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Abstract: A computational method targeted to Werner-type complexes is developed on the basis of quantum
mechanical effective Hamiltonian crystal field (EHCF) methodology (previously proposed for describing electronic
structure of transition metal complexes) combined with the Gillespie–Kepert version of molecular mechanics (MM). It
is a special version of the hybrid quantum/MM approach. The MM part is responsible for representing the whole
molecule, including ligand atoms and metal ion coordination sphere, but leaving out the effects of the d-shell. The
quantum mechanical EHCF part is limited to the metal ion d-shell. The method reproduces with reasonable accuracy
geometry and spin states of the Fe(II) complexes with monodentate and polydentate aromatic ligands with nitrogen
donor atoms. In this setting a single set of MM parameters set is shown to be sufficient for handling all spin states of
the complexes under consideration.
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Introduction

Exploring potential energy surfaces (PESs) of organic molecules is
one of the main application fields of molecular mechanics (MM).1

Conventional MM scheme is, however, hardly applicable to the
metal ion complexes where the main problem is posed by an
adequate modeling of coordination sphere, in particular accounting
for the flexibility of coordination polyhedron and, more in general,
for the interplay of steric and electronic factors. Existing MM
schemes consider any atom in a molecule as one having a definite
ideal (“strain-free”) stereochemistry, which is allowed to be dis-
torted only slightly. While being reasonable in organic chemistry,
this construction is not valid when applied to most coordination
compounds; it precludes any analysis of strongly distorted struc-
tures and/or structural rearrangements.

Physical precondition of validity of the MM description for
organic molecules is that their electronic excited states are well
separated from the respective ground state on the energy scale.2 In
these cases a single (ground) quantum state of electronic system
suffice to describe a molecule and MM becomes valid. By contrast,
behavior of the metal d-shell is mostly quantum because several
electronic states may be observed in a narrow energy range close

to its ground state. Sometimes the PESs corresponding to different
electronic terms of the d-shell intersect, which results in spin
transitions.3,4 The natural way to theoretically handle the situation
is to integrate a relevant quantum mechanical (QM) description for
the central atom and its closest surrounding (first coordination
sphere) with the MM.

The problem of MM description of transition metal complexes
(TMCs) is thus a special case of a more general problem of
constructing hybrid QM/MM methods. In ref. 5 a general approach
to description of molecular electronic structure and potential en-
ergy of such combined systems was suggested with proper formu-
lation of the QM/MM junction part of the total energy, which
consists of the field, polarization, and resonance (covalent) contri-
butions to the intersystems’ interaction.

An approach fitting the above scheme was proposed and tested
in ref. 2 for the PESs of the spin-crossover Fe(II) complexes. It
allows us to calculate the energies of lowest states of the d-shell in
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the crystal field induced by the ligands. These energies are com-
bined with MM energy of the ligand sphere to get the estimate of
the total energy of the TMC. The physical preconditions of
validity of the effective Hamiltonian for crystal field (EHCF)
method6 used to evaluate the crystal field at the d-shells are
opposite those of the standard MM schemes. This approach is
physically relevant for the situations when the d-shell of the
TMC is a relatively isolated electron group that fundamentally
retains the system of multiplets characteristic for the free tran-
sition metal ion in the respective oxidation state. This situation
may be described by contrasting it to, say, methane molecule
whose electronic structure manifests no trace of the multiplet
system of the free carbon atom: In the hybrid states of carbon
many states even of different electron count are sufficiently
mixed.7 Another validity precondition is that the lower excita-
tion states of the entire TMC are those of the d-shell itself.
These two limiting conditions single out the complexes we are
going (and are able) to treat. From the point of view of an experi-
mentalist they can be characterized as those fitting into the crystal
field theory. We call them arbitrarily the “Werner-type TMCs.” In
fact, this approach concerns largely the complexes of the first transi-
tion row metals in their common oxidation states II and III. The
features of their electronic structure and of the spectrum of their
electronic states sketched above sufficiently distinguish them from
other types of transition metal compounds, like first-row carbonyls or
complexes of second and third transition rows. This explains why the
concepts of ref. 8 extracted from analysis of numerical experiments
performed largely on complexes of heavy transition metals do not
apply to TMC considered in this article in full. However, some
important elements of the bonding picture in TMCs described in ref.
8 work for the Werner-type complexes as well, which will be dis-
cussed below.

In the EHCF approximation the energy of the d-shell depends
both on the molecular geometry (position and orientation of the
ligands with respect to the central metal ion) and on the electronic
structure of the ligands. The method2 is computationally intensive
because it requires calculation of electronic structure of the whole
ligand sphere at each step of geometry optimization. In ref. 9 a
combination of the local version (ref. 10) of the EHCF method
[EHCF(L)] with the special version of the MM scheme—MMGK
procedure11,12—has been proposed and implemented with param-
eters estimated for a series of Fe(II) complexes with nitrogen-
containing ligands. In this article, we report on further improve-
ments of the approach9 and on application of the hybrid method to
studying the geometry of a series of Fe(II) complexes extended
and optimized with use of a procedure different from that of ref. 9.
A sufficient point is that the complexes considered here have
different values of the ground-state total spin.

The article is organized as follows: In the next section we
briefly review the basic features of the EHCF(L) method,6,9,10

allowing us to determine the crystal field in terms of the Green’s
function of the lone pairs of the ligands bound to the metal atom.
It is shown that the Green’s function can be divided into separate
contributions from the lone pairs of the free ligands with pertur-
bative corrections coming from the Coulomb interaction of each
ligand with the rest of the complex. The last section provides the
applications of EHCF(L)/MMGK to some problems close to “real-
world” ones.

Hybrid EHCF(L)/MM Model

The key point for incorporation of transition metal ions (TMIs)
into MM is to estimate the energy of the d-shell as a function of the
ligand sphere’s composition and geometry. In this section we
review the working approximation based on the EHCF(L) theory,9

performing this task and the EHCF(L)/MM junction procedure for
the MMGK version of the MM method.

Basics of EHCF(L)

The EHCF method is based on a general concept of separating
electron variables. The same concept applies when a hybrid
QM/MM method is to be developed5: Electrons have to be divided
into groups; some of the groups whose excited electronic states are
accessible in the experiment are treated quantum mechanically
whereas the behavior of other groups whose excited electronic
states lay high in energy are modeled with use of MM. In a TMC
comprising one TMI and ligands around it the basis of valence
atomic orbitals (AOs) containing the 4s, 4p, and 3d AOs of the
metal atom (for a first transition row element) and those of the
ligand atoms, is according to ref. 6 divided into the d-system,
which contains only 3d orbitals of the TMI, and the l-system,
which contains 4s, 4p AOs of the TMI and the valence AOs of the
ligand atoms. In the EHCF method6 it is shown that the effective
QM Hamiltonian Hd

eff for the d-shell has the form

Hd
eff � �

���

U��
effd��

� d�� �
1

2 �
����

�
��

�������d��
� d��

� d��d��, (1)

where the d-electron Coulomb interaction term is inherited from
the free metal ion and the effective core attraction parameters U��

eff

contain contributions from the Coulomb and the resonance inter-
action of the d- and l-systems:

U��
eff � 	��Udd � W��

atom � W ��
field � W ��

cov, (2)

where

W��
atom � 	��� �


�s,p

g�
P

� (3)

is the repulsion of electrons in the d-shell from those in the 4s and
4p AOs of the metal;

W��
field � �

L

QLV��
L (4)

is the Coulomb interaction of d-electrons with the net charges QL

on the ligand atoms, having the standard crystal field theory
form.13 The covalence part

W��
cov � �

�

�
L��

��L��LGLL
adv�Ad� (5)
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ultimately comes from the resonance interaction between the d-
and l-systems. In eq. (5) the index � enumerates the ligands; the
subscripts L enumerate the one-electron local states referring to the
lone pairs (LPs), residing on the donor atom. According to ref. 5
in the general QM/MM context the formulae eqs. (3)–(5) represent
the exact form of the intersubsystem junction, which depend on the
electron structure parameters (ESPs) of the ligands. The ESPs are
the one-electron densities P

 (the effective charges are derived
from them), the orbital energies �i, and the expansion coefficients
of the one-electron local states (see below) involved in the reso-
nance interaction with the d-shell. The latter ESPs are condensed
in,9,14 the advanced Green’s function Gadv for the ligands, given
by

GLL
adv��� � ��

i

niciL
2

� 
 �gdi 
 �i�
, (6)

where ciL is the coefficient of the local state (LP) expansion over
the canonical MOs (CMOs), which are obtained by the max �4

localization procedure15; gdi is the interaction energy between the
d-electron and the electron on the ith CMO; and �i is the ith CMO
energy.

The resonance integrals ��L in eq. (5) are expressed through
the vector tL formed by the resonance integrals between the metal
d AOs and the Lth localized MO (LMO) taken in the diatomic
coordinate frame (DCF) related to the ligand (donor atom) �:

��L � �
�

L��

R��
� t�

L. (7)

The coefficients R��
� form a unitary matrix R� transforming d-

orbitals from the global (laboratory) coordinate frame (GCF) to the
DCF. (The latter is chosen in such a way that its z-axis is the
straight line connecting the metal atom with the ligand donor
atom.) With use of these quantities the covalence part eq. (5) can
be rewritten in a rotationally invariant form:

W��
cov � �

�

�
���

R��
� e���

� R���
�

e���
� � �

L��

t�
LGLL

adv�Ad�t��
L�, (8)

where the quantities e���
� form an e� matrix. The expression eq. (8)

allows us to calculate the e���
� parameters with use of the EHCF(L)

method. Their relation with the standard angular overlap model
(AOM) parameters is described in details in refs. 9 and 10. The
EHCF(L) method has been explored in refs. 9 and 10. It has been
shown to be able to reproduce the splitting parameter 10Dq of
d-shell levels with a 10% precision.10

Total Energy in Hybrid EHCF(L)/MM Model

The total energy of a TMC in its nth electronic state in the
EHCF(L)/MM approximation is taken as in ref. 2, where it is
shown to be

En � EL � Ed
eff�n�

Ed
eff�n� � ��n

d�Hd
eff��n

d	. (9)

The term Ed
eff(n) is the d-shell energy calculated as the nth

eigenvalue of the effective d-shell Hamiltonian eq. (1). The ligand
energy EL is replaced by EMM, the MM energy of the ligands. In
the present work we assume that the effective d-shell Hamiltonian
is estimated by the EHCF(L) method described in the previous
section. The contribution Ed

eff(n) apparently is not an MM-like
“force field” and has a different nature.

Approximate Treatment of the Ligand Electronic Structure
Parameters: Rigid Ligands’ MOs (RLMO) Model

For evaluation of the effective Hamiltonian for the d-shell, the
ESPs of the l-system must be inserted in eqs. (1)–(4), (5), and (8).
These ESPs are contained in the l-system Green’s function. In the
present section we discuss general formulae that comprise pertur-
bative evaluation of the Green’s function of the l-system using
those of the separate free ligands as a zero approximation. Insert-
ing this approximate form of the l-system Green’s function into the
EHCF(L) formulae eqs. (5) and (8) yields the required estimate for
the crystal field acting on the d-shell of a central TMI in terms of
the separate increments of the lone pairs for each molecular
configuration of the TMC. Within this model the influence of the
central ion on the surrounding ligands reduces to that of the
Coulomb field.9 In terms of the corresponding Green’s function,
the Coulomb field affects the positions of the poles of the Green’s
function (orbital energies) of the free ligand. According to ref. 14,
the effect of the Coulomb field upon the orbital energies can be
represented by

�G���1 � �G0
���1 
 
� f �, (10)

where G0
� is the Green’s function for the free ligand with poles

corresponding to the free ligand’s MOs energies:

�G0
�����LL

adv � �
i��

lim
	30�

�ciL
� �2ni

� 
 ��i
�0� � i	

(11)

and the self-energy term 
( f ) is due to the external (ion) Coulomb
field. The perturbed Green’s function G� within the first order has
the same form as G0

� eq. (11) but with the poles ��i:

��i � ��i
�0� � 
ii

� f �. (12)

The self-energies 
ii
( f ) are taken as those of pure electrostatic

interaction between the partial electron densities and point atomic
charges:


ii
� f � � �

N��

�iN
� 	hN, (13)

where �iN
� is the partial electron density of the ith CMO of the

ligand � on the Nth atom of the ligand:

Low- and High-Spin Iron (II) Complexes 1705



�iN
� � �


�N

�ci

��2. (14)

Here, ci

� are the MO LCAO coefficients of the free ligand and the

core Hamiltonian perturbation 	hN is

	hN � �e2��ZM 
 nd�

RN
� �

����
N����

QN�

RNN��. (15)

The perturbations 	h

 of the core Hamiltonian matrix element in
the AO basis are taken to be equal to the corresponding atomic
quantity 	hN. The quantities QN remain fixed through calculation
and do not depend on the complex structure.

These formulae and approximations comprise the RLMO
model of the electronic structure of the l-system of the TMC.
Despite its empirical implementation it reflects some important
features of bonding characteristic for TMCs,8 namely, the Cou-
lomb interaction between metal ion and ligands. The work on
including further elements of electronic structure into this scheme
is underway now. The RLMO procedure of estimating the param-
eters of the l-system electronic structure has been implemented in
the program suite EHCF(L)/MMGK.16 The results of its applica-
tion to analysis of molecular geometries of Fe(II) complexes are
given below.

Parameters Used in the EHCF(L)/MMGK Approaches

The above EHCF(L)/MMGK method with the RLMO procedure
[EHCF(L)(RLMO)/MMGK] for the ligands’ ESPs in general
terms is (as it has been mentioned in the Introduction) a specific
case of a general hybrid scheme including QM and MM compo-
nents, which both require special parameterization. The entire set
of parameters consists of three subsets. In our case these are the
subsets related to the QM description of the d-shell, the parameters
of the MM part, and those relevant to the junction between the MM
and QM subsystems.

d-Shell Parameters

The d-shell parameters are taken from the EHCF method6 without
changes. These are the atom-specific exponents of d-orbitals and
d-electron core attraction parameter Udd. The Coulomb repulsion
of d-electrons is characterized by three parameters: gdd and the
Racah parameters B and C, which are either specific for the
complex (if known) or are standard for the free ions tabulated, say,
in ref. 13. All these parameters are described in detail in ref. 6. In
this article we use the standard ionic values of B and C, although
they may be uniformly scaled for all complexes considered (see
below).

MM Parameters

The organic part of a molecule and metal ion coordination sphere
(leaving out effects of the d-shell) in the present hybrid procedure
is described in the frame of the MMGK method.11,12 The latter is
the most straightforward attempt to include metal ions in the MM
model and retaining the MM formulation itself may be significant

by modifying the MM force fields formalism for metal ions. The
angular deformations in coordination sphere are described with
potential functions more sophisticated than harmonic ones. In this
framework, the so-called “points-on-a-sphere” (POS) scheme was
proposed.17–20 It suggests the shape of coordination polyhedron to
be ultimately dictated by the interligand van der Waals-like inter-
actions. Recently, this approach has been criticized and im-
proved11,12 by considering not the interligand interaction but re-
pulsion of effective interaction centers placed at the coordination
bonds, as it is suggested by well-known and successful qualitative
theories by Gillespie21 and Kepert.22 The Gillespie–Kepert MM
(MMGK) as described in refs. 11, 12 allows a proper description
of many cases of significant distortion in coordination geometry.

Within the MMGK method the total conformation energy of a
molecule is

EMM � � Eb � � Eang � �Etors � �Enb � �Eimp � �Erep,

(16)

where the energy terms are

Eb � 0.5Kr�r 
 r0�
2

● the energy of bond stretching (except metal–donor atom bonds);

Eang � 0.5K��� 
 �0�
2

● the energy of valence angle bending; note that the valence
angles involving the metal ion as vertex are not considered as
they are described through the Gillespie–Kepert term [see eq.
(18) below];

Etors � 0.5V0�1 � cos�n�� � ��
�

● the energy of torsion interaction,

Enb � �ij� r0

rij
� 12


 2�ij� r0

rij
� 6

● the energy of nonbonded interaction;

Eimp � 0.5Kimp	
2

● the energy of improper torsion (out-of-plane) interaction.

Metal–ligand bonds stretching is modeled with Morse potential

Eb � D0�e�
�r�r0� 
 1
2 (17)

to adequately reproduce large variations of bond lengths occurring
in different TMC spin states.

According to the MMGK model, the arrangement of the donor
atoms around the metal is dictated by repulsion of the effective
centers lying on the MOL bonds at a distance of reff from the
metal ion. This term implicitly (partially) accounts for the elec-
tronic effects in the coordination sphere that are not covered by the
standalone EHCF formalism (which gives only the d-shell energy)
because the former are pertinent to the s–p interactions with the
lone pairs. The energy of the “bond repulsion” in the coordination
sphere is
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Eij
rep � Aij/Rij

6 , (18)

where

Rij
2 � ri,eff

2 � rj,eff
2 
 2ri,effrj,effcos�Xi, M̂Xj�;

ri,eff � R�M 
 Xi�di,eff;

and R(M � Xi) is the actual M � Xi bond length; Aij, deff,i, and
deff, j are the GK force field parameters, characterizing the repul-
sion energy ( A) and positions of the repulsion centers (deff).

The MM parameters for the organic part of the molecule were
primarily taken from the CHARMM force field,23,24 while metal-
specific parameters are fitted within different versions of the EH-
CF(L)/MM method (see ref. 9 and the present work).

Parameters of the Morse potential fitted in this article (see
below for details of the fitting procedure) to be used with the
EHCF(L)/MM approximate scheme are given in Table 1. At this
time, we limit ourselves to fit only the parameter set of the Morse
potential for the sp2-hybridized nitrogen (atom type 8 within the
MMPC force field).

The full set of MMGK force field parameters is available upon
request.

Junction Parameters

Because the EHCF(L)/MMGK procedure is a specific case of a
general QM/MM approach and the entire complex is divided into
two parts, namely, the d-shell and the l-system, their interaction
requires separate attention (within the standard EHCF model this
interaction ultimately results in the d-shell splitting). In the
QM/MM context the intersystem interaction is habitually termed
as a junction. Not like in other hybrid QM/MM schemes the form
of the junction in the present EHCF(L)/MM scheme is not take ad
hoc but is given by the EHCF6 and EHCF(L)2,9,10 theories repre-
sented by eqs. (3)–(5). The precise numerical values of the junc-
tion-related quantities are calculated on the basis of the theory
reviewed above. An important component of this theory is that
some electronic structure underlying the MM part of the system is
assumed. Parameters characterizing this implied electronic struc-
ture of the l-system are used to estimate the intersystem junction
(interaction). These two kinds of parameters corresponding, re-
spectively, to the d–l interaction itself and to the l-system elec-
tronic structure are characterized below.

d–l interaction parameters. In the original EHCF theory the spe-
cific parameters describing the interaction between the d- and
l-systems were fit to reproduce the d-level splitting for octahedral
complexes with a specific donor atom. The set of the intersystem

interaction parameters includes the gsd and g� pd parameters of the
Coulomb interaction between the d-shell and transition metal
valence s- and p-electrons. These parameters are taken from Di
Sipio et al.’s work,25 the valence state ionization potentials for the
d-shell and the donor atoms are taken from ref. 26, and the
dimensionless factors �ML characteristic for a metal–donor atom
pair, scaling the resonance interaction, are transferred from the
original EHCF6 to the EHCF(L)/MM without change. The orbital
exponents necessary for calculating the overlap integrals employed
in parameterizing the resonance integrals are also taken from ref.
6 as is.

Electronic structure parameters of the l-system. The electronic
structure parameters of the l-system required for the calculation of
the effective Hamiltonian eq. (1) by eqs. (3)–(5) are the one-
electron densities (effective charges), orbital energies, MO-LCAO
expansion coefficients. The original EHCF6 method employs the
CNDO approximation27 to estimate these quantities. They are
calculated for each molecular geometry by the approximate self-
consistent field (SCF) procedure extended to the entire l-system.
The local version EHCF(L) reduces the computation effort by the
price of requiring additional parameters: (1) a set of expansion
coefficients for each local state (LMOs) related to the LP involved
in the complex formation; (2) the orbital energies ��i

(0) of the ligand
MOs having nonzero contribution to the lone pair of the donor
atom; (3) a set of partial densities �iN

� of the ith MOs on the atom
N for each ligand � eq. (14); and (4) the effective point charges
(QA

0 , A � �). The expansion coefficients of the LP over MOs cLi
�

and the coefficients c�L
, where 
 runs over the AOs of the donor
atom having the dominating contribution to the LP, are calculated
within the ligand fixed coordinate frame (LFCF). These calcula-
tions are done separately for the free ligand molecules with use of
the semiempirical CNDO procedure, which is known to be param-
eterized to decently reproduce the dipole moments of organic
molecules in terms of effective atomic charges. Because the charge
redistribution between the ligands and the metal s- and p-orbitals
is neglected in the RLMO model, the occupancies of the metal
AOs P

 in eq. (3) remain zero.

Results and Discussion

In the present study a procedure for treating PESs of TMCs within
a general QM/MM-like framework is applied to a series of com-
plexes. In ref. 9 it was shown how to reformulate the semiempiri-
cal EHCF theory, which previously allowed us to calculate with
acceptable accuracy the crystal field induced by the ligands on the
TMC’s d-shells in the local form (i.e., in terms of the crystal field

Table 1. Parameters of Morse and Gillespie–Kepert Potentials Fitted on Complexes I–II, VIII–X
for the RLMO Model of the Ligand ESPs.

Parameter D0 (kcal/mol) 
 (Å�1) r0 (Å) A (kcal � Å6/mol) deff

Value 146.7 1.38 1.896 52.0 1

Low- and High-Spin Iron (II) Complexes 1707



increments induced by the lone pairs of the ligands). This gave us
explicit formulae for the crystal field matrix expressed through the
ESP of the free ligands and a procedure to calculate them as
functions of molecular geometry.

Implementation

In our previous work,9 a procedure combining the EHCF(L) QM
approach and the MMGK MM procedure by eq. (9) was imple-
mented in the MMECF 1.0 package16 that allows both gradient
minimization and minimization without derivatives28,29 for the
molecular energy. The package also allows us to consider either
whole ligands or their fragments as rigid bodies. Technically the
ligand geometries employed while parameter fitting (see below)
within the rigid body scheme were first preoptimized with use of
“pure” MM, and remained fixed in the further calculations.

Spin States and Geometry of Iron (II) Complexes

The methodology described above was applied to 22 Fe2� com-
plexes listed in Table 2 together with relevant Cambridge Crystal
Structure Data Bank (CCSDB) reference data and the spins of the
ground states. The ligands are shown in Figure 1. The series
contains compounds with monodentate and polydentate ligands,
both low- and high-spin ground states. As noted above, there is a
parameter set for nitrogen N(sp2) atom only, so we select from the
CCSDB database complexes with ligands containing this type of
donor atom strictly.

Experimental geometries of the above complexes were taken
from the CCSDB. Hydrogen atoms were added where necessary.
Complexes XVII–XXII exhibit spin crossover and crystal struc-
tures for both low- and high-spin states are known, which allows
detailed comparison of results of our calculations with experiment.

Because the original EHCF method provides an accurate de-
scription for the crystal field in TMCs itself,6 as well as its
dependence on fine geometry variations,49,50 we first fitted the
MM parameters describing the Fe–N interactions [it is that part of
the MM model that is affected by introducing the EHCF(L) d-shell
energy]. The calibration has been performed for the set of mole-
cules I–II, VIII–X by trial-and-error procedure with a twofold
restriction: (1) to ensure that experimental total spin of ground
states is properly predicted and (2) to reproduce experimental
geometry of this spin isomer.

Within such a setting, the complexes I–II, VIII–IX have already
been studied in ref. 9 with use of the standard Racah parameters for
free Fe2� (B0 � 917 cm�1, C0 � 4040 cm�1)13 and within the
rigid ligand approximation. The general conclusion was that the
shape of the potential energy profiles is in agreement with exper-
imental data, but some important details are wrong. To clarify this
situation, the 10Dq parameter for octahedral [Fe(Py)6]2� complex
as a function of the metal–nitrogen distance with use of the
EHCF(L)(RLMO) and by the original EHCF procedure has been
calculated in ref. 9. It was observed that for the “interesting” range
of the FeON distances [near 2 Å, where most of Fe(II)ON
distances lie] the 10Dq value in EHCF(L)(RLMO) is 1.5–2.2
times larger than in the EHCF, which is shown to fairly coincide

Table 2. Ligand Names and CSD Reference Codes for the Calculated Molecules.

No. Formula
Ground-state spin

(exp.) Ligand name CSD refcode Ref.

I [Fe(terpy)2]2� 0 Terpyridine ZIMBUS 30
II [Fe(bipy)3]2� 0 2,2�-Bipyridine NUZKOI 31
III [Fe(N(py)3)]2� 0 tris(2-Pyridyl)amine PYAMFE 32
IV [Fe(btz)3]2� 0 2,2�-Bipyrimidine RIJLAX 33
V [Fe(bpmy)3]2� 0 5,5�,6,6�-Tetramethyl-3,3�-bi-1,2,4-triazine HEYRAE 34
VI [Fe(py-thz)3]2� 0 4-(2-Pyridyl)thiazole QAJKUH 35
VII [Fe(pyam-py-thz)2]2� 0 2-(Pyrazin-2-ylamino)-4-(pyridin-2-yl)thiazole RIZSOI 36
VIII [Fe(py)6]2� 2 Pyridine PYFEFE 37
IX [Fe(m-bipy)3]2� 2 6-Methyl-2,2�-bipyridine VEWVEY 38
X [Fe(m-Im)6]2� 2 1-Methylimidazole MIMFAE 39
XI [Fe(Isoxz)6]2� 2 Isoxazole-N QAHPIY 40
XII [Fe(Bi-bzIm)3]2� 2 2,2�-Bibenzimidazole VEYTEY 41
XIII [Fe(bIm)3]2� 2 2,2�-Bi-imidazole ZIMMAJ 42
XIV [Fe(dtzp)3]2� 2 2-(1,5-Dimethyltriazol-3-yl)pyridine YIVSEB 43
XV [Fe(dpzm)2]2� 2 tris(3,5-Dimethyl-1-pyrazolyl)methane XEFDER 44

XVI
[Fe(2,6-
bis(bzIm)py)2]2� 0 2,6-bis(Benzimidazol-2-yl)pyridine NETBUJ 45

XVII [Fe(bisPh-terpy)2]2� 2 4,6-Diphenyl-2,2�,6�,2�-terpyridine JOJQEE 46
XVIII — 0 — JOJMUQ 46
XIX [Fe(pzlpy)2]2� 2 2,6-bis(Pyrazol-1-yl)pyridine XENBEX01 47
XX — 0 — XENBEX03 47
XXI [Fe(py-trz)3]2� 2 3-(Pyridin-2-yl)-1,2,4-triazole QALMAR 48
XXII — 0 — QALMAR01 48
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with experimental values at experimental geometry of the com-
plex.46 In other words, the d-shell splitting in the RLMO model is
too strong as compared to the experiment (the latter being well
reproduced by the EHCF method).

Analysis of this situation with use of the Tanabe–Sugano
diagrams performed in ref. 9 has shown that because the EHC-
F(L)(RLMO) model systematically overestimates the splitting pa-
rameter the correct position of the cross-section point of the low-
and high-spin terms can be recovered by scaling the free ion B0

and C0 values by a factor �. As shown in ref. 9, the best agreement
between the calculated and experimental geometries in the EHC-
F(L)(RLMO) model is reached at � � 1.5 (B and C Racah
parameters of 1430 and 6040 cm�1, respectively).

In the present work parameterization of the MM part of the
method was performed for the specified value of � for complexes
I–II, VIII–X with rigid ligands using gradient minimization. The
parameters obtained for the EHCF(L)(RLMO) model (Table 1)
slightly differ from those of ref. 9 due to different minimization
procedure (minimization without derivatives) used in that work.

Below we consider results of our calculations with use of the
parameters given in Table 3. All the complexes have been studied
by the rigid ligands optimization using analytic gradients. The
geometry was optimized starting from the experimental structures
until the root mean squared (RMS) energy gradient was less than
0.1 kcal � mol�1 � Å�1. Calculated geometries of this series of the
complexes, in general, agree well with the experimental data.

In the low-spin (S � 0) complexes I–VII maximal RMS
difference between the calculated and experimental
metalOnitrogen bond lengths is 0.04 Å and maximal difference
for the bond angles in coordination sphere is 8°. The low-spin
ground states of the complexes are reproduced in all cases besides
the last complex VII, where the energy difference between low-
and high-spin forms is small.

We performed full optimization of ligands geometry for the
singlet complexes I and II and found certain improvement of
results as compared to rigid ligands optimization. Notably, for the
complex I the difference between the FeON bond lengths of
central and terminal pyridine rings (which is an inherent feature of
this structure attainable to misdirection of terminal nitrogen lone
pairs) obtained in the calculation (0.11 Å) only slightly differs
from the experimental value (0.12 Å). The FeON bond lengths
themselves are in good agreement with experiment, with the dif-
ference about 0.03–0.04 Å.

A numerical experiment was performed on the low-spin com-
plex V. The corresponding ligand, bpmy, may show two binding
modes that differ by the nitrogen atoms used for coordination
(marked with * or ** in Fig. 1). Here, one can test whether the
proposed theory correctly predicts an actual binding mode. The
results presented in Table 4 show that the ground-state total energy
for the (*) isomer is lower than that for the (**) isomer (note the
same ground-state spins in two complexation modes). Thus, the
(**) complexation mode is thermodynamically far less preferable;
this fairly agrees with experiment34 where only the low-spin (*)
mode is detected.

Figure 1. Ligands used in calculations.
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Table 3. Observed and Calculated Bond Lengths (Å) and Angles (°) for Iron(II) Complexes.

Energy (kcal/mol)

Exp.

Calculated

Rigid ligands Flexible ligands

S � 0 S � 2 S � 0 S � 2 S � 0

�9286.91 �9292.20 �9261.04 �9269.93

Complex I
FeON (Å) 1.84 2.23 1.86 2.23 1.89

1.97 2.22 2.03 2.23 2.00
1.97 2.24 2.04 2.24 2.01
1.84 2.23 1.87 2.23 1.88
1.98 2.24 2.04 2.24 2.03
1.98 2.22 2.02 2.23 2.00

RMS 0.05 0.04
NOFeON (°) 81.1 72.5 82.5 102.2 95.3

98.9 107.6 97.5 172.8 180.0
91.4 95.2 91.0 112.2 95.1

162.3 144.9 165.1 145.6 169.6
179.4 179.3 179.4 172.8 180.0

RMS 1.6 2.3

Energy (kcal/mol)

Exp.

Calculated

Rigid ligands Flexible ligands

S � 0 S � 2 S � 0 S � 2 S � 0

�9332.48 �9332.58 �9309.16 �9314.05

Complex II
FeON (Å) 1.97 2.18 1.98 2.18 1.98

1.97 2.18 1.98 2.18 1.98
1.97 2.18 1.98 2.18 1.98
1.97 2.17 1.98 2.18 1.98
1.97 2.18 1.98 2.18 1.98
1.97 2.18 1.98 2.18 1.98

RMS 0.01 0.01
NOFeON (°) 81.9 76.5 84.6 77.3 84.8

92.8 94.7 91.9 94.5 91.8
174.6 170.7 176.4 169.8 176.8

RMS 1.8 1.9

Energy (kcal/mol)

Exp. Calculated

S � 0 S � 2 S � 0

�9352.77 �9361.69

Complex III
FeON (Å) 1.98 2.17 1.98

1.97 2.16 1.98
2.00 2.17 1.98
1.98 2.17 1.98
1.97 2.16 1.98
2.00 2.17 1.98

RMS 0.01
NOFEON (°) 90.0 90.0 90.0

119.8 120.1 120.2
180.0 179.8 179.9

RMS 0.6
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Energy (kcal/mol)

Exp. Calculated

S � 0 S � 2 S � 0

�9325.65 �9338.17

Complex IV
FeON (Å) 1.97 2.19 1.97

1.97 2.20 1.97
1.98 2.19 1.97
1.97 2.19 1.97
1.97 2.18 1.97
1.98 2.20 1.97

RMS 0.004
NOFEON (°) 81.4 76.2 84.7

93.0 94.9 91.8
173.4 169.2 176.6

RMS 1.7

Energy (kcal/mol)

Exp. Calculated

S � 0 S � 2 S � 0

�9324.48 �9352.96

Complex V
FeON (Å) 1.94 2.20 1.97

1.93 2.21 1.97
1.94 2.20 1.97
1.94 2.20 1.96
1.93 2.21 1.97
1.93 2.21 1.96

RMS 0.01
NOFeON (°) 93.5 95.1 91.2

80.2 76.5 86.4
171.6 164.8 176.8

RMS 0.7

Energy (kcal/mol)

Exp. Calculated

S � 0 S � 2 S � 0

�9349.74 �9360.86

Complex VI
FeON (Å) 1.99 2.19 1.99

1.94 2.18 1.98
1.95 2.19 1.98
1.98 2.18 1.98
1.98 2.19 1.99
1.95 2.18 1.98

RMS 0.02
NOFeON (°) 81.5 91.6 89.2

93.0 89.5 90.3
172.7 174.9 178.6

RMS 5.1
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Energy (kcal/mol)

Exp. Calculated

S � 0 S � 2 S � 0

�9356.18 �9355.42

Complex VII
FeON (Å) 2.04 2.19 2.00

1.91 2.16 1.97
2.02 2.19 2.00
2.03 2.20 2.00
1.91 2.06 1.97
2.00 2.21 1.99

RMS 0.04
NOFeON (°) 92.0 90.8 90.2

95.2 90.0 91.0
81.1 82.7 84.7

171.3 173.5 176.0
RMS 4.6

Energy (kcal/mol)

Exp. Calculated

S � 2 S � 2 S � 0

�9360.86 �9336.22

Complex VIII
FeON (Å) 2.25 2.19 2.06

2.28 2.18 2.03
2.29 2.18 2.01
2.26 2.19 2.06
2.22 2.18 2.02
2.25 2.18 2.01

RMS 0.08
NOFeON (°) 90.0 90.0 90.0

178.8 179.5 179.8
120.0 120.1 120.0

RMS 0.3

Energy (kcal/mol)

Exp. Calculated

S � 2 S � 2 S � 0

�9319.38 �9313.76

Complex IX

FeON (Å) 2.20 2.19 1.98
2.16 2.19 1.98
2.20 2.19 1.97
2.26 2.21 2.03
2.19 2.21 2.03
2.24 2.21 2.02

RMS 0.03
NOFeON (°) 74.5 76.5 85.6

87.9 88.8 88.7
111.3 107.0 97.2
161.3 167.5 175.4

RMS 3.2
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Energy (kcal/mol)

Exp. Calculated

S � 2 S � 2 S � 0

�9380.83 �9352.79

Complex X
FeON (Å) 2.22 2.14 2.00

2.19 2.14 2.00
2.19 2.14 2.00
2.22 2.14 2.00
2.19 2.14 2.00
2.19 2.14 2.00

RMS 0.06
NOFeON (°) 90.0 90.0 90.0

180.0 179.9 180.0
RMS 0.1

Energy (kcal/mol)

Exp. Calculated

S � 2 S � 2 S � 0

�9405.54 �9363.97

Complex XI
FeON (Å) 2.18 2.12 1.98

2.18 2.12 1.99
2.18 2.12 1.99
2.18 2.12 1.99
2.18 2.12 1.98
2.18 2.12 1.99

RMS 0.06
NOFeON (°) 90.0 90.0 88.6

180.0 179.9 177.8
RMS 1.0

Energy (kcal/mol)

Exp. Calculated

S � 2 S � 2 S � 0

�9324.43 �9314.54

Complex XII
FeON (Å) 2.21 2.17 1.98

2.20 2.18 1.98
2.22 2.18 1.99
2.18 2.17 1.98
2.12 2.17 1.99
2.17 2.18 1.98

RMS 0.03
NOFeON (°) 77.1 74.7 82.3

90.8 94.9 93.5
99.5 96.2 91.6

167.1 167.8 174.6
RMS 3.4
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Energy (kcal/mol)

Exp. Calculated

S � 2 S � 2 S � 0

�9327.22 �9302.31

Complex XIII
FeON (Å) 2.17 2.16 1.98

2.27 2.16 1.99
2.22 2.16 1.99
2.17 2.16 1.98
2.27 2.16 1.99
2.22 2.16 1.99

RMS 0.07
NOFeON (°) 76.3 76.1 82.7

92.2 94.0 93.2
109.2 100.3 90.1
158.4 163.2 174.5

RMS 5.3

Energy (kcal/mol)

Exp. Calculated

S � 2 S � 2 S � 0

�9330.70 �9322.21

Complex XIV
FeON (Å) 2.22 2.18 1.99

2.16 2.16 1.99
2.27 2.19 2.00
2.15 2.16 1.98
2.21 2.19 2.00
2.14 2.16 1.98

RMS 0.04
NOFeON (°) 76.5 77.1 84.3

91.7 92.4 90.8
170.3 170.3 176.8
100.8 98.8 94.2

RMS 2.0

Energy (kcal/mol)

Exp. Calculated

S � 2 S � 2 S � 0

�9390.54 �9364.64

Complex XV
FeON (Å) 2.16 2.14 1.98

2.18 2.14 1.99
2.18 2.15 1.99
2.16 2.14 1.98
2.18 2.14 1.99
2.18 2.15 1.99

RMS 0.03
NOFeON (°) 76.2 84.7

94.9 91.8
169.2 176.6

RMS 1.8
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Energy (kcal/mol)

Exp. Calculated

S � 0 S � 2 S � 0

�9179.58 �9176.97

Complex XVI
FeON (Å) 1.99 2.22 2.01

1.87 2.22 1.93
1.98 2.24 2.01
1.99 2.22 2.02
1.88 2.22 1.92
1.99 2.24 2.01

RMS 0.03
NOFeON (°) 139.8 145.5 166.0

69.9 72.7 83.0
99.5 97.8 92.8

172.6 174.2 179.3
RMS 4.7

Energy (kcal/mol)

Complex XVII (S � 2) Complex XVIII (S � 0)

Exp.
Calculated
�9285.66 Exp.

Calculated
�9295.66

FeON (Å) 2.23 2.24 2.05 2.03
2.09 2.23 1.88 1.88
2.26 2.24 2.05 2.09
2.27 2.23 2.00 2.02
2.11 2.24 1.89 1.89
2.27 2.23 2.00 2.08

RMS 0.08 0.04
NOFeON (°) 92.4 96.7 99.4 100.8

74.5 71.8 80.4 81.7
154.7 166.9 163.4 163.4
123.8 117.9 91.9 92.8
147.9 143.3 168.8 177.7

RMS 6.3 4.1

Energy (kcal/mol)

Complex XIX (S � 2) Complex XX (S � 0)

Exp.
Calculated
�9326.45 Exp.

Calculated
�9293.86

FeON (Å) 2.13 2.19 1.90 1.91
2.19 2.14 1.99 1.99
2.19 2.14 1.97 1.99
2.13 2.19 1.90 1.91
2.18 2.14 1.99 1.99
2.20 2.14 1.97 2.00

RMS 0.06 0.02
NOFeON (°) 88.8 93.8 99.4 92.5

74.5 72.2 80.4 83.0
150.2 149.8 163.4 169.7
99.6 98.2 91.9 91.4

123.8 121.4 91.8 99.4
RMS 2.8 5.5
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Experimentally, strongly distorted octahedral [Fe(Py)6]2� com-
plex VIII has the high-spin ground state. Our EHCF(L)(RLMO)/
MMGK calculation correctly reproduces this fact. However, the
FeON bond lengths are significantly underestimated. This also
happens for the majority of high-spin complexes of the series; such
behavior perhaps comes from too rigid relation between potential
depth, elasticity, and anharmonism of the used Morse form of the
potential (which does not allow to fit these parameters indepen-
dently). At the same time, calculated valence angles at the metal
ion in VIII–XV are in good agreement with experiment, which
indicates correct description of ligand–ligand repulsion by the
MMGK model. An important feature is that the torsional angles
between the pyridine rings in the calculated structure VIII differ
significantly from the experimental values. With this in mind one
may speculate with good confidence on strong nonbounded inter-
actions in the crystal environment that are responsible for observed
discrepancies. Indeed, the close contacts in experimental structure
of VIII lead to highly asymmetrical environment for the cation
VIII. The negatively charged Fe(CO)6

4� ion in this structure is
close to three pyridines that are more distant from the Fe2� ion
than the other three, while nothing should break the symmetry for
the isolated structure of VIII.

Calculation on the tris-(2-methyl-bipyridine) complex IX also
yields the high-spin ground state, in agreement with experiment.
The calculated lengths of the FeON bonds for the methylated ring
are shorter than the experimental ones, which is a common feature
for the high-spin complexes.

Complex X with six 1-methyl-imidazole ligands is another
example of successfully reproducing high-spin ground state. How-
ever, the FeON bond lengths are also underestimated here. Man-
ifestation of the Jahn–Teller effect in the experimental geometry
where two axial bonds are by 0.03 Å longer than four equatorial
ones is not reproduced in the calculation. A probable reason for the
latter drawback is the absence of the �-overlap between the ligand
�-system and the t2g orbitals of the metal, which is the physical

source of the Jahn–Teller distortion in the Fe(II) complexes in the
present model. Here, only the lone pairs of the ligands are taken
into account in eq. (5). It was pointed out in ref. 10 that taking into
account some �-orbitals in eq. (5) gives considerable values of the
e� parameters. It is still to be tested whether taking into account
localized �-orbitals on the donor atoms contributes to improve the
above result.

In complex XVI the spin crossover is observed although the
structure of the low-spin form is only known. Indeed, the high-spin
ground state in this case has a lower energy; however, the calcu-
lated difference between the singlet and quintet states is only about
2.5 kcal/mol, which can indicate a potential existence of spin
crossover. In ref. 51 complex XVI was calculated by the quasire-
lativistic INDO method, which also gets optimal geometry featur-
ing the FeON distances about 2.02 and 2.13 Å. These values may
be characterized as indicating the high-spin state. That small
difference indicates also that the interaction with counterions and
other components of the crystal structure may be important to
estimate the true ground state of a TMC in the crystal (see below).

Both low- and high-spin calculated geometries of spin cross-
over complex XVII–XVIII46 are in general agreement with the
experiment, but there are large differences between the calculated
(2.23 Å) and experimental (2.09 Å) FeON distances for the central
pyridine nitrogen. Important structural details nevertheless repro-
duced in our calculation are (1) the slight (7°) twist between the
terminal (with the phenyl substituents) and central pyridine rings
and (2) stacking of the phenyl substituent from one tpy with the
central pyridine ring belonging to another tpy ligand.

The calculation results require a special caution while com-
pared with experimental data if the complexes manifest both spin
isomers. In general, such a situation is only possible if the energy
difference between two spin forms is small. However, the last
condition refers not to the relative energies of the isolated isomer
molecules but to those in the appropriate environment (crystal or
liquid). The renormalization of the relative isomer energy incurred

Energy (kcal/mol)

Complex XXI (S � 2) Complex XXII (S � 0)

Exp.
Calculated
�9328.08 Exp.

Calculated
�9320.17

FeON (Å) 2.13 2.14 2.00 1.97
2.20 2.21 2.05 2.00
2.16 2.14 2.01 1.97
2.20 2.21 2.04 2.00
2.15 2.14 2.01 1.96
2.23 2.21 2.05 2.00

RMS 0.01 0.04
NOFeON (°) 76.6 76.3 80.4 83.8

98.0 96.9 95.1 91.4
92.8 94.2 92.1 92.7

165.2 163.3 170.5 175.6
RMS 1.3 3.6

Racah parameters B0 � 917 cm�1, C0 � 4040 cm�1. EHCF(L)(RLMO) calculation with � � 1.5.
Figures corresponding to calculated ground spin state are bold.
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by interaction of the spin active moiety with its surrounding must
be considered separately.

Complexes XVII–XVIII provide an interesting example of the
influence of crystal package upon the structure and the spin state of
the complex. The counterion in the high-spin isomer XVII is PF6

�

while for the low-spin isomer XVIII it is ClO4
�. It is concluded

from the studies on organic Bechgaard salts that internal (“chem-
ical”) pressure in the crystals of (TMTSF)2X is higher if X �
ClO4

� while X � PF6
�52 corresponds to a lower internal pressure.

The larger pressure according to the LeChatelier principle favors
the smaller unit cell volumes, smaller metal–nitrogen distances,
and thus makes the low-spin form more stable.3

The influence of counterion on relative stability of the low-
(XVII) and high-spin (XVIII) forms of the ionic complex can be
interpreted in terms of the following simple thermodynamic
model.

Let us consider a crystal containing both low- and high-spin
TMC ions and their counterion (anion) both modeled as charged
spheres of different radii interacting via Coulomb attraction and

exchange repulsion forces. The free energy 	G of a spin crossover
crystal (per unit cell) can be written analogously to the expression
taken from ref. 53

	G � �	h 
 T	s� x � kT� x ln x � �1 
 x�ln�1 
 x��

�

e2

r
�

c

�r 
 R�m , (19)

where 	h and 	s are intramolecular spin crossover enthalpy and
entropy change, respectively, T is the temperature, x is the fraction
of the high-spin form (0 � x � 1), 
 is the Madelung constant,
which is on the order of unity, c is a parameter of the intermolec-
ular interaction potential, and r is the distance between anion and
cation charge centers. The moieties forming the crystal are in fact
bulk organic molecules and thus the exchange repulsion between
the component molecules in fact depends on the distance y be-
tween the surfaces of the spheres representing them in the model,
rather than on the distance between their centers. The Coulomb
attraction on the other hand depends namely on the distance r
between the centers. These two quantities are related by the con-
dition y � r � R where R is the sum of the radii of the spheres
representing the cation and the anion moieties forming the crystal.
The transition from a low- to high-spin form in a cation from the
point of view of such a crystal is a spontaneous increase of the
radius of its modeling sphere by a small quantity 	rHL. For the
crystal with the x fraction of the high-spin cations we have on
average

R � R0 � x	rHL � rA � rL � x	rHL,

where rA and rL are the effective radii of the anion and the
low-spin form of the cation, respectively. Inserting we get for the
last two terms of eq. (19) as contribution from potential energy of
anion–cation interaction:

	E � �

e2

y � R0 � x	rHL
�

c

ym .

Then, taking into account that y � R0 as well as 	rHL � R0, we
can simplify it so that

	E � �

e2

R0
�1 


1

R0
�y � x	rHL�� �

c

ym

and the enthalpy 	h is effectively renormalized due to interaction
by the positive quantity:

	h� � 	h �

e2

R0
2 	rHL.

Thus, the effective relative energy of the high-spin isomer is lower
for larger rA (and thus R0). In other words, the larger anions (like
PF6

�) make high-spin form be easier accessible in the crystal. It is
in accordance with experimental facts cited above.

In any case one should expect that going from the vacuum to
the condensed medium would shift the preference toward low-spin

Table 4. Observed and Calculated Bond Lengths (Å) for Hypothetical
Iron(II) Complexes (1) XI with Ligands Coordinated in (**) Atoms (see
Fig. 1) and (2) XIX with tert-butyls Substituted for Phenyls
on Terminal Pyridine Ring.

Energy

S � 2 S � 0

�9294.94 �9299.88

[Fe(iso-btz)3]2�

FeON (Å) 2.25 2.04
2.25 2.06
2.26 1.99
2.24 2.08
2.26 2.00
2.26 2.09

NOFeON (°) 73.5 83.8
85.6 86.7

109.1 99.0
163.9 172.2

Energy

S � 2 S � 0

�9276.47 �9272.14

[Fe(bis-tBu-terpy)2]2�

FeON (Å) 2.21 2.00
2.22 1.89
2.30 2.20
2.21 2.01
2.22 1.89
2.30 2.20

NOFeON (°) 80.9 71.7
92.0 93.0

165.4 144.9
105.3 130.1

Racah parameters B0 � 917 cm�1; C0 � 4040 cm�1. EHCF(L)(RLMO)
calculation with � � 1.5.
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form due to internal pressure. In all the examples where the
proposed method predicts the ground spin state erroneously as
compared to the experiment it is always the high-spin state that is
predicted so that it possibly can be corrected by taking into account
the effects of the crystalline environment for which actual mea-
surements are performed.

In complex XXI (high-spin form) a good agreement was ob-
tained in metal–nitrogen distances despite the large (comparing to
other low-spin molecules) difference of these distances in the
corresponding low-spin form XXII. It is understandable as in XXI
distances are not so long (as for other high-spin molecules) and
excessive rigidity of the Morse potential does not influence the
minimum position too much.

Despite the difference in the metal–donor atom bond distances
one can see acceptable accuracy of the hybrid EHCF(L)(RLMO)/
MMGK scheme. Notably, the differences of calculated energies of
the spin isomers, under suggested parameterization (and with the
above stated precautions), are large enough to explain the fact that
only one ground spin state is experimentally observed for those
considered compounds where it actually happens. The hybrid
EHCF(L)(RLMO)/MMGK method correctly predicts the relative
stability of different isomers of TMCs as well as the influence of
the ligand substituents on the spin of the ground state as, for
example, in the case of complexes II (low spin with bpy) and X
(high spin with methylated bpy).

General comparison of the RMS deviations between the exper-
imental and calculated distances for a series of complexes shows
that for the low- and high-spin complexes considered separately
they are, respectively, 0.03 and 0.05 Å. In refs. 54 and 55 the
authors give better values of the RMS deviations for the Ni(II)
complexes (0.01–0.02 Å). Nevertheless, our calculations show
reasonable correspondence with experiment not only in geometries
but also in the energy differences between the low- and high-spin
forms. Values of the RMS FeON distances obtained here can be
interpreted in light of work56 where distribution of these distances
in the six-coordinated Fe(II) complexes was analyzed using the
facilities of the CSD database. Two major maxima were found in
that distribution: one about 1.9 Å and another 2.2 Å, which can be
identified with the distances characteristic for the low- and high-
spin complexes. Our calculations in general reproduce this picture
rather well.

In ref. 57 a new force field for TMC is proposed and good
accuracy in correspondence between experimental and calculated
structures is claimed. The data set used for parameterization in ref.
57 is, however, limited to low-spin organometallic compounds, at
least for Fe(II) complexes. Other examples of calculations on
different Fe(II) spin states in complexes with bulk organic ligands
present in the literature (see refs. 58 and 59) are performed by pure
MM methods with different parameters for the low- and high-spin
iron ions.

Conclusion

In this article we develop the EHCF(L) methodology9 and the
general approach to development of the hybrid QM/MM methods5

in application to the problem of transition metal incorporation into
MM. On this route we reconsidered the EHCF(L)(RLMO)/MMGK

approach, which resulted in a unified parameterization for different
spin states of Fe(II) complexes with nitrogen ligands. On the basis
of the performed analysis it can be stated that with the concert
usage of the EHCF(L)(RLMO) procedure as a QM component for
describing the geometry dependence of the d-shell energy together
with the MMGK procedure as the MM component for describing
the ligand energy a unified MM-like description for the PESs of
different spin states of iron(II) complexes is achieved. Remark-
ably, it uses the single spin-independent parameterization of the
MM part of the system.
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