

mσ |0〉, (17)

where the fermion creation operator c+
mσ stands for

either of the fermion operators (b+
mσ or a+

mσ ) that
creates electrons with the spin projection σ . The
Hamiltonian Eq. (4) does not contain contributions
that allow the states in Eq. (17) with different spin
projections to interact. Therefore, the eigenstates of
the ion can be presented by a linear combination of
the basis functions with the same spin projection:∣∣	+

nσ

〉 =
∑
cm

χn
cm

∣∣�+
cmσ

〉
. (18)

The coefficients χn
cm

are determined by solving the
eigenvalue problem

H
∣∣	+

nσ

〉 = E+
n

∣∣	+
nσ

〉
. (19)

The choice of basis ion states in the form Eq. (17)
leads to a simple matrix form of the eigenvalue
problem with the unity matrix as a metric. If the
(N − 1)-electron states were obtained by the ac-
tion of some basis electron annihilation operators
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on the ground state of the molecule, the eigen-
value problem would have the density matrix as
a metric, which immediately leads to the prob-
lem of occasionally small occupation numbers. The
vertical ionization potentials must be obtained by
subtracting the energy of the ground state of the
neutral molecule E0 taken in the APSLG approxi-
mation from the eigenenergies E+

n of the ion. If we
replace the Hamiltonian in Eq. (19) by the opera-
tor H − E0I, the corresponding eigenvalue problem
gives the eigenstates of the ion and the vertical ion-
ization potentials as its eigenvalues. An analogous
method was considered in Ref. [4] for the local-
ized wave function of the Hartree–Fock method.
Moreover, assuming the transferability of the matrix
elements of the configuration interaction matrix, the
simple scheme of evaluating the ionization poten-
tials similar to the Hückel method, but with atoms
replaced by bonds, was constructed.

Now we turn to an analysis of the matrix ele-
ments of H − E0I. First we consider the diagonal
elements of the operator H − E0I. Let us denote

ηtc
m = 〈

0
∣∣tmσ c+

mσ

∣∣0〉
. (20)

This quantity is the coefficient of the BO |cm〉 in the
expansion for the HO |tm〉 [see Eq. (12)]. Also, if |tm〉
is one of the two HOs |rm〉 or |lm〉, then Tm stands
for the atom on which the orbital |tm〉 is centered
(Rm or Lm, respectively). The matrix elements of the
one-electron density matrix are [7, 8]

Ptt′
m = 〈

0
∣∣gmt+mσ t′mσg+

m

∣∣0〉
, Prr

m = u2
m + w2

m,
(21)

Pll
m = v2

m + w2
m, Prl

m = Plr
m = (um + vm)wm.

The matrix elements of the two-electron density ma-
trix are [7, 8]

�tt′
m = 〈

0
∣∣gmt+mσ t′+m−σ t′m−σ tmσg+

m

∣∣0〉
,

(22)
�rr

m = u2
m, �ll

m = v2
m, �rl

m = �lr
m = w2

m.

Using these notations, we obtain

Hcmcm =
〈
0
∣∣∣∣
( ∏

k′ �= m

gk′
)

cmσ (H − E0I)c+
mσ

( ∏
k �= m

g+
k

)∣∣∣∣0
〉

=
∑

t∈{r, l}

{(
Ut

m −
∑

B �= Tm

γTmBZB

)[(
ηtc

m

)2 − 2Ptt
m

]

− (tmtm | tmtm)Tm�tt
m

}

− 2βRmLm
rmlm

(
ηrc

mη
lc
m − 2Prl

m

) − 2γRmLm�
rl
m

+
∑

t∈{r, l}

[(
ηtc

m

)2 − 2Ptt
m

]

×
∑

t′q∈Tm
q �= m

[
2(tmtm | t′qt′q)Tm

− (tmt′q | tmt′q)Tm
]
Pt′t′

q

+ 2
∑

t∈{r, l}

[(
ηtc

m

)2 − 2Ptt
m

] ∑
B �= Tm

γBTm

∑
t′q∈B
q �= m

Pt′t′
q .

(23)

The off-diagonal matrix elements also can be di-
vided in two classes: (1) those between the ionized
states with an electron extracted from one geminal
but from the different BOs assigned to the latter and
(2) those between two ionized states with an elec-
tron extracted from two different geminals. Let us
consider the first case. Let us set

cmσ =
{

amσ , if cmσ = bmσ ,
bmσ , if cmσ = amσ .

(24)

Then

Hcmcm =
〈
0
∣∣∣∣
( ∏

k′ �= m

gk′
)

cmσ (H − E0I)c+
mσ

( ∏
k �= m

g+
k

)∣∣∣∣0
〉

=
∑

t∈{r, l}

(
Ut

m −
∑

B �= Tm

γTmBZB

)
ηtc

mη
tc
m

− β
RmLm
rmlm

(
ηrc

mη
lc
m + ηrc

mη
lc
m

)
+

∑
t∈{r, l}

ηtc
mη

tc
m

∑
t′q∈Tm
q �= m

[
2(tmtm | t′qt′q)Tm

− (tmt′q | tmt′q)Tm
]
Pt′t′

q

+ 2
∑

t∈{r, l}
ηtc

mη
tc
m

∑
B �= Tm

γBTm

∑
t′q∈B
q �= m

Pt′t′
q . (25)

Let us denote

Cmc =
{

Um, if cmσ = bmσ ,
Vm, if cmσ = amσ .

(26)

The off-diagonal matrix element of the Hamiltonian
between the ionized states obtained by the electron
extraction from the different geminals can be writ-
ten as

Hcmc′n =
〈
0
∣∣∣∣
( ∏

k′ �= m

gk′
)

cmσ (H − E0I)c′+
nσ

( ∏
k �= n

g+
k

)∣∣∣∣0
〉

=
∑

tt′∈{r, l}
CmcCnc′η

tc
mη

t′c′
n

×
{
β

TmT′
n

tmt′n

− δTmT′
n

∑
t′′q ∈Tm
q �= m,n

Pt′′t′′
q

[
2(t′′qt′′q | tmt′n)Tm

− (t′′qtm | t′′qt′n)Tm
]}
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−
∑

tt′∈{r, l}
δTmT′

n
ηtc

mη
t′c′
n (tmtm | tmt′n)Tm

× Cnc′
[(
ηta

m

)2Cma + (
ηtb

m

)2Cmb
]

−
∑

tt′∈{r, l}
δTmT′

n
ηtc

mη
t′c′
n (t′nt′n | t′ntm)Tm

× Cmc
[(
ηt′a

n

)2Cna + (
ηt′b

n

)2Cnb
]
. (27)

In the case of lone pairs, these formulae remain true,
but we must consider only the states of type |�+

cmσ
〉

and the contributions from the “right-end” atom.
Due to the spin projection conservation rules, the
overall dimension of the matrix to be diagonalized
is 2M+N, where M is the number of chemical bonds
and N is the number of electron lone pairs in the
molecule.

Another (more sophisticated) possibility for ob-
taining the vertical ionization potentials and the
corresponding eigenstates is to allow the nonion-
ized geminals to relax to accommodate the hole.
Such a procedure must be performed separately for
each many-electron basis state. The whole proce-
dure leads to basis states analogous to Eq. (17), but
with the geminals not taken from the ground state
of the neutral molecule, but obtained via an opti-
mization procedure for (M + N − 1) geminals in
the system with an electron extracted from one of
geminals of the molecule under consideration. In
a molecule with a hole, the effective Hamiltonians
for each geminal differ from those in the neutral
molecule. Thus the optimal geminals for the ionized
molecule differ from those in the neutral molecule
as well.

The above-mentioned adjustment of the gem-
inals to the presence of the hole is nothing but
polarization of these geminals in the Coulomb field
induced by the hole. Polarization of the SCF local-
ized wave function by the hole was investigated in
the Ref. [5] in second order perturbation theory. Let
us consider a method that takes into account the po-
larization of the geminals in the presence of a hole.
To this end, we construct the effective Hamiltonians
for each of the geminals in the field of other gemi-
nals, including the field where the hole is residing
(Heff

kcmτ
). The explicit form of the effective Hamil-

tonians is presented in Appendix. The polarized
geminals can be obtained by solving the eigenvalue
problem

Heff
kcmτ

g̃kcmτ = ε̃kcmτ g̃kcmτ , (28)

where g̃kcmτ is the kth geminal polarized by the hole
on the mth geminal with the remaining electron re-
siding on the bond spin-orbital |cmτ 〉. Expressions

for the matrix elements of the operator H − E0I in
the basis of the ionized basis states with the adjusted
(polarized) geminals are very cumbersome and will
not be presented here. The main difference between
the off-diagonal matrix elements of the two meth-
ods can be termed multiplication by factors similar
to the product of the overlap integrals between the
geminals g̃kcmτ with different values of k. The diag-
onal matrix elements are shifted due to changes in
the contributions to the Hamiltonian from the non-
ionized geminals caused by their polarization.

Results and Discussion

We have implemented the two previously men-
tioned computational procedures that determine
the vertical ionization potentials. The APSLG-
MINDO/3 approximation [7, 8] was employed to
calculate the ground states of these molecules and
to parameterize the Hamiltonian matrices for the
ionized states. The specific structure of the APSLG
approximation restricts these schemes only to the
molecules that can be represented by structures
with well defined separate chemical bonds. First
we compare both procedures with the results of
the SCF-MINDO/3 method for a series of normal
hydrocarbons. The higher members of this series
simulate the polyethylene chain. The first question
in this context concerns whether the structure of the
hole in the higher hydrocarbons is localized on sev-
eral chain segments or delocalized over the whole
chain. The one-electron approximation results in a
plane-wave-like structure for the wave function of
the lowest ionized state (ground state of the cation),
i.e., the coefficient of the kth orbital on the nth atom
in the hydrocarbon molecule CNH2N+2 is

cnk =
√

2
N + 1

sin
πkn

N + 1
. (29)

(In this model, one orbital per methyl or methylene
group in the chain is assumed. These orbitals cor-
respond to the Wannier states derived from the
upper filled band.) At the same time, the variation
of the lengths of chemical bonds in this simplest
model yields the localized ionized state (or pola-
ronic state) [13]. In the context of our model, the
following question is worth study: Does the method
operating with local entities like geminals yield a lo-
calized or delocalized description of a hole? Such a
localized state would corresponded to a polaronic
state with only noninertial (electronic) polarization
taken into account. Another question to be studied
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for a series of hydrocarbons is the dependence of
the vertical ionization potential on the hydrocarbon
chain length.

The dependencies obtained by the SCF-
MINDO/3 method, the APSLG-MINDO/3 method
without polarization of the geminals and the
APSLG-MINDO/3 method that takes into account
the polarization of geminals in the presence of the
hole are given in Table I. The geometry structures
of the neutral molecules in all these cases were
obtained by minimizing the energy of the molecule
in its ground state by the respective method
(SCF-MINDO/3 or APSLG-MINDO/3). Figure 1
represents all three dependencies compared with
the data of photoelectron spectroscopy. The analysis
of these data reveals that both the APSLG-based
methods described in the previous section give
values of vertical ionization potentials that are
lower than the SCF method does. As we expected,
the vertical ionization potentials obtained by the
APSLG-MINDO/3 method with the polarized gem-
inals are always lower than those obtained by the
APSLG-MINDO/3 method with the fixed geminals.
This is due to a larger number of degrees of freedom

TABLE I
The first vertical ionization potentials (in eV) in a
series of hydrocarbons from CH4 to C20H42
obtained by SCF-MINDO/3 and by both
APLSG-based procedures.

Fixed Polarized
N SCF Geminals Geminals

1 13.289 13.306 13.079
2 11.758 11.657 11.212
3 11.291 11.130 10.572
4 11.044 10.862 10.266
5 10.916 10.600 10.034
6 10.722 10.383 9.789
7 10.606 10.226 9.612
8 10.514 10.107 9.476
9 10.424 10.015 9.371

10 10.368 9.942 9.288
11 10.328 9.885 9.222
12 10.279 9.838 9.169
13 10.232 9.800 9.125
14 10.220 9.768 9.089
15 10.192 9.742 9.059
16 10.172 9.720 9.034
17 10.151 9.701 9.012
18 10.136 9.685 8.994
19 10.108 9.671 8.978
20 10.105 9.658 8.964

FIGURE 1. Vertical ionization potentials in a series
of hydrocarbons.

in the case of the polarized geminals. The numerical
values of the vertical ionization potential obtained
by the APSLG-MINDO/3-based method with
fixed geminals are in a good agreement with the
experimental data. It is necessary to mention that
the experimental data on the ionization potentials
are very divergent (see, for example, Refs. [14 – 16]
for methane and Refs. [14, 15, 17], and [18] for
ethane and propane). At the same time, the values
of the vertical ionization potential obtained by the
APSLG-MINDO/3-based method with polarized
geminals are noticeably (by more than 0.5 eV)
lower. So, the photoionization experiment for the
C11H24 molecule [19] gives a value for the first
adiabatic ionization potential equal to 9.6 eV.
The APSLG-MINDO/3-based method with the
polarized geminals gives a value of the vertical
ionization potential that is 0.4 eV lower than the
experimental adiabatic value. This can be readily
understood when we compare the ways to obtain
the ground state energy for neutral molecules and
their positive ions. The wave function of the ion
with fixed geminals has approximately the same
level of correlation as the wave function of the
neutral molecule. At the same time, in the case of
the APSLG-based method with polarized geminals,
this balance is broken.

It is interesting to reproduce the positions of the
peaks in the photoelectron spectrum. For example,
in the case of methane, the experimental data give
the second peak in the photoelectron spectrum at
about 23 eV [20], the SCF-MINDO/3 method gives
27 eV for this quantity, and the APSLG-MINDO/3
method with the fixed geminals gives 26.3 eV (the
polarization of geminals lowers this value by 0.1 eV
only). Thus, both semiempirical quantum chemi-
cal methods push this value essentially higher than
experiment. In the case of highly symmetric mole-
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cules, their photoionization yields degenerate ion-
ized states. For example, in the case of methane,
a triply degenerate peak near 13 eV is observed. In
the case of ethane, a doubly degenerate peak near
11.5 eV is observed. These experimental data are
explained theoretically on the basis of orbital the-
ories (see, for example, [21, 22]). The origin of these
peaks is ascribed to extraction of an electron from
the higher triply degenerate molecular orbital in the
case of methane (the T2 representation of the Td

point group, which is the symmetry group of the
Fock operator for the methane molecule) and from
the doubly degenerate molecular orbital in the case
of ethane. This fact for years served as an argu-
ment in favor of the orbital picture of the electronic
structure of a molecule, although, in fact, it is a
consequence of the SCF approximation. Therefore,
it was interesting to consider the capacity of the
APSLG approximation to correctly reproduce the
form of the photoelectron spectra. In the framework
of the preceding scheme, we studied the degeneracy
of the ionized states for methane and ethane mole-
cules. It turns out that the experimental structure
of the spectrum is reproduced by our calculations.
Of course, the spectrum is totally controlled by the
symmetry of configuration interaction matrix. In the
case of methane, the Hamiltonian matrix consists of
four equal diagonal 2 × 2 blocks. The off-diagonal
2 × 2 blocks are also equal. This leads to a spectrum
with two triply degenerate and two nondegenerate
eigenvalues.

Another question to be studied is localization of
the hole in polyethylene (or, in our case, in higher
hydrocarbons). The eigenfunction of an ion can be
obtained from the wave function of the ground state
of the molecule by acting with an electron annihilat-
ing operator: ∣∣	+

nσ

〉 = Anσ |	0〉. (30)

In the case of the SCF-based approach, leading to
the Koopmans theorem, the operator Anσ is the op-
erator that annihilates an electron on one of the
molecular orbitals. To represent the hole in the case
of the correlated (APSLG) ground state, the concept
of Dyson orbitals [23] can be used. These orbitals in
a most general form are defined by the expression

gnσ (x) = 〈
	+

nσ

∣∣ψ(x)
∣∣	0

〉
, (31)

where ψ(x) is the fermion field operator that anni-
hilates an electron in the point with the coordinates
x = (r, τ ) (where τ stands for the spin projection of
the annihilated electron). In the AO (or linear com-
bination of AO) representation, the Dyson orbitals

are expressed as linear combinations of the respec-
tive basis functions. In the case of the SCF approach,
Dyson orbitals coincide with molecular orbitals and,
therefore, |gnσ 〉 = A+

nσ |0〉. Within the APSLG-based
scheme with the fixed geminals, the operators Anσ

are defined by the expression

Anσ =
∑

m

(
χn

bm

Um
bmσ + χn

am

Vm
amσ

)
, (32)

whereas the Dyson orbitals are

|gnσ 〉 =
∑

m

(
χn

bm
Um|bmσ 〉 + χn

am
Vm|amσ 〉

)
. (33)

Therefore, one-electron functions A+
nσ |0〉 and |gnσ 〉

do not coincide. Moreover, these functions are not
normalized. At the same time, we can check that
〈0|Anσ |gmτ 〉 = δmnδστ , which serves as the biortho-
normalization condition for the Dyson orbitals and
the hole creation (electron annihilation) operators.

In the case of the APSLG approach with polar-
ized geminals, the one-electron operators Anσ can-
not be determined easily. Therefore, to compare the
localization of a hole for two APSLG-based meth-
ods, we use the concept of Dyson orbitals. In higher
hydrocarbons, the Dyson orbitals obtained within
both the computational schemes, which correspond
to the lowest first ionization potential, are delocal-
ized over the chain and are largely located on the
C—C bond backbone. This result coincides with
that reported in Ref. [5]. In the case of the APSLG-
based methods, the Dyson orbital is slightly more
localized than in the case of the SCF method, but
also has a sine-like form with the maximum at the
center of the chain. The Dyson orbitals of the two
APSLG-based methods are similar as well, but the
charge distributions in the alkane cations in these
two schemes differ noticeably. In the case of the
APSLG-MINDO/3 method with the fixed geminals,
the charges on the hydrogen atoms are very close to
those in the neutral molecule, whereas in the case
of the APSLG-MINDO/3 method with the polar-
ized geminals, the charges on the hydrogen atoms
became essentially—by 0.035 of unit charge (for hy-
drogens connected to the carbon atoms near the
center of the chain)—more positive than in the neu-
tral molecule, due to electron redistribution in the
C—H bonds, which are not affected directly by the
ionization.

Let us consider ionization of molecules of other
classes of compounds. In Table II, some results of the
calculation on the first vertical ionization potentials
by the APSLG-based method with fixed geminals
are compared with the experimental data for some
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TABLE II
The first vertical ionization potentials (eV) for some
simple molecules obtained by the APSLG-based
method with fixed geminals and the SCF-MINDO/3
method with use of the Koopmans theorem.

Molecule APSLG SCF Exp.

H2 15.614 15.636 15.43 [24]
Cyclopropane 10.058 10.357 11.0 [25]
Cyclobutane 10.130 10.434 10.6 [26]
Cyclopentane 10.697 11.075 10.50 [27]
C2H4 10.418 10.388 10.51 [28]
NH3 10.117 10.067 10.15 [29]
N2H4 8.856 8.834 8.74 [30]
CH3NH2 8.741 9.273 8.97 [31]
C2H5NH2 8.789 9.246 8.66 [31]
H2O 12.794 12.765 12.62 [20]
CH3OH 10.781 11.089 10.84 [32]
C2H5OH 10.470 10.754 10.47 [32]

simple molecules. Analysis of the data in Table II
shows that the APSLG-MINDO/3-based method
with fixed geminals gives values of the first vertical
ionization potential that are close to experiment for
all the molecules studied except cyclopropane. The
divergence of calculated and experimental data ob-
tained for cyclopropane almost vanishes in the case
of higher cyclic hydrocarbons. Analysis of the wave
function of the ionized state in the case of ammonia
or water molecules showed that the main contribu-
tion to the hole is given by the electron lone pairs
(73.1% in the case of ammonia and 99.9% in the case
of water).

The ionization potentials of methylamine and
ethylamine are very close. This is due to the lo-
cal character (lone pair) of the first vertical ionized
state. This state is only slightly sensitive to the
changes taking place far from the lone pair (the tran-
sition from the methylamine to ethylamine lowers
the calculated first vertical ionization potential by
less than 0.05 eV; the experimental change is also
small). The changes in the local surrounding of the
nitrogen atom such as the transition from ammonia
to methylamine or from methylamine to dimethyl-
amine stronger affects the first vertical ionization
potential (by 1.4 eV in the first case) in accordance
with the experimental data. Notice that the alkyl
substituents at the nitrogen atom increase the sta-
bility (lower the energy) of the first ionized state.
This fact can be explained by taking into account
the importance of the configuration with the ion-
ized lone electron pair for this ionized state and the

accepted (in organic chemistry) electron-donating
character of alkyl groups (the matrix element of the
Hamiltonian between the ionized states, where the
remaining electron resides in the HO of the lone
pair, and that with the remaining electron on the
bonding orbital of the N—H bond are −3.92 eV for
ammonia and −3.56 eV for methylamine). The ad-
dition of alkyl groups to the oxygen atom of the
water molecule decreases the first vertical ioniza-
tion potential as well. The first vertical ionization
potentials in the oxygen-containing molecules are
sensitive as well to the kind and the number of alkyl
substituents at the heteroatom (see Table II).

Appendix

The effective Hamiltonian for the kth geminal in
the field of other geminals and of an electron located
on the bond spin-orbital |cmτ 〉 of the mth (ionized)
bond (k �= m) can be presented as

Heff
kcmτ

= Hcore
kcmτ

+ H1, intra
kcmτ

+ H1, inter
kcmτ

+ Hres
kcmτ

+ H2, intra
kcmτ

+ H2, inter
kcmτ

, (34)

where the contributions have the following mean-
ing. The first term describes the attraction of elec-
trons to the cores:

Hcore
kcmτ

=
∑

t∈{r, l}

(
Ut

k −
∑

B �= Tk

γTkBZB

) ∑
σ

t+kσ tkσ . (35)

One-center repulsion of electrons of one bond gives
the contribution to the Hamiltonian,

H1, intra
kcmτ

=
∑

t∈{r, l}
(tktk | tktk)Tkt+kαt+kβtkβtkα, (36)

and the one-center contribution from repulsion of
the electrons of the kth bond from the electrons of
other bonds can be written as

H1, inter
kcmτ

=
∑

t∈{r, l}

∑
t′q∈Tk

q �= k,m

[
2(tktk | t′qt′q)Tk

− (tkt′q | tkt′q)Tk
]
Pt′t′

q

∑
σ

t+kσ tkσ

+
∑

tt′∈{r, l}
δTkT′

m

(
ηt′c

m

)2
[
(tktk | t′mt′m)Tk

∑
σ

t+kσ tkσ

− (tkt′m | tkt′m)Tkt+kτ tkτ

]
.

(37)

The contribution from the intrabond resonance has
the form

Hres
kcmτ

= −βRkLk
rklk

∑
σ

(
r+

kσ lkσ + l+kσ rkσ
)
. (38)
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The contribution from the Coulomb repulsion be-
tween electrons located on the different atoms also
can be divided into the intrabond,

H2, intra
kcmτ

= γRkLk

∑
σ

r+
kσ l+k−σ lk−σ rkσ , (39)

and the interbond

H2, inter
kcmτ

=
∑

t∈{r, l}

∑
B �= Tk

γTkB

∑
t′q∈B
q �= k

[
δqm

(
ηt′c

m

)2

+ 2(1 − δqm)Pt′t′
q

] ∑
σ

t+kσ tkσ (40)

contributions. The contributions of Eqs. (37)
and (40) to the effective Hamiltonian are responsible
for the polarization.
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