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Abstract

Previously developed method of analysis of electronic structure of organic molecules performed on the basis of the APSLG

trial electronic wave function led to deductive molecular mechanical description of molecular potential energy surface (PES). It

is based on the observation that the covalent (Heitler–London) configuration is the only one which survives under the infinite

bond elongation. In the present paper the APSLG based treatment of ‘organic’ molecules is modified to cover the case of dative

(coordination) bonds which can be characterized as ones having one of the ionic configurations as an asymptotic limit under the

bond elongation. This analysis allows to establish deductively the QM/MM form of PES for compounds containing dative

bonds between donor atoms and metal cations with empty valence shells. A case of ether oxygen donor atom is considered in

details. Particular attention is paid to to the shaping effect of the donor–acceptor interaction upon the system of the hybrid

orbitals centered on the donor oxygen atom.
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1. Introduction

Chemical bonds are portrayed in textbooks as

being nonpolar covalent, polar covalent, ionic, dative,

donor–acceptor, coordination, and so on without

giving clear reasons for ascribing whatever specific

bond to that or another class [1]. A correct classi-

fication may, however, be important not only from the

pedagogical point of view: from molecular mechanics

(MM) experience we know that constructing

a mechanistic description is not equally easily

possible for different classes of compounds containing

bonds of different types. For purely ‘organic’

molecules with well defined bonds numerous empiri-

cal parameterizations have been developed quite

successfully [2–4]. Corresponding efforts when

applied to metal containing compounds and hydrogen

bonds until now did not give completely satisfactory

result [5–7]. Of course, a good number of works

appeared which parameterize potential energy sur-

faces (PES) of some well defined classes of metal

containing compounds, but some questions important

also from the practical point of view remain unclear.
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The problem addressed here concerns uniform

description of the metal complexes with variable

number of the ligands. Such a description becomes in

demand in the molecular dynamics simulations [8] of

metal ion behavior in solutions of complexing

solvents containing also chelating ligands (e.g.

crown-ethers, cyclic polyammines, etc.). In such a

system one may expect formation of numerous

complexes with different number of solvent ligands

and/or different mode (chelating number) of com-

plexation which must be treated on equal footing in

order to estimate their energies on a uniform scale.

Clearly, the usual MM harmonic approximation for

the metal–donor bond stretch energy accepted say in

Ref. [9] cannot account for such effects. Meanwhile, a

simplistic replacement of a harmonic potential by

another one with better asymptotic behavior (like the

Morse potential) does not solve the problem since too

many other factors seem to be important. These are

the effective charge variation and nontrivial depen-

dence of the interligand and metal–ligand inter-

action energy on metal ligand separations, to mention

only a few.

The charge variability appears due to two types of

interactions almost equally important in the case of

metal ions binding by donor ligands: one is due to

polarization of the ligands by the point metal ion and

by the charges residing in other ligands as well;

another is due to electron transfers from the donor

atoms to the ions’ empty shells (Lewis acid–base

interactions). The importance of the former mechan-

ism has been recently stressed in Ref. [10]. The same

concept has been recently used while developing the

COSMOS MM force field [11] employed later for

analysis of behavior of the Zn2þ complexes with

nitrogen containing ligands [12]. The authors [10]

mentioned that the charge redistribution due to

electron transfers is not important. This may be true

for that class of objects the cited authors actually

consider: the crown ether complexes of the Csþ or

Mg2þ ions, where the results of quantum chemical

analysis reveal a negligibly weak transfer of elec-

tronic density from the oxygen donor atoms to the

metal ions (though the calculated extent of this

transfer is known to be ‘method dependent’). Such a

picture is not generally valid for all metals since some

of them are much stronger Lewis acids than heavy

alkali cations. For example, our older calculations on

the charge distribution in the transition metal com-

plexes revealed a general trend that the formally

divalent transition metal cations bear an effective

charge of about one unit charge, whereas for the

trivalent cations the effective charge is less than two

unit charges [13]. Even in less pronounced case of the

Mg2þ ions coordinated through oxygens in xylose

isomerase the effective charge obtained on Mg within

the PM3 semiempirical calculation [14] is close to

unity. Similar picture has been reported in Ref. [15]

for Zn2þ complexes with imidazole. Remarkable role

of the charge redistribution in close vicinity of the

Ln3þ cations which does not reduce only to the

polarization of the surrounding ligands has been

reported by Malta et al. [16]. Thus the overall picture

appears to be too confusing to hope that it can be

disentangled by a combination of may be locally

successful ad hoc recipes.

Previously we developed an approach which can

be used to put the process of developing mechanistic

descriptions of PES (i.e. of developing MM force

fields) of different classes of compounds on a rational

basis. It is the deductive molecular mechanics

[17–19] (DMM) which allows to develop a form of

the MM force fields analyzing the form of the

electronic wave function chosen in a form relevant

to the physical picture of the considered class of

molecules. In the present paper we apply the

previously developed DMM approach to analytical

derivation of the QM based form for the force fields

involving the nontransition metal atoms. The DMM

methodology which is a general framework for this

description occupies a border position since it is

designed to a bridge the gap between the QM and MM

descriptions.

2. DMM framework

DMM is an assembly of approximations [17–19]

performed in the general QM/MM context which

when applied lead to a mechanistic description of PES

for molecular systems. The mentioned QM method

[20–22] involves the usage of the trial wave function

in the from of the antisymmetrized product of strictly

local geminals (APSLG, see [23] and references

therein) with semiempirical Hamiltonians. The DMM

methodology consists of constructing direct estimates
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for the electronic structure parameters (ESP) which

are defined in the APSLG framework in terms of the

parameters of the effective Hamiltonian. The ESPs

thus estimated are then inserted in the APSLG based

expression for the energy of a molecule at hand. This

gives the required mechanistic description of the PES.

Below we briefly describe the QM-APSLG method

for molecular electronic structure underlying the MM

description of molecular PES and describe the

physical prerequisites and procedures previously

used [18] to construct the mechanistic description of

the molecular PES in organic molecules. Next we

analyze the physical picture corresponding to the

‘dative’ or ‘ionic’ bonds between metal ions (modeled

by their acceptor orbitals) and molecules containing

nitrogen and oxygen donor atoms and construct an

APSLG-based QM/MM model for description for the

corresponding contributions to the PES.

2.1. APSLG based QM method

In the semiempirical APSLG approximation the

electronic wave function of the molecule has the form

[20–22] of the antisymmetrized product of the two-

electron functions (geminals):

lFl ¼
Y

m

gþ
m l0l: ð1Þ

The form of the geminals used in the second

quantization notation is:

gþ
m¼umrþmarþmbþvmlþmalþmbþwmðr

þ
malþmbþlþmarþmbÞ ð2Þ

for (two-center) chemical bonds and:

gþ
m¼rþmarþmb ð3Þ

for lone pairs. The amplitudes of the configurations

ðum; vm; and wmÞ in Eq. (2) are determined with use of

the variational principle. The normalization condition

is imposed on the amplitudes:

u2
mþv2

mþ2w2
m¼1: ð4Þ

The operators tþms (where t is either r or l) create

electrons with spin projection s on the hybrid orbitals

(HOs) ltml ascribed by the construction procedure for

the function Eq. (1) to the mth geminal.

The amplitudes ðum; vm;wmÞ are determined by

sequential diagonalizations of 3 £ 3 matrices of

effective Hamiltonians formed separately for each

two-center bond (see below). Using the Hamiltonian

of the MINDO/3 form [24] with the APSLG trial wave

function Eqs. (1) and (2) in Ref. [20] resulted in a

semiempirical APSLG–MINDO/3 QM method. The

total energy then has a form closest to the standard

MM energy expression [2]

Etotal ¼
X
A

EA þ
X
A,B

EAB; ð5Þ

where

EA ¼
X

m[A

X
t[{r;l}>A

½2Ut
mPtt

m þ ðtmtmltmtmÞ
TkGtt

m�

8<
:

þ
X
k,m

X
tt0[{r;l}>A

2g
Tk

tkt0m
Ptt

k Pt0t0

m

9>=
>;:

Ebond
RmLm

¼ 2gRmLm
½Grl

m 2 2Prr
mPll

m�2 4b
RmLm

rmlm
Prl

m

Enonbond
AB ¼ 1

2
ðZAZBDAB þ QAQBgABÞ

in that sense that the overall energy expression is a

sum of local (atom and bond) contributions. In the

above expression RmLm refer to the right- and left-end

atoms of the mth bond. Each contribution is written

through the intrabond matrix elements of one- and

two-electron densities:

Ptt0

m ¼ k0lgmtþmst0msgþ
m l0l;

Gtt0

m ¼ k0lgmtþmbt
0 þ
mat0matmbgþ

m l0l;

Prr
m ¼ u2

m þ w2
m; Pll

m ¼ v2
m þ w2

m;

Prl
m ¼ Plr

m ¼ ðum þ vmÞwm;

Grr
m ¼ u2

m; Gll
m ¼ v2

m; Grl
m ¼ Glr

m ¼ w2
m;

ð6Þ

and molecular integrals transformed to the basis of

strictly local HOs residing at each ‘heavy’ (nonhydro-

gen) atom:

Umt ¼ s2
mðUs 2 UpÞ þ Up

ðtmtmltmtmÞ ¼ C1 þ C2s2
m þ C3s4

m;

gtkt0m
¼ C4 þ C5½s

2
m þ s2

k� þ C3s2
ms2

k

ð7Þ
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b
RmLm

rmlm
¼ bRmLm

ss sRm
m sLm

m þ b
RmLm

sz sRm
m ð~vLm

m ; ~eRmLm
Þ

þ b
RmLm

zs ð~vRm
m ; ~eRmLm

ÞsLm
m þ bRmLm

pp ð~vRm
m ; ~vLm

m Þ

þ ðb
RmLm

zz 2 bRmLm
pp Þð~vRm

m ; ~eRmLm
Þð~vLm

m ; ~eRmLm
Þ

where Cn’s are the combinations of the Slater–

Condon parameters of the intraatomic Coulomb

electron – electron interactions introduced in

Ref. [17], Us and Up are the parameters of the

electron attraction to the core on s- and p-orbitals of

the heavy atom; bRmLm
mn are the resonance integrals in

the diatomic coordinate frame where the z-axis

coincides with the interatomic vector ~eRmLm
[25]

(hereinafter we use an arrow to indicate a three-

dimensional vector). For explanation of other

elements of the above expression vide infra.

The density matrix elements Eq. (6) comprise the

subset of the QM ESP’s related to the geminal

amplitudes. The diagonal geminal-related ESP’s

define also the effective atomic charges

QA ¼ 2
X

tm[A

Ptt
m 2 ZA; ð8Þ

where ZA’s stand for the core charges.

The molecular integrals in Eq. (7) for the energy

expression Eq. (5) are written in the basis of one-

electron HOs given by the formula [20]:

ltml ¼
X

i[AO

hmilil; t ¼ r; l; i ¼ s; x; y; z ð9Þ

The h matrices (of their own for each ‘heavy’—

nonhydrogen—atom) are the SO(4) matrices due to

obvious orthonormality conditions. They result in

another set of ESPs related to the APSLG picture

of molecular electronic structure which is the set of

sextuples of atom-specific Jacobi angles three of

which ð ~vb ¼ ðvsx;vsy;vszÞÞ—for each heavy atom—

define the overall shape of the system of the HOs

residing at it and other three ð ~vl ¼ ðvyz;vxz;vxyÞÞ

define the orientation of the whole system of the HOs

at a respective heavy atom. Following Refs. [18,19]

the strictly local HOs ltml allow also for the

quaternion representation. Indeed, a quaternion [26]

may be characterized as an entity comprising a scalar

and a three-vector parts: q ¼ ðs; ~vÞ: The coefficient s

of the s-orbital does not change under the spatial

rotation of the molecule, whereas the coefficients at

the p-functions transform as if they were the

components of the three-dimensional vector ~v leaving

incidentally intact the total weight of the p-component

of the HO which equals to its squared norm. Thus

each of the HOs located at a heavy atom can be

presented as a normalized quaternion:

qm ¼ ðsm; ~vmÞ; s2
m þ l~vml

2
¼ 1: ð10Þ

Four quaternions residing at a given atom are

orthogonal in the usual sense:

smsm0 þ ð~vm; ~vm0 Þ ¼ 0; m – m0

For an arbitrary HO in the quaternion represen-

tation the first order correction to its components

occurring when the Jacobi angles get small variations

d ~vl and d ~vb acquire a particularly simple form

[17–19]:

dð1Þs ¼ 2ðd ~vb; ~vÞ; dð1Þ~v ¼ sd ~vb þ d ~vl £ ~v: ð11Þ

The Jacobi angles at each atom together with the

elements of the density matrices Eq. (6) comprise the

set of the ESPs defined in the semiempirical APSLG

framework. Both the amplitudes um; vm; wm for each

bond (or an equivalent set of the geminal related

density ESPs Eq. (6)) and the Jacobi angles ð ~vb; ~vlÞ

for each heavy atom are determined variationally in

Refs. [20–22] by minimizing the energy Eq. (5).

The Jacobi angles themselves are not, however,

visual enough for representing the systems of HOs at

the heavy atoms of the molecule. For this reason in

Refs. [17–19] it was proposed to consider ‘hybridiz-

ation tetrahedra’ formed at each heavy atom by four

corresponding vector parts ~vm; m ¼ 1–4 of HO

quaternions residing there. The orientation and the

shape of these tetrahedra are uniquely related with the

corresponding properties of the represented system of

the HOs. The interhybrid angles umm0 (key invariants

of the shape of the HOs’ system) are given by

cos umm0 ¼
ð~vm; ~vm0 Þ

l~vmll~vm0 l
¼ 2

smsm0ffiffiffiffiffiffiffiffiffi
1 2 s2

m

p ffiffiffiffiffiffiffiffiffi
1 2 s2

m0

q ð12Þ

where the latter equality appears due to orthonorma-

lization condition Eq. (10) imposed on the quaternions

representing HOs. We also notice here that due to
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normalization condition:

X4

m¼1

s2
m ¼ 1 ð13Þ

for the weights of the s-AO in all HOs the shape of the

hybridization tetrahedron is uniquely defined by

setting any three of the four coefficients sm: This

together with Eq. (11) immediately results in an

explicit linear dependency of the vector parts ~vm; m ¼

1–4 :

X4

m¼1

sm~vm ¼ 0 ð14Þ

The DMM is developed in Ref. [18] terms of

interactions between the hybridization tetrahedra

which are considered as true building blocks of the

mechanistic description for the molecular PES instead

of commonly accepted ‘balls and springs’. The

tetrahedra interact according to formulae Eqs. (5)

and (7) which depend both on molecular geometry

and on shapes and mutual orientation of hybridization

tetrahedra. The precise form of the DMM force fields

depends on the approximations employed for the

density matrix ESPs, which are accepted on a basis of

analysis of the physical situation. For example, the

DMM of ‘organic’ molecules is derived in Ref. [18]

for the bond geminals close to the SCF closed shell

two-electron function residing in the Arai subspace

spanned by one-electron functions ltml: In this case the

density matrix ESPs can be naturally represented in

the form:

Gtt0

m ¼ 1
4
þ dGtt0

m ; Ptt0

m ¼ 1
2
þ dPtt0

m : ð15Þ

A series of approximations is then possible which

either set the elements of the density matrices equal to

their invariant values (dPtt0

m ¼ 0; dGtt0

m ¼ 0 for covalent

bonds; dPtt0

m ¼ 1=2; dGtt0

m ¼ 3=4 for lone pairs) or treat

the small corrections dPtt0

m ; dG
tt0

m perturbatively. With

these assumptions the optimization of the total energy

becomes a mechanistic procedure in a course of which

the relative positions, orientations, and shapes of the

hybridization tetrahedra are adjusted to reach the

energy minimum.

3. APSLG approximation and dative bond

The derivation of ‘organic’ DMM was performed

in Ref. [18,19] assuming that the single bond is close

to the SCF two-electron function. This resulted in the

approximation Eq. (15) for the density matrix

elements. Validity of this picture can be illustrated

by the data given in Table 1. However, the infinite

bond-length asymptotic wave function of two

electrons forming a single bond between two atoms

is the Heitler–London singlet with two electrons

with equal probability residing one by one on either

end of this bond. This corresponds to the limit to

which the covalent nonpolar bond flows when the

interatomic distance increases (the homolytic clea-

vage of a s-bond). Dative bonds by contrast flow to

the ionic limit Eq. (3) in the case of infinite bond

elongation. This prevents from using the approxi-

mation Eq. (15) for the geminal ESPs since they

correspond to the wave function with different

asymptotic behavior. Our immediate purpose is to

obtain estimates for the geminal ESPs in the ionic

limit.

3.1. APSLG analysis of ionic limit

3.1.1. Effective bond Hamiltonian in the ionic limit

The geminal wave functions Eq. (2) in the APSLG

approximation are by definition obtained by diagona-

lizing the effective Hamiltonian for the mth bond:

ðHeff
m Þ

um

zm

vm

0
BB@

1
CCA ¼ em

um

zm

vm

0
BB@

1
CCA; ð16Þ

where zm ¼
ffiffi
2

p
wm and

Heff
m ¼ H0

m þH 0
m

H0
m ¼

a 0 0

0 b 0

0 0 c

0
BBB@

1
CCCA; H 0

m ¼ d

0 1 0

1 0 1

0 1 0

0
BBB@

1
CCCA ð17Þ

with

a ¼ eR
m
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b ¼ 1
2
ðeR

m þ eL
mÞ2Dgm

c ¼ eL
m

d ¼2
ffiffi
2

p
b

RmLm

rmlm

where

eR
m ¼ 2Ur

m þ ðrmrmlrmrmÞ
Rm 2 4gRmLm

Pll
m

þ 2
X

B–Rm

gRmBQB þ 2
X

tm1
[Rm

m1–m

g
Rm
rmtm1

Ptt
m1
;

ð18Þ

eL
m ¼ 2Ul

m þ ðlmlmllmlmÞ
Lm 2 4gRmLm

Prr
m

þ 2
X

B–Lm

gLmBQB þ 2
X

tm1
[Lm

m1–m

g
Lm

lmtm1

Ptt
m1

Dgm ¼
1

2

X
t¼r;l

ðtmtmltmtmÞ
Tm 2 gRmLm

. 0

The asymptotic ground state of Heff
m is controlled by

relative position of the H0
m nonzero diagonal elements

on the energy scale. If b is the lowest diagonal matrix

element of H0
m the asymptotic ground state is the

Heitler–London one (‘organic’ case). An alternative

situation takes place if the lowest diagonal matrix

element of H0
m equals (for the sake of definiteness) to

a. This is possible if:

0 , 1
2
ðemL2 emRÞ2Dgm ð19Þ

In the above inequality all components depend on

interatomic distance. Thus the character of the bond

may (as it is well known, see Ref. [27] for the recent

analysis of this situation in similar terms) change in

the course of its formation or cleavage. The critical

distance rc
RmLm

defined by the relation:

Dgmðr
c
RmLm

Þ ¼ 1
2
ðemLðrc

RmLm
Þ2 eR

mðr
c
RmLm

ÞÞ ð20Þ

separates the regions with different physical regime:

at the distances shorter than the critical one indepen-

dently turning the resonance interaction off leads to

the Heitler–London wave function; at the longer

Table 1

Electronic structure parameters for donor atoms in selected amines

and ethers calculated by the APSLG-MNDO semiempirical

procedure

Molecule Electronic structure parameter

G P s1
2

NH3 0.270 0.532 0.657

Me3N 0.272 0.532 0.636

Et3N 0.274 0.531 0.637

MeEtNH 0.273 0.536 0.653

0.274 0.523

0.270 0.544

(18)aneN6 0.272 0.515 0.645

0.271 0.523

0.273 0.538

0.273 0.504 0.683

0.272 0.502

0.274 0.534

0.272 0.504 0.659

0.273 0.503

0.271 0.554

0.272 0.523 0.645

0.272 0.516

0.273 0.538

0.273 0.503 0.659

0.272 0.504

0.271 0.554

0.273 0.503 0.682

0.272 0.502

0.274 0.535

G P s1
2 þ s2

2

H2O 0.263 0.579 0.789

Me2O 0.267 0.572 0.816

Et2O 0.268 0.573 0.807

MeEtO 0.267 0.573 0.815

0.268 0.571

18crown6 0.266 0.564 0.800

0.266 0.563

0.265 0.566 0.793

0.266 0.565

0.265 0.563 0.803

0.266 0.561

0.266 0.561 0.802

0.266 0.562

0.266 0.565 0.793

0.265 0.566

0.266 0.563 0.801

0.266 0.564

15crown5 0.266 0.563 0.806

0.268 0.557 0.812

0.267 0.560 0.811

0.267 0.559 0.812

0.267 0.561 0.812
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distances turning the resonance off leads to the ionic

wave function. The latter is obviously the lone pair

wave function Eq. (3). This consideration allows to

precise the definition of dative bonds. These are those

which flow to the single ionic configuration in the zero

resonance limit without direct relation to the inter-

atomic separation. Namely this function must be used

as a zero approximation for constructing the estimates

for the density ESPs for the dative bond geminals.

3.1.2. Density ESPs in the ionic limit

The previous application [17–19] of the DMM

approach was based on the fact that for the geminals

having the Heitler–London wave function as their

asymptotic limit the related ESPs can be taken as

transferable quantities. For example, it was shown

that the spin bond orders Prl
m in Eq. (6) can be set equal

to 1/2 which is equivalent to the well known picture of

the localized single bonds in organic molecules. For a

considerable range of the bond-lengths around the

equilibrium ones the above value of the spin bond

order remains invariant up to second order with

respect to a small parameter and the interatomic

distance dependence of the bond energy is dominated

by that of the resonance (one-electron hopping)

integrals between the left-end and right-end HOs

ascribed to the bond under consideration. The

deviations of the geminal-related ESPs from their

invariant (transferable) values could be treated as a

relatively small corrections. In the case of the ‘dative’

bond the ionic configuration corresponding to accom-

modation of both bond electrons on (for the sake of

definiteness) the right-end atom is the asymptotic

wave function for the separated metal ion and the

ligand molecule. This differs significantly from the

‘organic’ situation so that the results of Refs. [17–19]

cannot be employed.

As we mentioned previously the density ESPs must

be evaluated through the effective bond Hamiltonian

Eq. (17). If this is done directly (without intermediate

calculation of quantum amplitudes) corresponding

quantities are the measurables in the quantum

mechanics terms. In terms of the geminal amplitudes

the ESPs are given by Eq. (6). To get the required

direct estimates we turn to the projection operator

technique. According to Refs. [28,29] whatever

projection operator P can be obtained from the not

too distant unperturbed operator P0 by the following

formula

P ¼ ðP0 þ VÞð1 þ VþVÞ21ðP0 þ VþÞ; ð21Þ

dim Im P ¼ dim Im P0

where the matrix V and its Hermitean conjugate Vþ

satisfy the conditions:

P0V ¼ 0; VP0 ¼ V ; ð1 2 P0ÞVP0 ¼ V ;

P0Vþ ¼ Vþ; P0Vþð1 2 P0Þ ¼ Vþ;

VþP0 ¼ 0

ð22Þ

which is the formal manifestation for the ‘off-

diagonal’ block structure of the matrices V and Vþ:

The matrix V is obviously an dim Im P0 £ dim

Imð1 2 P0Þ matrix. The projection operator P0

reappears if V ¼ Vþ ¼ 0 thus ensuring the correct

asymptotic behavior of the proposed system of ESPs.

The order of the square matrix VþV equals to dim

Im P0 so that at modest dimensionalities of the

subspace in question it may be easy to get an inverse

matrix of Eq. (21). Alternatively, making use of the

recursion relation:

ð1 þ VþVÞ21 ¼ 1 2
VþV

1 þ VþV
ð23Þ

we arrive to the following form of the projection

operator Eq. (21):

P ¼ P0 þ ðV þ VþÞ þ VVþ 2
VþV

1 þ VþV

2
VVþV

1 þ VþV
2

VþVVþ

1 þ VþV
2

VVþVVþ

1 þ VþV
ð24Þ

Iterating this move one can easily obtain the

expansion of P in a power series in V and Vþ:

Now we address the projection operator upon the

ground state of a geminal. It is known in terms of the

geminal amplitudes:

P ¼

u2 uz uv

uz z2 zv

uv zv v2

0
BBB@

1
CCCA ð25Þ

The zero approximation for the projection operator

P0 to the ionic limit ground state corresponds to u ¼

1; z ¼ v ¼ 0: To ensure the correct (ionic) limit of
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a general one-dimensional projection operator in a

three dimensional space we apply the above prescrip-

tion with the notion that dim Im P0 ¼ 1 and dim

Imð1P0Þ2: In this case the matrix block V consists of

one row and two columns so that there are two

independent parameters. Clearly the one-times-one

matrix can be easily inverted and this results in the

following form of the ground state projection

operator:

P
1

1x2y2

1 x y

x x2 xy

y xy y2

0
BB@

1
CCA; ð26Þ

where x and y are arbitrary real parameters. The

projection property P2P is checked immediately as

well as the fact that Sp P1: P0 obviously reappears

when xy0:

The Schrödinger equation in terms of the projec-

tion operator reads [29]

HP ¼ PH ð27Þ

which can be recast to a system of nonlinear equations

for x and y (details are given in Appendix A):

x ¼
d

ða 2 bÞ
ð1 þ y 2 x2Þ

y ¼
d

ða 2 cÞ
xð1 2 yÞ

xy ¼
d

ða 2 cÞ
ðx2 2 y 2 y2Þ

9>>>>>>>=
>>>>>>>;

ð28Þ

The last equation for the product xy must be

inserted into one for y and the system becomes one for

x and y: Solving this system will be equivalent to

solving the original 3 £ 3 eigenvalue problem for the

effective bond Hamiltonian. In a perturbative manner

we get for the first-order approximation:

x ¼
d

ða 2 cÞ
; y ¼ 0 ð29Þ

In the weak bonding limit the ESP parameter y is

one of higher order in the small parameter d than x:

Identifying the matrix elements of the projection

operators Eqs. (25) and (26) establishes the relation

between two parameterizations of the three-dimen-

sional projection operators and produces explicit

forms for the ESPs Eq. (6) in terms of x :

Prr < 1 2
x2

2
; Pll <

x2

2
; Prl <

xffiffi
2

p ;

Grr < 1 2 x2; Grl <
x2

2
;

dPrr <
1

2
2

x2

2
; dGrr <

3

4
2 x2

:

ð30Þ

3.1.3. Bond energy in the ionic limit

In Section 3.1.2 we obtained the picture of the

geminal-related ESPs for the ‘dative’ or ‘donor–

acceptor’ bond. This picture is different from the

picture of ‘polar covalent’ bond which may be

characterized as an asymmetric one but nevertheless

retaining the Heitler–London limit when b! 0: With

use of the above results concerning the geminal

related ESPs in the ionic limit we notice that the key

estimate of the ‘organic’ DMM becomes invalid: the

geminal related ESPs even approximately are not the

transferable quantities. By contrast, the values of all

density matrix elements become at least linearly

dependent on the resonance integral between the

donor HO and the acceptor orbital. Together with the

exponential distance dependence of the resonance

integral this produces strong anharmonic potential

characteristic for large interatomic separations.

The energy of the geminal in the ionic limit (ionic

bond) can be easily estimated:

Ebond
DA < 2

8b2
DA

ðeA
m 2 eD

mÞ2 2Dgm

	 1 þ
gDA

ðemA 2 eD
mÞ2 2Dgm

� �
ð31Þ

This has a natural form of the perturbative estimate

of the resonance energy known in the theory.

3.1.4. Bonding contribution to the QM/MM

description of dative bond

As it is seen from the perturbative estimates the

density ESPs are not transferable and are rather

sophisticated functions of other ESPs which define the

shape and orientation of the hybridization tetrahedron

on the donor atom. At this stage it is possible

alternatively to trying to develop a mechanistic
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description to retain the variable x (and, may be, y) to

reproduce details of the electronic structure. This is

equivalent to using a QM description specifically for

the dative bond. Incidentally this picture is an

adequate form suitable for constructing a QM/MM

junction. In mechanistic terms their meaning can be

interpreted as a strongly anharmonic spring. This form

must be used instead either of the energy of a covalent

bond with constant (transferable) spin bond orders

characteristic for the usual covalent bonds or of the

perturbative bond energy estimate. Though they are

still rather sophisticated functions of the internuclear

separation and of the shape and orientation of the

hybridization tetrahedron residing on the donor atom

they can be easily calculated since require only the

elementary functions for their evaluation [25] and

have correct asymptotic behavior at infinite inter-

nuclear separation thus being potentially useful in the

molecular dynamics modeling of complexes with

variable number of coordination bonds between the

metal atom and ligand donor atoms. This picture of

the dative bonding is nevertheless a QM one though

very much reduced.

We also notice that according to the perturbative

estimates for the solutions of the system Eq. (28) the

equilibrium value of the y variable is by one order of

magnitude in bDA higher than x: Since only the

combinations xy and y2 enter in the expression of the

projection operator and thus in that for the energy we

may set y ¼ 0 without introducing too large error in

energy and by this to further simplify the projection

operator Eq. (26). With use of this approximation the

bond energy becomes:

Ebond
DA < 2

2
ffiffi
2

p
x

1 þ x2
ðbDA 2 gDAxÞ ð32Þ

where x is an equal in rights variable of a QM/MM

description. It must be determined from the general

energy optimization procedure.

3.1.5. Qualitative picture of the DMM force fields

at donor atoms

In Section 3.1.4 we presented a derivation of the

DMM force fields related to the donor atom with

lone pair interacting with metal ions. This derivation

resulted in rather complicated formulae where all the

terms depend on details of hybridization of the donor

atom through the resonance integrals bDA: One may

foresee two situations: (i) the shape of the hybridi-

zation tetrahedron is to major extent defined by the

shape of the molecule itself; (ii) the shape of the

hybridization tetrahedron is rather flexible and its

variation in the course of formation of the dative bond

is significant.

Indeed, when the dative bonds are formed by the

sp3-nitrogen atoms the shape of their hybridization

tetrahedra do not change. This can be understood on

the basis of the linear dependency condition Eq. (14).

Three covalent bonds fix the norm and the directions

of three vector parts ~vm of the four. Then the fourth is

fixed by the cited linear condition. In this case the

dependence of the dative bond energy on geometry

parameters can be obtained, say, from analysis of that

of the perturbative estimate Eq. (31). In the latter

expression the molecular geometry dependence is

dominated by the square of the resonance integral.

Assuming as in Section 3.1.4 that the acceptor is

represented only by its empty s-orbital we get as in the

case of a hydrogen atom a significant simplification

for the resonance integral of the dative bond:

bDA ¼ bDA
ss s1 þ bDA

zs ð~v1; ~e1Þ ð33Þ

The relative orientation of the acceptor atom and

the donor atom hybridization tetrahedron enters

through the scalar product of the vector part of the

lone pair involved in the formation of the dative bond

ð~v1Þ and the dative bond vector ð~e1Þ which is a unit

vector directed along the line connecting the donor

and acceptor atoms. The maximum of the above

expression is obviously reached when ~v1k~e1 and

whatever escape from this line producing a ‘lone pair

misdirection’ contributes to the corresponding MM

force field for the A–D–X angles (where X stands for

whatever atom covalently bound to the donor one). It

must be noticed, however, that the corresponding

contribution is by no means the leading one in terms

of energetics since one may expect much greater

importance of purely electrostatic forces in this

situation. Indeed, the dative bonding contribution to

the ‘misdirect potential’ is scaled down by a small

value of the ESP x Eqs. (26) and (30)—spin bond

order of the dative bond. At the same time the general

context of the dative bond formation allows to expect

that a local dipole moment ~mD resides on the donor
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molecule and the ion–dipole energy term:

QAeð ~mD; ~e1Þ

r2
DA

where QA is the effective charge of the acceptor atom

(close to its formal ionic charge) and rDA is the

donor–acceptor interatomic separation is larger than

the dative bonding contribution. For the symmetry

reasons (we refer here to a model C3v symmetric

‘ammonia’ molecule) one may expect that ~v1k ~mD and

thus the resulting force field which tends to align ~mD

and ~e1 and also acts to prevent the lone pair

misdirection, though does not have too much relation

to the lone pair direction at all.

3.2. QM/MM model for metal complexes

In the previous sections we applied the DMM

methodology to derive formulae for the energy (force

fields) for donor atoms interacting with complexing

agents. A simplified representation for the acceptor

with use of a single s-orbital was used. In this section

we consider the metal–ligand interactions from a

slightly different point of view. The metal ion in a

complex acquires some density not from one but from

many lone pairs of the ligating donor atoms.

Constructing of a mechanistic or at least an economic

QM description for such a case would possibly help to

rationale terms of interligand interaction force fields

which are sometimes included in the standard MM

picture to assure proper description of the metal

complexes.

Metal ions (both with and without open d-shell)

stay aside from the general MM picture based on the

concept of localized transferable two-center bonds.

The physical reasons are the specific properties of

metal–ligand bonds such as lack of saturability,

directionality [31], and transferability which are

sufficient components of the standard MM picture.

To be more precise the metal–ligand bonds lack

directionality at metal center, though the direction-

ality at donor atoms exists and the corresponding

effects are termed as ‘misdirect’ of lone pairs. These

well known properties represent to our opinion the

reasons why despite numerous attempts present in

the literature (for review see e.g. Refs. [5,32]) the

PESs of metal complexes are not easily covered by

the MM-like schemes. In this context an attempt to

deduce a QM/MM description for (nontransition)

metal atoms using the general methodology (selecting

the relevant form of the trial electronic wave function

first, and extracting convenient ESPs to be used in the

model energy expression) looks very much desirable.

A necessity of namely QM/MM approach in this

context is of course the flexibility of the correspond-

ing ESPs which have to be recalculated for different

molecular geometries in an economical way.

3.2.1. Physical concepts for selecting the form

of wave function

The physical concepts of the metal–ligand bond-

ing mentioned above are largely negative statements.

The metal–ligand bonds are nontransferable, non-

localized, nondirectional at the metal site and

directional on the ligand side. Thus the trial wave

function for the metal complexes is generally not that

of the APSLG form Eq. (1). On the other hand it is

clear (and we used this assumption in previous

sections) that for the ligands themselves (‘organic’

part) the APSLG form of the trial wave function is a

relevant approximation. We performed comparative

study of electronic structures of simple amines and

ethers on one hand and their cyclic polycounterparts

on another hand by the semiempirical APSLG–

MNDO method. The calculation results are given in

Table 1. One can see that the relevant parameters of

electronic structure (the bond orders and electron

densities and the weights of the s-functions in the lone

pairs) are fairly transferable from the low-molecular

amines and ethers to their cyclic polyanalogs. Our

calculations on cyclic chelating ligands have been

performed at more or less arbitrary conformation of

the molecule at hand. One can see that the dispersion

of the values of all ESPs related to donor atoms

entering the cyclic chelating ligands is always smaller

than the dispersion of the same values in a series of

ethers or amines ranging from water or ammonia to

the corresponding alkyl di- or trisubstitutes, respect-

ively. Thus the APSLG form (together with its

semiempirical implementation) seems to be a relevant

approximation for treating free chelating agents like

crown ethers or cyclic polyamines.

This brings us to the situation we are already

familiar with: to that one which requires different

methods of description to be applied to different parts

A.L. Tchougréeff / Journal of Molecular Structure (Theochem) 632 (2003) 91–109100



of a molecule. We faced such a necessity while

describing the properties of the d-shell in transition

metal complexes [33] and while developing a general

theory of the QM/MM junctions [34,35]. In both cases

the solution have been reached by employing the

McWeeny group function approximation [36] in

specific physical conditions. The general method

consists in (i) selecting the relevant Arai subspaces

[23], (ii) ascribing an adequate number of electrons to

each of them, and (iii) by selecting an appropriate

approximation for the electronic wave function in

each of these subspaces. The physically substantiated

picture of the metal–ligand bonding can be forma-

lized by assuming the following form of the trial

electronic wave function

C ¼ FMLP ^FAPSLG ð34Þ

where ^ stands for the antisymmetrized product of

the electronic functions; FAPSLG is the product of the

bonding geminals Eq. (2) in the ‘organic’ part of the

complex; and FMLP is a group function invoked to

describe the metal ion with its closest environment. It

is constructed in the Arai space spanned by the lone

pair HOs defined by the Jacobi angles on the donor

atoms and by the valence AOs of the metal ion. The

number of electrons in FMLP equals to that in all the

lone pairs involved since the ion is assumed to provide

only its vacant orbitals. According to Ref. [36] the

bonding geminals included in FAPSLG affect the

effective Hamiltonian for the MLP Arai subspace

only through the one-electron densities Ptt0

m residing in

the HOs ascribed to the bonds. The same applies to the

effect of the FMLP function upon the effective

Hamiltonians for the bonding geminals: only the

one-electron densities in the lone pair HOs and in the

metal AOs enter the expressions for the bond effective

Hamiltonians. In that respect the form of the effective

Hamiltonians for the bond geminals Eqs. (17) and (18)

does not change when the product of the lone pair

functions Eq. (3) is replaced by FMLP:

3.2.2. Electronic wave function near metal ion

and the ESPs

Now let us address a possible approximation to be

used for the FMLP function. Two groups of concepts

can be attracted to do the necessary choice. In contrast

with the directionality and saturability characteristic

for ‘organic’ covalent bonds the bonds formed by

metal ions do not posses these properties. Thus there

is no need to invoke the HO formation on the metal

ion. Also we notice that in the infinite separation limit

the FMLP wave function must flow to the antisymme-

trized product of the lone pair geminals Eq. (3). The

latter is in fact a single determinant function with all

lone pair HOs doubly filled. Finally, we notice that

important qualitative explanations concerning the

structure of metal complexes have been given in

Ref. [37] with use of the self consistent field (SCF or

single determinant) form of the electronic wave

function in the Arai subspace spanned by the lone

pair orbitals and metal s- and p-orbitals. With all these

arguments we arrive to a conclusion that the single

determinant (SCF) wave function is an appropriate

form of the FMLP function.

To get an economical description of the ESPs

relevant to the FMLP function we notice that the

standard SCF wave function implies the MO expan-

sion coefficients over the specified one-electron basis

set to be the ESPs. This representation may be

obtained by diagonalizing the matrix of the effective

Fock operator (see below) in the specified Arai space.

A more economical selection of the ESPs to be used in

a QM/MM and eventually in a DMM-like description

is possible. Indeed, the dimension of the Arai

subspace we are interested in is NM þ NLP; where

NM is the number of valence orbitals on the metal ion

and NLP is the number of lone pairs on the attached

donor atoms. The number of the ESPs in the MO

representation is ðNM þ NLPÞ
2; which is the number of

the MO expansion coefficients. These coefficients are

subject to ðNM þ NLPÞðNM þ NLP þ 1Þ=2 orthonorma-

lization conditions, but, first, these conditions are very

difficult to explicitly use (may be by introducing

ðNM þ NLPÞðNM þ NLP 2 1Þ=2 Jacobi angles), and,

second, even thus reduced number of parameters is

superfluous. The reason is that the single determinant

wave function is determined up to the subspace of the

filled orbitals. Whatever unitary transformations

applied separately to the filled and the empty one-

electron states does not change the wave function.

Since the numbers of parameters necessary to

describe these irrelevant transformations equal,

respectively, to NMðNM 2 1Þ=2 and NLPðNLP 2 1Þ=2

the minimal number of parameters required to

describe the single determinant function with NLP

doubly filled and NM empty orbitals is only NMNLP:
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This reduction is possible with use of the method

given by Eqs. (21)–(24). Taking the product of the

lone pair geminals (the ionic asymptotic limit) as a

zero approximation for the FMLP function we set the

operator P0 projecting to the subspace lone pair HOs

ðdim Im P0 ¼ NLPÞ as a starting point for constructing

the parameterization of the subspace of the filled

orbitals according to Eq. (21). The projection operator

P Eq. (21) is in its turn the one-electron density

entering the effective bond Hamiltonians Eq. (18) for

the bonding geminals and the semiempirical APSLG

energy expression Eq. (5). Matrices V are obviously

an NLP £ NM matrices. They contain the relevant ESPs

for the FMLP function and ensure the correct

asymptotic behavior: if a ligand goes to infinity the

corresponding rows in the matrix V are set zero. One

may check that in this case the corresponding off-

diagonal matrix elements in the projection operator P

remain zero and the diagonal ones remain unity as

they were in the limiting projection operator P0:

3.2.3. Effective Hamiltonian and DMM energy

Now let us turn to the contribution of the closest

surrounding of the metal ion in the complex which

consists of the metal centered AOs and the donor

atoms’ lone pair HOs to the energy. Notice first that

the energy of the ‘organic’ part of the complex is

described by Eq. (5) with only variance that in the

intraatomic intergeminal Coulomb terms (pro-

portional to gtmt0
k
) for the donor atoms whose lone

pairs interact with the metal corresponding densities

must be taken as diagonal matrix elements of the

projection operator P instead of unity values charac-

teristic for lone pairs in pure ‘organic’ environment.

The same values must be used in Eq. (8) for

calculating the effective charges residing on the

donor atoms.

The energy corresponding to the single determi-

nant wave function with the occupied subspace Im P

is given by [36]

EMLP ¼ 2ðSp heffP þ Sp PS½P�Þ ð35Þ

where heff the one-electron part of the effective

Hamiltonian which contains also the mean Coulomb

field induced by electrons from other electron groups

(in our case—with those in the bond geminals of the

‘organic’ part of the complex) in the MLP Arai

subspace and S½P� is the average (mean-field)

Coulomb electron–electron interaction of electrons

described by the FMLP function. The one-electron part

of the effective group Hamiltonian can be presented as

heff ¼ heff
0 þ h0

; ð36Þ

where h0 describes the one-electron transfers (reson-

ance) between the lone pair HOs and the metal

valence AOs. The effective operator heff
0 can be

defined as one commuting with the unperturbed

projection operator P0: For the metal AOs the matrix

elements of heff
0 are particularly simple:

ðheff
0 Þmm ¼ UM

mm þ
X

B–M;F

gMBQB þ
X
F

gMF

£ 2
X

r[APSLG>F

Prr 2 ZF

 !
ð37Þ

m ¼ s; p; and the first summation is extended to all

atoms in the complex except the donor atoms involved

in the resonance interaction with the metal atom

(termed here as frontier atoms, F) and the metal atom

itself. The second summation extends to those HOs on

the frontier atoms which are responsible for the bond

formation in the ‘organic’ part of the complex. The

diagonal matrix elements of heff
0 for the mth lone pair

HOs residing on the Fth frontier atom have a form

similar to that of the effective two-electron bond

Hamiltonian Eq. (18) with obvious variance that the

matrix elements of heff
0 are ones of the one-electron

operator:

ðheff
0 ÞFlmlm

¼Ul
mþ

X
B–F

gMBQBþ2
X

tm1
[APSLG>F

gF
lmtm1

Ptt
m1

þ
X
F0

gFF0 2
X

r[APSLG>F0

Prr2ZF0

 !
2gMFZM

ð38Þ

By this the one-electron part of the effective

Hamiltonian in the MLP Arai subspace is completely

defined.

Now we address the average Coulomb interaction

entering the energy expression. It has the standard

SCF form for the metal orbitals:

Sss½P� ¼ gssPss þ2gsp

X
p

Ppp þ2
X
F

gMF

X
r[MLP>F

Prr;

ð39Þ
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Spp½P� ¼ gppPpp þ2gspPss þ2gpp0

X
p0–p

Pp0p0

þ2
X
F

gMF

X
r[MLP>F

Prr;

where the Coulomb parameters gss; gsp; gpp and gpp0

relevant for the SCF description of the sp-shell of a

metal atom have been introduced in Ref. [38]. The

Coulomb interactions between electrons in the lone

pairs reduce to a standard contribution of the form:

Slmlm
½P� ¼ ðlmlmllmlmÞ

FPll
m þ 2

X
tm1

[MLP>F

gF
lmtm1

Ptt
m1

þ 2gMF Pss þ
X

p

Ppp

0
@

1
A

þ 2
X
F0

gFF0

X
r[MLP>F0

Prr ð40Þ

The latter expression flows to the same value as in

the APSLG approximation for the free ligand since for

the lone pairs the following (SCF-type) relation holds:

Gll
m ¼ ðPll

mÞ
2
: ð41Þ

The SCF approximation implies also an appear-

ance of the nondiagonal matrix elements of the

Coulomb mean field. They have the form:

Smlm
½P� ¼ gMFPmlm

ð42Þ

By this the energy operator for the electronic group

describing the properties of the metal ion and its

closest surrounding is defined.

Finally we address possible approximations to the

energy of the metal ion with its closest surrounding on

the basis of Eqs. (21) and (35). Inserting these series in

Eq. (35) and cutting the expansion at a particular

overall order in V and Vþ results in approximation to

the energy as power series with respect to the set of

the ESPs characteristic for the electron group of metal

ion and its closest surrounding. The terms of odd

overall order obviously correspond to the spin bond

orders which appear between the lone pairs on the

donor atoms and the metal ion. The necessity to take

into account the variability of the metal–donor bond

orders has been demonstrated recently in Ref. [12] in

the context of an MM study. The terms of even overall

order correspond to electron density transferred from

the lone pairs to metal ion. While considering

the dative bond from the point of view of a single

donor atom we were restricting ourselves with the

harmonic approximation relative to the corresponding

parameter x appear only in the fourth order with

respect to V : In the case of a metal complex it may be

insufficient since the first terms responsible for the

interactions between electrons transferred from the

donor atoms to the metal. However, the Coulomb

interactions between the donor atoms themselves vary

already due to second order terms. The degree of this

variation may be about a couple of electron volts by

order of magnitude and should cause significant

deviations from the points-on-a-sphere model and its

modifications operating with constant interligand

force fields.

4. Hybridization and dative bonding of the oxygen

donor atom

In Section 3 the ESPs defined in the APSLG

framework are determined by a variational procedure

for the total energy Eq. (5). In the free ligand the shape

and orientation of the system of HOs (hybridization

tetrahedron) is determined by the geometry and

interactions characteristic for the latter. It is only

weakly perturbed by the resonance interaction with

the empty (acceptor) orbitals. For the sake of

simplicity modeling the acceptor was restricted by a

single empty orbital of s-symmetry. This can be

interpreted as a process of ‘protonation’ or ‘metalla-

tion’ of a donor atom. Forming additional (a super-

fluous from the point of view of usual valence) bond

affects the shape of the hybridization tetrahedron.

Considering the sp3-nitrogen atom [17] reveals a

correspondingly weak response of the nitrogen

hybridization tetrahedron to the formation of an

additional bond due to significant rigidity of the sp3-

nitrogen hybridization tetrahedron. The formulae

describing the reaction of the nitrogen hybridization

tetrahedron are given in Ref. [17]. The case of doubly

bonded oxygen donor atom remarkably differs from

this simple picture. The covalent bonds formed by the

oxygen atom fix only two of four HOs centered on it.

Thus the linear dependency Eq. (14) does not suffice

to fix the shape of the corresponding hybridization

tetrahedron. To get around this uncertainty we

consider here in detail the model ‘water’ molecule,
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i.e. of the oxygen atom with two hydrogen-like

substituents which serve to represent usual covalent

bonds. Then we consider what happens if an

additional (dative) bonds are formed with an atom

bearing single acceptor orbital of the s-character.

4.1. Model ‘water’ molecule

The properties of the oxygen atom with two

covalent bonds in the APSLG picture are determined

by the interplay two energy contributions: (i) the one-

center energy of the atom and (ii) the resonance

energy of two covalent bonds it forms. The hybridi-

zation/density dependent part of the one-center energy

Eq. (5) reads:

E0 ¼ 2
X
m

ðs2
mðUs 2 UpÞ þ UpÞdPm

þ
X
m

ðC1 þ C2s2
m þ C3s4

mÞdGm

þ
X
k–m

ðC4 þ C5½s
2
m þ s2

k� þ C3s2
ms2

kÞ

£ ðdPkdPm þ 1
2
dPk þ

1
2
dPmÞ: ð43Þ

where we assume that the corrections dPm and dGm

are counted from their invariant values characteristic

for covalently bonding geminals Eq. (15). In this case

for the bonding geminals with m ¼ 3; 4 dPm ¼ dP and

dGm ¼ dG correspond to their values in oxygen

compounds. Any way, their variation is negligibly

small as one can see from Table 1. We take them

equal and do not vary in the following treatment for

the sake of simplicity. For the lone pairs m ¼ 1; 2 and

dPm ¼ 1=2 and dGm ¼ 3=4 (see above). The symmetry

condition s3 ¼ s4 ¼ s also holds. One can check that

the energy depends on the overall weight of the

s-orbital in two lone pairs ðs2
1 þ s2

2Þ rather than on the

specific distribution of the s-character between them.

Adding the resonance energy of two covalent bonds

we obtain the energy of a doubly bonded oxygen

atom:

E ¼ C3ð
1
2
2 dPÞ2½12 2s2�2 þ½2½Us 2Up�ð

1
2
2 dPÞ

þ 2C3ð
1
4
2 dP2Þþ 2C5ð

3
4
2 dP2 dP2Þ

þC2ð
3
4
2 dGÞ�½12 2s2�2 2C3ðdPþ dP2 2 dGÞs4

2 4ð2bOH
ss sþbOH

zs ½ð~v3; ~e3Þþ ð~v4; ~e4Þ�ÞP
rl
OH ð44Þ

This expression contains all the MM of a doubly

bonded oxygen (at least as it comes from the

semiempirical APSLG approximation). Let us con-

sider characteristic features of this expression. As in

the case of ammonia the minimum of the one-center

energy corresponds to s ¼ 0 which refers to no

hybridization. The reason is that the expression

Eq. (44) for the one-center energy is dominated by

the Us 2Up difference which amounts to 212 eV

whereas the contributions from intraatomic Coulomb

terms (both of second and fourth order in sm’s)

entering with different signs (as in the case of

nitrogen) covers the overall variation of no more

than 2 eV. Taking into account that the range of

variation of the variable s is restricted by the

inequality 12 2s2 $ 0 due to normalization con-

ditions allows to conclude that the one-center energy

is a function with a single minimum at s ¼ 0:

Inserting Eq. (11) to the expression for the

resonance energy we find that the minimum of the

resonance part alone is reached when:

bOH
ss ðd ~vb; ~v3 þ ~v4Þ þ bOH

zs sðd ~vb; ~e3 þ ~e4Þ ¼ 0

The linear configuration with:

~v3 ¼ 2~v4; ~e3 ¼ 2~e4

is obviously a solution. It is the minimum for the

resonance energy. Thus as in the case of an ‘ammonia’

molecule modeling the sp3 hybridized nitrogen atom

the actual (bent) form of our model ‘water’ molecule

is a result of an interplay between the one- and two-

center contributions to the energy. The remarkable

distinction from the nitrogen case is that the energy

depends only on sum of the s-weights residing either

in the bonding HOs or in the lone pairs, so that the

weight 1 2 2s2 of the s-orbital falling to two lone

pairs on oxygen is arbitrarily distributed between

them. Thus the shape of the hybridization tetrahedron

on the oxygen atom remains undefined so far.

The form of the bonding HOs may be, never-

theless, specified on the basis of the orthonormality

relations for the HOs which are consequences of the

group SO(4) structure of the hybridization manifold.

According to Eq. (12) the interhybrid angle for the

bonding HOs is given by:

cos u34 ¼ 2
s2

1 2 s2
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For the symmetry reasons the py-AO of the oxygen

atom does not contribute to the lone pair HOs and thus

its weight is equally distributed between the bonding

HOs:

v3y ¼ 2v4y ¼
1ffiffi
2

p

Since the overall p-weight residing in each bonding

HO is 1 2 s2 the x-components of the bonding HOs

become:

v3x ¼ v4x ¼ 2

ffiffiffiffiffiffiffiffiffi
1
2
2 s2

q
This comprises the description of the system of the

HOs at the doubly bonded oxygen atom.

4.2. Donor–acceptor interactions of the model

‘water’ molecule

Now let us consider what happens when an

additional ‘dative’ bond is formed with an atom

containing for the sake of simplicity only one empty

s-orbital used for bonding. The linear response

approximation previously constantly employed in

the DMM framework cannot be employed in the

present case since the matrix of the energy second

derivatives with respect to variations d ~vb and d ~vl is

degenerate (and thus cannot be inverted) due to above

mentioned invariance of the energy with respect to the

deformations of the oxygen hybridization tetrahedron

between approximate sp2 and sp3 hybridization of the

lone pairs. For that reason we try to extract the

information on the shape of the oxygen hybridization

tetrahedron with an extra dative bond from the

structure of the SO(4) hybridization manifold. This

is an analog for the degenerate perturbation theory for

the energy considered as a function of the set of

hybridization parameters ~vb and ~vl:

To start with it we assume that the HO with m ¼ 1

will be used for the dative bond. For it we use the

estimates Eq. (30) for the density ESPs. This may be

termed as a ‘harmonic’ approximation in terms of the

x ESP. The energy of the dative bond is then given by

Ebond
OA < 22

ffiffi
2

p
bOAx 2 gOAx2 ð45Þ

With these definitions we get a correction to the

one-center energy of the ‘water’ oxygen atom due to

partial electron density transfer to the acceptor orbital:

DE0¼2ðs2
1ðUs2UpÞþUpþðC1þC2s2

1þC3s4
1Þ

2ðC4þC5½122s2�þC3s2
1½122s22s2

1�ÞÞx
2

þ2ðC4þC5½s
2
1þs2�þC3s2

1s2ÞðdPþ1
2
Þx2

: ð46Þ

This contribution lifts the degeneracy of the one-

center energy with respect to the distribution of the

s-weight between the two lone pairs. This contribution

describes the energy required to extract an amount of

electron density proportional to x2 from the oxygen

lone pair with the weight of the s-function equal to s2
1:

This energy is the larger the larger is the s-weight of

the HO involved. This is in agreement with the

estimates of the ionization potential of the water

molecule performed both in the semiempirical

APSLG approximation Ref. [30] and with indepen-

dent ones.

The formulae Eqs. (44)–(46) present together a

specific QM/MM force fields for the dative bond

formed by the doubly bonded oxygen atom. It is so

since the cited equations represent the energy

components in terms of the parameters of the

semiempirical QM Hamiltonian and of the ESPs

characterizing the covalent and dative bond on one

hand and the shape and orientation of the hybridiz-

ation tetrahedron residing on the oxygen atom on the

other hand. On a recipe level the sum of Eqs. (45) and

(46) must be added to the total energy and the latter

must be optimized also with respect to x and s1 as well

as to all other ESPs at each value of the geometry

parameters. A simplified treatment with somehow

fixed values of dP and s is also possible. A remarkable

feature of this approach is that it remains valid both at

very large and shorter separations between the donor

and acceptor atoms which allows to cover uniformly

the regions normally treated by different methods: by

QM at a shorter distances and by standard MM at

longer ones.

Now we are equipped to study the shape of the

hybridization tetrahedron on the oxygen donor atom.

The structure of the SO(4) hybridization manifold

does not pose enough restriction on its flexibility. We

have to remind in this context that in the case of

quadruply bonded carbon or triply bonded nitrogen

atoms namely the structure of the hybridization

manifold fixed the tetrahedral form of the model

‘methane’ or ‘ammonia’ molecules through the linear
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dependence relation Eq. (14). In the case of the doubly

bonded oxygen the two defined vector parts ð~v3 and

~v4Þ do not suffice to determine the other two. We

assume that the perturbation incurred by the dative

bond formation does not decrease the overall s-weight

ð2s2Þ of the covalent bonding HOs since it would

results in a too large energy increase of the ‘water’

molecule. The energy of the latter is, however,

independent on the actual value of s1 which controls

the distribution of the s-weight between the lone pairs.

The latter can access only a restricted range of values:

0 # s2
1 # 1 2 2s2; s2

2 ¼ 1 2 2s2 2 s2
1

The limiting values of s2
1 correspond either to pure

p-character of the dative bond HO ðs2
1 ¼ 0Þ pointing

aligned to the normal of the ‘water’ molecular plane

or to almost sp2 HO directed along the C2 axis lended

for the bond formation. The hybridization manifold

structure uniquely determines the direction of the

dative bonding HO for each specific value of s1:

According to Eq. (12) we have:

cos u13 ¼ cos u14 ¼ 2
s1sffiffiffiffiffiffiffiffi

1 2 s2
1

q ffiffiffiffiffiffiffiffi
1 2 s2

p

With the value of s fixed this defines the projection

of the dative bonding HO ðm ¼ 1Þ on the C2 axis ðxÞ;

the rest of the p-weight comes from the z-component

of the HO:

v1x ¼2

ffiffi
2

p
s1sffiffiffiffiffiffiffiffiffi

122s2
p ; v1y ¼ 0; v1z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

s2
1

122s2

s
:

The latter result means that the bonding HO stays

in the mirror plane of the ‘water’ molecule. For the

acceptor ion the going out of this plane results in the

corresponding restoring force. Thus obtained values

of the components of the vector part of the dative

bonding HO must be inserted in the expression

Eq. (33) for the resonance integral. Analysis of the

one-center term Eq. (46) describing the energy

response of the oxygen hybridization tetrahedron to

the formation of the dative bond leads to the

conclusion that for the dative bond the energy

minimum is reached if the pure p-HO is involved

in its formation. This result can be easily understood

since the resistance to the bond formation (the

coefficient at the x2) is larger for the larger

s-contribution to the bonding HO. We arrive to an

interesting situation different from that for the

nitrogen dative bond. In the case of oxygen we expect

that the bond-related force field opposes the electro-

static (ion–dipole) forces which tend to place the

acceptor atom on the C2 axis which coincides with the

direction of the donor effective dipole moment. The

authors of Ref. [9] report a possibility of such

competition on the basis of analysis of the structures

of crown-ether complexes of alkali and alkali earth

ions. It turns out that the singly charged alkali ions

much easier acquire a nonplanar coordination geo-

metry at least with one of the ether oxygen atoms in

the crown ether complexes than the doubly charged

alkali earth ions. For the latter the planar trigonal

geometry of the ether donor oxygen is preferred. This

is precisely the trend one would expect on the basis of

relative strength of the ion–dipole interactions of

single and double charged ions.

In order to numerically test the above evaluations

we performed a series of APSLG-MNDO calculations

on a simple model of a complex of Liþ with H2O

where the cation has been represented by a single

s-orbital with the standard MNDO parameterization

for lithium. The calculation have been performed for

the Li–O separation of 2.14 Å characteristic for Liþ

complexes with ethers [9]. Results are presented in

Table 2. In agreement with the above estimates we

found first of all that the approximations of the ionic

limit are valid for the ion–molecule interaction. In all

cases the equilibrium value of x does not exceed 0.3

which can be shown to be a safe estimate for the

validity of the ionic limit expansions. This ESP

reaches its maximum for the ‘p’-coordination of the

lithium ion to the water molecule. Nevertheless, the

energy of this configuration is maximal. By contrast

the minimal energy is reached for the planar

Table 2

ESPs and relative energies of a model LiþH2O complex

Angle

(8)

Relative energy

(kcal/mol)

X HO angle

(8) with plane

0 (planar) 0.0 0.138 11.2

30 0.66 0.168 58.9

45 2.08 0.191 68.1

60 4.66 0.209 73.3

81 (tetrahedral) 10.87 0.227 79.0

90 15.81 0.244 90.0
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configuration at the oxygen atom where the Li–O

bond order is also minimal. This demonstrates the

dominance of the electrostatic forces in shaping the

molecular geometry of the model complexes. On

the other hand the shape of the system of HO residing

on the oxygen atom pretty much deviates from one

expected on purely geometrical grounds. Almost true

coincidence is observed for the ‘p’-coordination of

the lithium ion. In this case the bonding HO is almost

perpendicular to the water plane though the s-weight

in it is not negligible: ca. 8%. At the same time in the

configuration corresponding to the energy minimum

the angle between the Li–O bond and the correspond-

ing HO is also noticeable.

To conclude this Section we notice that the

described discrepance between the molecular geome-

try at the oxygen donor atom and the shape of its

hybridization tetrahedron is characteristic only for the

ionic limit of the dative bond. If the additional bond

reaches the covalent regime characteristic for

example for real water protonation (formation of the

H3Oþ cation) there is no such uncertainty and as in the

isoelectronic case of ammonia the pyramidal C3v

geometry is with no doubt the equilibrium one

and the misalignment between the bonds and HO

does not exceed a couple of degrees [39].

5. Conclusion

In the present paper we analyzed the behavior of

the APSLG approximation at the frontier of its

applicability area. Being originally designed for

treating the systems with well defined localized two-

center bonds it is employed here for analysis of dative

(donor–acceptor) bonds and coordination compounds

of metal ions. Two major results are acquired on this

way. First, we developed a DMM description for the

dative bonds formed by ether oxygen atom. It turned

out that the DMM of the dative bonds differs from that

of the usual covalent bonds in that respect that the

ESPs corresponding to the bond orders are strongly

distance dependent. Such a situation is described in

the MM context [11] by referring to the Pauling’s

bond-length–bond order logarithmic relation [40].

Here we propose a sequential description for such a

situation based on the standard QM technique. Also

this treatment allowed to analyse the known flexibility

of the coordination mode of the ether oxygen to

acceptors and to rationale the observed dependence of

the coordination trends on the charge of the metal

cation. Second, we proposed to describe the metal ion

and its closest surrounding with use of the McWee-

ny’s parameterization for the occupied states projec-

tion operator in the space of one-electron functions

spanned by the lone pair HOs and the metal ion vacant

valence orbitals. Within that sort of description one

may analyze the sources and expected relative

importance of different empirical force fields which

appear in the description in terms of the projection

operator in the space of one-electronic states, of

course, occupies a border position between the MM

and QM ways of describing molecular structure.

One also has to notice that even in the ‘organic’

MM realm the explicit reference to details of

electronic structure (particularly when it concerns

the redistribution of effective charges) is considered to

be acceptable due to Gasteiger (see Ref. [41] and

reference therein). So the border between two types of

description becomes more and more smeared with

passage of time. On the other hand addressing the

electronic structure in that or another way becomes

even better substantiated when for the object at hand

one may expect even much more significant charge

redistribution characteristic for metal complexes. In

any case the proposed treatment of the metal ion with

its closest surrounding can be treated as an example of

application of the general QM/MM methodology

[34,35] to this specific problem.
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Appendix A

The Schrödinger equation in terms of projection

operator Eq. (27) gives a start for the perturbation
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expansion. Indeed, for the projection operator Eq. (26)

P ¼ P0 þP0

where

P0 ¼
1

1 þ x2 þ y2

2x2 2 y2 x y

x x2 xy

y xy y2

0
BBB@

1
CCCA

we have

ðH0 þ H 0ÞðP0 þP0Þ ¼ ðP0 þP0ÞðH0 þ H 0Þ

H0P0 ¼ P0H0

which can be rewritten as

½H0;P
0� ¼ ½P0;H

0� þ ½P0
;H 0�

with square brackets standing for commutators. This

can be explicitly written as

0 ða 2 bÞx ða 2 cÞy

2ða 2 bÞx 0 ðb 2 cÞxy

2ða 2 cÞy 2ðb 2 cÞxy 0

0
BB@

1
CCA

¼ d

0 1 0

21 0 0

0 0 0

0
BB@

1
CCA

þ d

0 2x2 þ y 2xy þ x

x2
2 y 0 2y 2 y2 þ x2

2x þ xy y þ y2 2 x2 0

0
BBB@

1
CCCA

which gives the system of equations Eq. (28) for x

and y by equating the left- and right-hand matrix

elements.
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