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The quantum mechanical effective Hamiltonian of crystal field (EHCF) methodology (previously developed
for describing electronic structure of transition metal complexes) is combined with the Gillespie-Kepert
version of molecular mechanics (MM) in order to describe multiple potential energy surfaces (PES) of the
Werner-type complexes corresponding to different spin states of the latter. The procedure thus obtained is a
special version of the hybrid quantum mechanics/molecular mechanics approach. The MM part is responsible
for representing the whole molecule, including ligand atoms and metal ion coordination sphere, but leaving
aside the effects of the d shell. The quantum mechanics part (EHCF) is restricted to the metal ion d shell. The
method reproduces with considerable accuracy geometry and spin states of a wide range of Fe(II) and Co(II)
complexes of various total spin and coordination polyhedra and containing both monodentate and polydentate
ligands with aliphatic and aromatic nitrogen donor atoms. In this setting, a single MM parameters set is
shown to be sufficient for dealing with all spin states and coordination numbers of the complexes.

1. Introduction

Economical computational tools suitable for estimations of
electronic structure and molecular geometry of transition metal
complexes (TMC) are highly in demand. The molecular
mechanics (MM)1 both itself and in the molecular dynamics
setting is intensely used in calculations of proteins and other
polyatomic organic molecules. During the past decade, a
considerable number of attempts were made to apply the
conventional MM scheme to the metal ion complexes with
organic ligands.2-11 The main problem here is that in TMCs
several electronic states may occur in a narrow energy range
close to its ground state. Sometimes, the potential energy
surfaces (PESs) corresponding to different electronic terms of
the metal ion d shell intersect which results in spin transitions.12

In organic molecules, this problem normally does not appear
and the MM description is valid since electronically excited
states are well separated from the respective ground state on
the energy scale. In these cases, a single quantum state of the
electronic system suffices for the description of a molecule.
Clearly, this is not mandatorily true for TMCs.

Also, within MM, it is hard to get an adequate modeling of
the coordination sphere, in particular, to account for the
flexibility of coordination polyhedron. The most straightforward
way is to describe deformations of valence angles involving
metal atom at the vertex with potential functions more sophis-
ticated than harmonic potentials. Also a so-called points-on-a-
sphere (POS) approach was proposed.13,14It suggests the shape
of the coordination polyhedron to be ultimately dictated by the
inter-ligand van der Waals-like interactions. Recently, it has been
shown15,16 that it may be further improved by considering not

the inter-ligand interaction (described through common non-
bonding 6-12 or 6-exp potentials) but repulsion of effective
interacting centers placed somewhere on the coordination bonds.
This repulsion is suggested by the well-known qualitative theory
by Gillespie17 and formulated quantitatively by Kepert.18 The
approach recently brought insight of coordination geometries
diversity. It allows a proper description of many cases of
significant distortion in coordination geometry (for discussion
and examples see refs 15 and 16). However, being an MM
method, it is unable (and obviously not designed) to describe
spin states of coordination compounds, which is necessary to
discuss magnetic properties, as well as to provide correct
estimates for energetics of a large number of important chemical
and biochemical processes where they take part.

To incorporate electronic effects of the partially filled d shell
in TMC’s into the general MM scheme it was proposed in refs
19-23 to include the energy of the d shell as a separate
contribution to the energy. It is done in variance with works7,24,25

where the accent is put on estimating the spectral characteristics
of the d shell at the geometry assessed with use of an MM
treatment. Including the energy of the d shell explicitly allows
us to account for electronic structure influence on the geometry
of TMC. These are quantum effects specific for the open d shell
which appear due to possible degeneracies of different electronic
terms of the latter at certain complex geometries. Experimen-
tally, this would correspond to the Jahn-Teller complexes and
to spin active complexes. However, the ligand field energy in
refs 7, 19, 22, 24, and 25 depends only on the distance between
the metal ion and ligand donor atoms, which seems to be an
oversimplified picture since the effects of the lone pair orienta-
tion on the ligand field must be taken into account.

Promising methods for quantitative estimates on TMCs are
proposed in the framework of the hybrid quantum mechanics/
molecular mechanics (QM/MM) methodology.26-29 Most of
their applications belong however to the organometallic realm
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or to that of complexes of heavy (second and third transition
row) metals, without addressing different spin states within a
calculation. In the frame of these attempts, a rather large part
of the TMC is treated by a QM method leaving to MM only
the periphery of the molecule, thus producing a computationally
expensive description of the TMC structure. The QM methods
used in the QM/MM hybrid schemes for the TMCs are most
often based on the SCF approach. It is so for first of all28,29 or
the semiempirical level of the theory.26 However, the SCF theory
does not apply to the TMCs as thoroughly discussed in ref 43.
The source of the problem is the strong correlation of electrons
in the d shell resulting in an instability of Hartree-Fock problem
solutions for the electronic structure of TMCs. Semiempirical
methods have been proposed recently for electronic structure
calculations of TMCs, such as SAM1,30 MNDO/d,31 and PM3-
(tm)32 employing the NDDO parametrization scheme. However,
MNDO/d is not parametrized for the transition metals with only
the exception of Zn. These methods suffer from the defects and
insufficiency of the SCF scheme as well when applied to TMC
with different spin states. For example, in the work in ref 33,
substituted imidazole-like inhibitors binding to cytochrome
P-450 are modeled by protoporphyrin IX ferric ion with ethyl
sulfide as a constant second axial ligand. The binding energy
is calculated by the method in ref 30. There the molecule
contains the metal ion in the doublet state, and the RHF
calculation is used. However, for some ligands in the SCF UHF
calculation, a spin-contaminated state is obtained. Also, opti-
mized geometries of some complexes differ strongly from the
experimental ones: for water the calculated distance, Fe-O is
smaller than experimental by 0.5 Å, whereas for 3-phenylimi-
dazole, the calculated distance Fe-N is shorter by 0.15 Å. In
the work in ref 34, a large set of nickel(II) both low- and high-
spin complexes with square planar cyclotetraazo ligands are
modeled by the PM3(tm) method, and the obtained differences
between experimental and calculated distances are larger than
0.12 Å for low-spin complexes and 0.07 Å for high-spin
complexes. The authors concluded that the PM3(tm) method is
inapplicable at least to this class of complexes. Recently, in ref
35, a construction of energy profiles of the different spin states
of the complex [Fe(heme)](Hys)CO depending on the CO
separation from the plane of the heme ring has been performed
combining the angular overlap model (AOM) and “diatomics-
in-molecule” methods. This semiempirical method is param-
etrized by comparison with TDDFT curves for ground states
of different total spin. However, it is known that the TDDFT
approach only partially include correlation effects for the d shell
of the transition metal ion, so the status of these results is
unclear. From a general point of view, semiempirical methods
based on the SCF methodology take into account correlation
mainly by parametrization rather than by form of the wave
function. Thus, having a parametrization capable of describing
properly certain spin state of the transition metal ion may not
result in a correct description of other spin states with a different
contribution of correlations.

The valence bond approach to the metal bonding proposed
in a series of works36-38 is based on the concept of hybridization
of s- and d-AOs of the metal atom in different ligand
environments. These works explore a physical situation different
from that in “first-row” TMC we are mainly concerned with.
That of the works in refs 36-38 may be qualified as “organo-
metallic” due to direct involvement of the d orbitals into valence
bond formation which establishes corresponding conditions for
possible hybridization schemes. By contrast, in the “first-row”
TMCs, the d electrons must be qualified as “non-bonding” thus

forming a relatively isolated group: the d shell relatively weakly
affected by the environment.

In the papers in refs 39 and 40, we proposed and tested a
hybrid QM/MM description of TMCs targeted at first transition
row metal complexes. It is based on the general approach41 to
molecular electronic structure and potential energy, which makes
it possible to apply the QM description to that part of molecule
in which electronic terms are close on the energy scale and to
use the MM description for the part where the electronic states
remain distant in energy. In refs 39 and 40, a combination of
the effective Hamiltonian of crystal field (EHCF) method43 in
its local version,42 EHCF(L), with the MMGK procedure16 has
been proposed and implemented for a series of Fe(II) complexes
with nitrogen-containing ligands. Within the EHCF(L) approach
the effective crystal field is presented as a sum of lone pair
contributions (see below). This allows for a detailed description
of the ligand field dependence not only on the metal-ligand
distance but also on the lone pair orientation with respect to
the metal ion. In the present paper, we report further improve-
ment of the EHCF(L) approach and the results of application
of the enhanced hybrid method to molecular and electronic
structure estimates for the series of Fe(II) and Co (II) complexes
of low- and high-spin.

The paper is organized as follows. In the next section, we
briefly review the basic features of the EHCF(L) method.42,43

Next we describe the improved EHCF(L) approach taking into
account the ligand polarization in TMC. The last section
provides the parametrization and application of the EHCF(L)/
MMGK approach to calculations of several complexes.

2. Hybrid EHCF(L)/MM Model

The key point for incorporation of transition metal ions (TMI)
into MM is to estimate the energy of the d shell as a function
of the ligand sphere composition and structure. In this section,
we review working approximations based on the EHCF(L)
theory42 and propose the improved EHCF(L) method taking into
account the ligand polarization.

2.1. Basics of the EHCF(L).The concept of separating
electron variables is to be employed when a hybrid QM/MM
method is developed:41 electrons have to be divided into groups,
some of the groups whose excited electronic states are accessible
in the experiment are treated by a QM method, whereas the
behavior of other groups whose excited electronic states lay
high in energy (and are not accessible in experiment) are
modeled with use of MM. In a TMC comprising one TMI and
ligands around it, the basis of valence atomic orbitals (AOs)
containing the 4s-, 4p-, and 3d-AOs of the metal atom (for a
first transition row element) and those of the ligand atoms is
according to ref 43 divided into the d system which contains
only 3d orbitals of the TMI and the l system which contains
4s-, 4p-AOs of the TMI and the valence AOs of the ligand
atoms. In the EHCF method,43 it is shown that the d shell can
be described by the effective QM HamiltonianHd

eff:

whereµ, ν, F, andη are the 3d-AO indices andσ, τ are the
spin projection indices, and the standard notation for the two-
electron integral (µν | Fη) is used. The d electron Coulomb
interaction term is inherited from the free ion, and the effective
core attraction parametersUµν

eff contain contributions from the
Coulomb and the resonance interaction of the d and l systems

Hd
eff ) ∑

µνσ

Uµν
effdµσ

+dνσ +
1

2
∑
µνFη

∑
στ

(µν|Fη)dµσ
+dFτ

+dητdνσ (1)
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The term

is the repulsion of electrons in the d shell from those in the 4s-
and 4p-AOs of the metal, whereµ, R are the indices of metal
3d- and 4s, 4p-AOs respectively,δµν is the Kronecker symbol,
gµR is the electron-electron interaction parameter, andPRR is
the density matrix diagonal element. The term

is the Coulomb potentialVµν
L of d electrons interacting with the

net chargeQL on theLth ligand atom, having the standard crystal
field theory form.44 The covalence part

ultimately comes from the resonance interaction between the d
and l systems, whereâµi (âνi) are the resonance integrals between
µth (νth) AO of the d shell andith MO of the l system,∆Edi

(∆Eid) is the charge-transfer energy from the d shell to theith
MO or backward,ni ()0 and 1) is the occupation number of
the ith MO. Summation here is extended to the canonical MOs
(CMO) of the entire l system. This is the essence of the EHCF
method.43 The procedure expressed by eqs 1-5 has been shown
to be able to reproduce the splitting of d shell levels with a
10% precision.43-49

In our papers,39,42we have derived and tested a local version
of the EHCF method EHCF(L). It was shown that the splitting
parameter 10Dq can be estimated with the error not exceeding
0.1 eV (this accuracy compares to that of the EHCF method
itself) by the formula

whereΛ enumerates the ligands, the subscriptsL enumerate
the one-electron local states referring to the lone pairs (LPs)
residing on the donor atoms, andâµL is the resonance integral
between theµth AO of the d shell and theLth LP. The advanced
Green’s functionGLL

adv(ε) for the local stateL in eq 6 is given
by

whereciL is the coefficient of the LPs expansion over CMOs
obtained by the maxΨ4 localization procedure,50 gdi is the
interaction energy between d electron and electron on theith
MO, andεi is the energy of theith CMO of the l system in the
TMC.

The resonance integralsâµL in eq 6 can be expressed through
thetL vector of the resonance integrals between the metal d-AOs
and theLth LMO taken in the diatomic coordinate frame (DCF)
related to the ligandΛ

where the coefficientsRλµ
Λ form a unitary matrixRΛ trans-

forming d orbitals from the global (laboratory) coordinate frame
(GCF) to the DCF. The latter is defined so that itsz axis is the
straight line connecting the metal atom with the ligand donor
atom.

Then, introducing the quantities

we obtain

where the matrix elementseλλ′
Λ of the eΛ matrix in the DCF

are labeled by the indicesλλ′ taking valuesσ, πx, πy, δxy,δx2-y2

according to the symmetry of the metald-orbitals with respect
to thez axis of the DCF.

The expression eq 9 defines theeλλ′
Λ parameters in terms of

the quantities which can be calculated within the EHCF(L)
method. Their relation with the standard AOM51 is described
in details in ref 42. There eqs 9 and 10 have been used to
calculate the values of theeσ andeπ parameters for a series of
octahedral complexes with nitrogen containing ligands. That
calculation was in a good agreement with experimental 10Dq
values (within 10% accuracy).

2.2. Perturbative Estimates of Ligands’ Electronic Struc-
ture Parameters. In section 2.1, we reviewed the EHCF(L)
theory which allows to estimate the crystal field in terms of
local electronic structure parameters (ESP) of the ligands. By
this method, it can be done for arbitrary geometry of the
complex, which is prerequisite for developing a hybrid QM/
MM method.

The natural way to go further with this technique is to apply
the perturbation theory to obtain estimates of the l system
Green’s function entering eqs 6 and/or 9. It was assumed and
reasoned in ref 39 that the bare Green’s function for the l system
has a block-diagonal form

Nonvanishing blocksG0
Λ correspond to separate ligands (frag-

ments)Λ containing the unperturbed diagonal Green’s function
matrix elements (G0

Λ)(ε)LL
adv corresponding to the LPL located

on the ligandΛ

whereciL
Λ is the same expansion coefficient as in eq 7 but for

the LP of the separate ligandΛ, andεΛi
(0) is theith MO energy

of that same free ligand. Then the eq 6 contains Green’s function
(G0

Λ)(ε)LL
adv of the free ligand and the summations in eq 6 is

performed over the separate ligandsΛ and their LPs indexed
asL.

The Coulomb interaction between the ligands themselves and
between each of them and the metal ion when turned on does
not break the block diagonal structure of the bare Green’s
function G00

l . Then the approximate Green’s function for the l
system conserves the form eq 11 but with the poles now
corresponding to the orbital energies of the ligand molecules
in the Coulomb field induced by the central ion and by other
ligands (Λ′ * Λ) rather than to those of the free ligands.

Uµν
eff ) δµνUdd + Wµν

atom+ Wµν
field + Wµν

cov (2)

Wµν
atom) δµν( ∑

R∈s,p

gµRPRR) (3)

Wµν
field ) ∑

L

QLVµν
L (4)

Wµν
cov ) - ∑

i

âµiâνi(1 - ni

∆Edi

-
ni

∆Eid
) (5)

Wµν
cov ) ∑

Λ
∑
L∈Λ

âµLâνLGLL
adv(Ad) (6)

GLL
adv(ε) ) - ∑

i

niciL
2

ε - (gdi - εi)
(7)

âµL ) ∑
λL∈Λ

Rλµ
Λtλ

L (8)

eλλ′
Λ ) ∑

L∈Λ

tλ
LGLL

adv(Ad)tλ′
L+ (9)

Wµν
cov ) ∑

Λλλ′
Rµλ

Λeλλ′
ΛRνλ′

Λ (10)

G00
l ) x ΛG0

Λ (11)

(G0
Λ(ε))LL

adv ) ∑
i∈Λ

lim
δf0+

(ciL
Λ)2ni

ε - εΛi
(0) + iδ

(12)
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In the following subsection, we consider an implementation
of this approach taking into account the Coulomb field effects
and thus allowing us to express the Green’s function of the l
system in terms of the Green’s functions of separate ligands.

2.3. Approximate Treatment of the l System Electronic
Structure. 2.3.1. Rigid Ligands’ MOs Model.The simplest
picture of the influence of the central ion on the surrounding
ligands reduces to that of the Coulomb field affecting the
positions of the poles of the Green’s function (orbital energies)
of the free ligand. The form of the CMOs of each ligand is left
unchanged which is a picture of the rigid ligands’ MOs (RLMO)
ref 39. According to ref 52, the effect of the Coulomb field
upon the orbital energies is represented by

whereG0
Λ is the Green’s function for the free ligand and the

self-energy termΣ(f) is due to the external Coulomb field. The
perturbed Green’s functionGΛ within the first order has the
same form asG0

Λ but its poles are expressed through the orbital
energies of the free ligandεi

(0) and the self-energy partsΣii
(f)

The self-energyΣii
(f) is taken as that of a pure electrostatic

interaction between the partial electron densities and effective
point atomic charges by

whereFiN is the partial electron density of theith CMO of the
ligand Λ on theNth atom of the ligand

whereciR are theith MO LCAO coefficients of the free ligand,
and the core Hamiltonian perturbationδhN is

The atomic quantitiesδhN are equal to the perturbationsδhRR
of the corresponding core Hamiltonian matrix elements in the
ligand AO basis. This is like that since, within the CNDO
approximation53 accepted in ref 39, the quantitiesδhRR are the
same for allR ∈ N.

These formulas comprise the RLMO model of the electronic
structure of the l system of the TMC. The RLMO procedure
has been implemented in the program suite ECFMM 1.0.54 Its
application to analysis of molecular geometries are described
in refs 39 and 40. Despite satisfactory results in geometry and
spin states description of some iron(II) complexes, the main
conclusion is that the crystal field is reproduced with too large
an error due to the overestimated repulsion of d electrons from
the ligands lone pairs. Due to that in refs 39 and 40, we had to
scale correspondingly the Racah parameters differently for
complexes with pyridine-like and amino nitrogen donor atoms,
since in the latter analogous error was small. In the following
subsection, we propose an improved model taking into account
polarization effects in the ligand sphere which is able to describe
both types of ligands within a unified parametrization.

2.3.2. Sparkle Model and Its PerturbatiVe Versions.The
model of electronic structure of TMC which considers the metal

ion as a point charge equal to its oxidation degree or formal
charge is habitually called the sparkle model.55 Within models
of that type, a semiempirical SCF calculation is performed for
the ligands of the complex placed in the electrostatic field
induced by the central ion with its formal charge (“sparkle”).
Thus, the charge redistribution occurring in the ligands is
obtained by performing a standard SCF procedure for them.

Within models of the sparkle family, the effect of the external
Coulomb field does not reduce to the renormalization of the
orbital energies as it is within the RLMO model (see above).
The electron distribution also changes when the ligand molecules
are put into the field. That means that the density matrix of the
system varies and, accordingly, the effective point chargesQ
residing on the atoms of the molecule in eq 17 change. We
will describe this situation by means of polarizability concept.56

According to it, the difference between polarized and nonpo-
larized effective charge on atomA is

where ΠAB is atomic mutual polarizability discussed below
whereasδhA

0 taken from eq 17 can be rewritten as

The quantitiesQB
0 in the above equation are the bare effective

charges as they appear from the calculation on a free ligand to
which the atomB belongs. The termδhB

0 is renormalized due
to the electron-electron interactionΓAC resulting in the true
(renormalized or dressed) perturbationδhB. The quantityδQA

is the change of the effective atomic charge due to polarization,
and δPRR is the change of theRth AO orbital density matrix
element. In the matrix form, eq 18 reads

It formally requires the calculation of the inverse matrix of the
order equal to the number of atoms in the TMC.

Though procedures of that sort are admitted in modern MM
schemes directed to the systems with significant charge redis-
tribution,57 we consider such a procedure to be too resource
consuming and restrict ourselves by several lower orders with
respect toΠ in the expansion. Then the termΠδh0 corresponds
to the first order perturbation by the Coulomb field induced by
the metal ion and bare (nonpolarized) ligand charges. The second
order term corresponds to the perturbation due to the Coulomb
field induced by the mutually polarized (upto the first order)
charges

(GΛ)-1 ) (G0
Λ)-1 - Σ(f) (13)

εi ) εi
(0) + Σii

(f) (14)

Σii
(f) ≈ ∑

N∈Λ

FiNδhN (15)

FiN ) ∑
R∈N

ciR
2 (16)

δhN ) -e2((ZM - nd)

RN

+ ∑
Λ′*ΛN′∈Λ′

QN′

RNN′
) (17)

δQA ) QA - QA
0 ) ∑

B

ΠABδhB ) ∑
B

ΠAB(δhB
0 +∑

C*B

ΓACδQC)

(18)

δhA
0 ) -ZMΓMA - ∑

B

QB
0ΓBA

ΓMA ) e2/RMA

ΓAB ) (1 - δΛΛ′)e
2/RAB (A∈Λ; B∈Λ′)

∑
A

δQA ) ∑
A

∑
R∈A

δPRR ) 0

(19)

δQ ) Q - Q0 ) Π(δh0 + ΓδQ)

δQ ) (1 - ΠΓ)-1Πδh0

δQ ) Πδh0 + ∑
n)1

∞

(ΠΓ)nΠδh0 )∑
n)1

∞

δQ(n)

(20)

δQ(1) ) Πδh0

δQ(2) ) ΠΓΠδh0 (21)
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The atom-atom mutual polarizability matrixΠ has a block-
diagonal form

whereΛ enumerates the ligands.
To evaluateΠΛ, we consider the mutual atomic orbital

polarizabilitiesΠRâ
Λ(0)

where R and â enumerate AOs, and corresponding mutual
atomic polarizabilitiesΠAB

Λ(0)

whereA andB enumerate atoms. Turning to the differenceδPRR
of the electron density on theRth AO of atom A and
renormalizingδhââ accordingly to eq 19 results in

whereγ̃Rµ is the intraligand (Λ) two-electron Coulomb integral
that in the CNDO approximation has the form

The coefficient one-half at the diagonal interaction element in
the above expression reflects the fact that in the single-
determinant approximation with the closed shell only that half
of electron density residing at theRth AO contributes to the
energy shift at the same AO which corresponds to the opposite
electron spin projection. Then the expression for the renormal-
ized mutual atomic polarizability matrixΠΛ can be obtained

Finally, according to the general formulas given, say, in ref 56,
the matrix element of the bare orbital mutual polarizability
entering eq. 23 is given by

whereR andâ are the AOs indices,k andεk and l andεl are
respectively the occupied and vacant MOs indices and orbital
energies, andclR are the MO LCAO coefficients for the free
molecule of the ligandΛ.

This is the method for construction the renormalized polar-
izability matrixΠΛ for the ligandΛ. The form of the total matrix
Π for the whole TMC is given by eq 22. With use of this matrix,
we can obtain renormalized atomic charges by eq 20. This model
can be termed here as the PS model (PS stands for perturbative
sparkle). Specifically, the PSn approximation level of the PS
model stands for the charge corrections of the series eq 20 up
to thenth order, whereas PS itself stands for the exact expression

with the inverse matrix in the second row of the same equation.
Then, eqs 18-21 comprise the perturbative form of the sparkle
model of the l system’s electronic structure (the PS model).

Thus, in this subsection, we formulated the perturbative
version of the sparkle approximation for the Green’s function
G0

l of the l system. It satisfies the requirement imposed above
that the Green’s function of the l system must be expressed in
terms of those of the free ligands. As we show in section 4.2
below, it yields effective atomic charges of sufficient precision
using the point charges of the free ligand as a zero approxima-
tion. The charges thus obtained are used for calculation of the
Σii

(f) term according to eq 15 and for renormalizing the orbital
energies by eq 14. The proposed procedure improves the
junction between the EHCF(L) method playing the role of the
QM procedure and the MM part, as shown below, where details
of the calculations performed within this approximation are
given (section 4).

3. Incorporating EHCF(L) into MM

3.1. Total Energy in the Hybrid EHCF(L)/MM Model.
The total energy of a TMC in itsnth electronic state in the
EHCF(L)/MM approximation is taken as in ref 23 where it is
shown to be

where Ψn
d is the nth eigenfunction of the effective d shell

HamiltonianHd
eff eq 1 obtained from the full CI expansion of

the d system wave function. Thus, the termEd
eff(n) is the d

shell energy calculated as thenth eigenvalue of the effective d
shell Hamiltonian. The ligand energyEL is replaced byEMM,
the MM energy of the ligands. In the present work, we assume
that the effective d shell Hamiltonian is estimated by the EHCF-
(L) method described in the previous section. The contribution
Ed

eff(n) apparently is not a MM-like “force field” and has a
different structure.

To obtain the effective Hamiltonian for the d shell used in
eq 28 the electronic structure parameters (ESP’s) of the l system
must be used in eqs 1-4, 9, and 10. These ESP’s are condensed
in the l system Green’s function. In the previous section, we
presented general formulas which comprise the perturbation
approach to evaluation of the Green’s function of the l system
using those of the separate free ligands as a zero approximation.
Estimates of the l system Green’s function following the
prescriptions of section 2.1 can be performed for arbitrary
molecular geometry. Inserting this approximate form of the l
system Green’s function into the EHCF(L) formulas, eqs 9 and
10 yield the required estimate for the crystal field acting on the
d shell of a central TMI in terms of the separate increments of
the lone pairs for each molecular configuration of the TMC.

The RLMO and PS models represent the Green’s function
G0

l originated from eqs 11-13 including only the ligand MO
energy shifts byΣii

(f) eq 15 calculated with use of the effective
atomic charges. The latter are the charges for either free ligands
or those polarized by metal ion and other ligands for the RLMO
or PS models, respectively. That all comprises the two versions
of the hybrid EHCF(L)/MM approach to evaluation of the PES
of TMCs. The RLMO approach was thoroughly investigated
in refs 39 and 40, so in the present paper, we focused on the
PS model implementation.

3.2 Parameters Used in the EHCF(L)/MMGK Approach.
The EHCF(L)/MMGK method described above in general terms
is a specific case of a general hybrid scheme involving QM
and MM components which both require extensive parametriza-
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tion. The entire set of parameters consists of three subsets. In
our case, these are the subsets related to the QM description of
the d shell, the parameters of the MM part, and those relevant
to the junction between the MM and QM subsystems.

3.2.1. d Shell Parameters.The d shell parameters are taken
from the original EHCF method ref 43 without changes. These
are the specific exponents of atomic d orbitals and d electron
core attraction parameterUdd for each metal atom. The Coulomb
repulsion of d electrons is characterized by three parameters:
gdd and the Racah parametersB andC. In the general theoretical
setting of the EHCF method, the Racah parameters must be
taken standard for the free ions as tabulated, say, in ref 44.
Pragmatically, however, the values specific for the complex are
used in order to reach better agreement between theoretical and
experimental spectra.45-48 In the context of the present study
directed toward uniform description of a wide range of
complexes with many different ligands, only the single values
of the Racah parameters common for all complexes of a given
metal ion make sense. For the complexes of Fe (II), the Racah
parametersB0 ) 917 cm-1 andC0 ) 4040 cm-1 for the free
Fe2+ cation are used like in refs 43 and 47-49. In refs 45-48
where the EHCF method has been employed for electronic
spectra calculations of some Co2 + complexes, various values
of the Racah parameters have been used. For example, in the
case of the complex [CoCl6]4-, these values wereB ) 780 cm-1

andC ) 3432 cm-1,47 whereas for the complexes Co(H2O)62+

and [Co(NH3)6]2+ the values ofB ) 850 cm-1 andC ) 3935
cm-1 and B ) 885 cm-1 abnd C ) 4099 cm-1 were used,
respectively.48 The free Co2+ ion Racah parameters areB0 )
971 cm-1 and C0 ) 4366 cm-1.44 For the considered set of
Co(II) complexes, the specific single set of these parameters
for the Co2+ ion B ) 800 cm-1 andC ) 3800 cm-1 is used
both for the low- and high-spin complexes with different
coordination numbers and geometries. The employed Racah
parameters are somewhat reduced as compared to the free ion
values.

3.2.2. MM Parameters.The organic part of a molecule and
metal ion coordination sphere (leaving out effects of the d shell)
is described in the present hybrid procedure in terms of the
MMGK method.15,16

Within it the total conformation energy of a molecule is

where the energy terms (force fields) are

the energy of bond stretching (except metal- donor atom bonds,
see below)

the energy of valence angle bending as in ref 1. The valence
angles involving the metal ion as a vertex are not considered
as they ar e described through the Gillespie-Kepert term18 (see
below eq 31)

the energy of torsion interaction

the energy of nonbonded interaction

the energy of improper torsion (out-of-plane) interaction.
Bonding interaction of metal valence 4s and 4p subshells with

ligands is currently modeled within the MM part of the
combined EHCF(L)/MM scheme through the Morse potential

The use of the Morse function is necessary to interpolate energy
values in a wide range of variations of the metal-donor atom
separations in different TMC spin states. It should be noted that
our goal here is to employ a single parameter set for any spin
state whereas in other approach used for the TMC structure
calculations there are separate sets for the low- and high-spin
states.7

The arrangement of the donor atoms around the metal is
dictated by mutual repulsion between the effective centers lying
on the M-L bonds on the distancereff from the metal ion. This
term implicitly partially accounts for the electronic effects in
the coordination sphere which could not be described within
the standalone EHCF formalism (which gives only the d shell
energy). The energy of the bond repulsion in the coordination
sphere is then

where

andR(M-Xi) is the actualM-Xi bond length;Ai, Aj, deff,i, and
deff,j are the GK force field parameters, characterizing energy
of repulsion (A) and positions of the repulsion centers (deff).

The MM parameters for the organic part of the molecule were
primarily taken from the CHARMM force field,58,59 whereas
specific metal-dependent parameters must be fitted within
different versions of the EHCF(L)/MM method separately
(compare ref 40 and the present work). We note once again
that the single parameters set is used for all spin states of the
TMI under consideration.

3.2.3. Junction Parameters.Since the EHCF(L)/MMGK
approach is a specific case of a general QM/MM scheme, where
the entire system is divided into two parts, namely the d shell
and the l system, their interaction requires separate attention.
Within the standard EHCF model, this interaction ultimately
results in the d shell splitting. In the QM/MM context, the
intersystem interacton is habitually termed as a junction. Not
like in other hybrid QM/MM schemes, the form of the junction
in the present EHCF(L)/MM scheme is not taken ad hoc but is
given by the EHCF43 and EHCF(L)39,42 theories. The precise
numerical values of the junction-related quantities are calculated
on the basis of the theory reviewed above. An important
component of this theory is that certain type of electronic
structure underlying the MM part of the system is assumed.
Parameters characterizing this implied electronic structure of
the l system are used in order to estimate the intersystem
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junction. These two kinds of parameters corresponding, respec-
tively, to the d-l interaction itself and to the l system electronic
structure (ESP’s) are characterized below.

d-l Interaction Parameters.In the original EHCF theory,
the specific parameters describing the interaction between the
d and l systems were fit to reproduce the d level splitting for
octahedral complexes with a specific donor atom. The set of
the intersystem interaction parameters includes thegsd andgjpd

parameters of the Coulomb interaction between the d shell and
transition metal valence s and p electrons. These parameters
are taken from the Oleari’s work,60 the valence state ionization
potentials for the d shell and the donor atoms are taken from
ref 61, and the dimensionless factorsâML characteristic for a
metal-donor atom pair, scaling the resonance interaction. These
parameters are transferred from the original EHCF43 to the
EHCF(L)/MM without change. The orbital exponents necessary
for calculating the overlap integrals employed throughout the
parametrizing the resonance integrals are also taken from ref
43 as they are there.

ESPs of the l System. RLMO Model.The ESPs of the l system
required for the calculation of the effective Hamiltonian eq 1
are the one-electron densities (effective charges), orbital ener-
gies, and MO LCAO expansion coefficients. The original
EHCF43 method employs the CNDO approximation53 in order
to estimate these quantities. They are calculated for arbitrary
molecular geometry by the approximate SCF procedure extended
to the entire l system. The local version of the EHCF employed
in the present work additionally requires a set of expansion
coefficients for each local state (LMOs) related to the LP
involved in the complex formation (located on the donor atoms),
as parameters. The expansion coefficients of the LP over the
donor atom AOs having the dominating contribution to the LP
and calculated within the ligand fixed coordinate frame (LFCF)
are treated as ESPs of the l system as well. These quantities
proposed in ref 42 are calculated separately for the free ligand
molecules and are fed to the EHCF(L)/MM procedure as
parameters.

In the RLMO approximation of ref 39, the orbital energies
are estimated perturbatively which is more economical from
the computational point of view but requires a larger number
of parameters. Within the RLMO model, the electronic structure
of the free ligand prototype is supposed to be unchanged during
the complex formation. Thus, for the EHCF(L) calculations,
we use the charge distribution calculated for the free ligand
itself, i.e., the effective point charges which are found from the
CNDO calculation on the free ligand and consider them as ESPs
for the l system. Also the orbital energies of the ligand MOs
having nonzero contribution to the LP of the donor atom
calculated for the free ligand are to be fed to the EHCF(L)/
MM procedure. They are used to estimate the positions of the
poles of the Green’s function in the Coulomb field of the charges
within the complex according to the formula eq 14 with use of
the partial densitiesFiN introduced above in eq 16 which are
also considered as parameters. All these quantities are calculated
separately with use of the CNDO parametrization for the free
ligands.

ESPs of the l System. PS Model.The PS model of the
electronic structure of the l system includes ESPs which are
the same as in the RLMO model. The difference with the latter
is that the effective charges used in eqs 19-21 are renormalized
due to polarization by the Coulomb interaction between the
ligands themselves and with the metal ion. By eq 22 the matrix
of mutual atomic polarizabilities for the whole l system is
constructed from the polarizability matrixes of the free ligands

eq 26 calculated preliminary. All of the mutual polarizabilities
between atoms of the different ligands are neglected since they
have too small values. It was checked by direct test calculation
of the entire polarizability matrix of separate ligands.

Then it is possible to calculate the polarized charges in all of
the required orders by eq 21 starting from the bare ones. In
fact, the second order in eq 21 and complete summation of the
perturbation series by eq 20 give very close results. In most
cases, the second or even the first-order polarization suffice for
our purposes (see the next section).

4. Results and Discussion

In our present study, the basic procedure for treating PES of
TMC within a general QM/MM-like framework is constructed.
To summarize, we reformulated in the local form (i.e., in terms
of the effective field increments induced by the lone pairs of
the ligands) the semiempirical EHCF theory which previously
allowed us to calculate with quite good accuracy the crystal
field induced by the ligands on the TMC’s d shells. This gave
us explicit formulas for the crystal field matrix expressed
through the ESPs of the free ligands and the procedure to
calculate them. In the framework of our approach, the crystal
field matrix is calculated for arbitrary arrangement and orienta-
tion of the ligands around the central TMI.

4.1. Implementation.In the present work, we constructed a
procedure combining the EHCF(L) approach and the specific
form of the MM (MMGK ref 16) by eq 28. It is implemented
within the ECFMM 1.1 package54 which allows gradient
minimization for the energy eq 28. The package also allows us
to consider ligands or their fragments also as rigid bodies. As
a consequence, the number of geometry variables considerably
decreases which allows us to speed up the minimization.
Technically, the ligand geometries employed within the rigid
body scheme are first pre-optimized with use of the MM
potentials only, and in the further calculations, their internal
geometry is fixed. The PS1 and PS2 orders for charges as well
as the exact PS calculation of the PS model are implemented
in the ECFMM package. In our calculations, we used the PS1
model. Parameters fitted within the EHCF(L)-PS1/MMGK
model for pairs metal atom-donor atom, where metal is Fe(II)
or Co(II) and donor atom types (MMGK) are NA and N3, that
is sp2- and sp3-hybridized nitrogen, are present in Table 1.
Names and Cambridge Crystal Structure Data Bank (CCSDB)
codes of the calculated complexes are listed in Table 2.

4.2. Numerical Simulation with Use of the PS Model.As
it is stated in section 2.1, the effective charges and orbital
energies of the l system are needed to estimate the EHCF. In
the EHCF method of ref 43, these quantities are calculated with
the use of the semiempirical SCF procedure (CNDO). We
compared the free ligand charges and the charges calculated
within the SCF sparkle estimates and PS estimates according
to the procedure described in section 2.3.2. The results are
presented in Table 3. Numeration of the ligand atoms can be
found in Figure 6.

TABLE 1: Parameters of the Morse and Gillespie-Kepert
Potentials for the EHCF(L)-PS1/MMGK Model of the
Ligand ESPs

metal
ion

atom
type

D0,
kcal/mol

R,
Å-1

r0,
Å

A,
kcal Å6/mol dff

Fe2+ NA 80.5 1.73 1.890 41.4 1
Fe2+ N3 70.0 1.73 1.956 34.2 1
Co2+ NA 110.0 1.20 1.86 44.8 1
Co2+ N3 118.0 1.56 1.88 47.2 1

Local Effective Crystal Field Combined with MM J. Phys. Chem. A, Vol. 108, No. 30, 20046357



The data of Table 3 show that the free ligand effective atomic
charges (column 1) are quite strongly affected by the interaction
with metal ion described by the SCF sparkle procedure (column
2). The difference between the results of the SCF sparkle model
(column 2) and the charges obtained by the PS1 model (column
3) is however small especially for charges of the peripheral
atoms. Charges on the donor atoms in column 3 are slightly
larger than these in column 2, but the difference is also small.
On the other hand, the difference between SCF sparkle (column
2) and free ligand (column 1) charges are close to the difference
between columns 3 and 1. One can see that whatever method
of taking into account the charge renormalization gives rather
close results when it goes about the charges on all the ligand
atoms except the donor ones. However, 90% of the d level
splitting comes from the covalent contribution eq 5 so even large
error in the donor atom charges does not destroy the overall
estimate of the effective crystal field.

The values of the orbital energies are obtained from eq 15
that is the first-order correction to the orbital energy for the
MO in the field induced by all of the charges of the complex
except those in the ligand under consideration itself. The charges
in eq 15 are taken from the PS1 model. Orbital energies are
close to those obtained within the sparkle SCF scheme (see
Table 4). Thus, such an approximation for the orbital energies
of the ligands is shown to simulate the results of the SCF sparkle
model.

In conclusion, the first-order polarized point charges as well
as the orbital energies eq 15 using these charges of eq 21 are
found to be in fair agreement with those from a semiempirical
SCF procedure corresponding to the sparkle model.

4.3. EHCF(L)-PS1/MMGK Model. 4.3.1. Spin States and
Geometry of Iron(II) Complexes.The methodology described
above was applied to 30 complexes of Fe2+ listed in Table 2
together with the ligand names, relevant Cambridge Crystal
Structure Data Bank (CCSDB) reference codes, and the
experimental spins of the ground states. The ligands are shown
in Figure 6. The series contains compounds with monodentate
and polydentate ligands of both low- and high-spin ground
states.

Experimental geometries of the above complexes were taken
from the CCSDB. Hydrogen atoms were added where necessary.
For complexes 23-30 that exhibit spin-crossover, crystal
structures for both low- and high-spin states are known which
allows for a detailed comparison of the results of our calculations
with experiment (at least in terms of molecular geometry).

As a test, we calculated the 10Dq parameter for octahedral
complex 11 as a function of the metal-nitrogen distance with
use of the EHCF(L)-PS1 and by the original EHCF procedure.
It was found that for the “interesting” range of the interatomic
separations (about 2 Å) either first or second perturbation orders
of the EHCF(L)-PS1 model employed in the present work fairly

TABLE 2: Ligand Names and CCSD Reference Codes for the Calculated Molecules

no. ligand name
ground

state spin (exp.)
CCSD
refcode ref.

1 tris(2,2′-bipyridine) 0 NUZKOI 62
2 bis(tris(2-pyridyl)amine) 0 PYAMFE 63
3 bis(tris(2,2′-bipyrimidine) 0 RIJLAX 64
4 tris(5,5′,6,6′-tetramethyl-3,3′-bi-1,2,4-triazine) 0 HEYRAE 65
5 bis(2-(pyrazin-2-ylamino)-4-(pyridin-2-yl)thiazole) 0 RIZSOI 66
6 bis(2,2′:6′,6′′-terpyridine) 0 ZIMBUS 67
7 exo-(6,13-diamino-6,13-dimethyl-1,4,8,11-tetra-azatetradecane) 0 PAZXAP 25
8 bis(1,4,7-triazacyclononane) 0 DETTOL 68
9 (1,4,7-tris(2-pyridylmethyl)-1,4,7-triazacyclononane) 0 DUCFOW 69

10 bis(2,2′-dipicolylamine-N,N′,N′′) 0 JALJAH 70
11 hexapyridine 2 PYFEFE 71
12 tris(6-methyl-2,2′-bipyridine-N,N′) 2 VEWVEY 72
13 hexakis(1-methylimidazole) 2 MIMFEA 73
14 hexakis(isoxazole-N) 2 QAHPIY 74
15 tris(2,2′-bibenzimidazole) 2 VEYTEY 75
16 tris(2,2′-bi-imidazole-N,N′) 2 ZIMMAJ 76
17 tris(2-(1,5-dimethyltriazol-3-yl)pyridine) 2 YIVSEB 77
18 bis(tris(3,5-dimethyl-1-pyrazolyl)methane-N,N′,N′′) 2 XEFDER 78
19 delta-(1,4,7-tris(2-aminophenyl)-1,4,7-triazacyclononane) 2 LOTSES 79
20 tris(ethylenediamine) 2 ZIWDUG 80
21 bis(bis(1-methylimidazol-2-ylmethyl)amine-N,N′,N′′) 2 NARWIM 81
22 bis(tris(2-pyridylmethyl)amine-N,N′,N′′) 2 NELGIU 82
23 bis(4,6-diphenyl-2,2′:6′,2′′-terpyridine) 2 JOJQEE 84
24 0 JOJMUQ 84
25 bis(2,6-bis(pyrazol-1-yl)pyridine) 2 XENBEX01 85
26 0 XENBEX03 85
27 tris(3-(pyridin-2-yl)-1,2,4-triazole-N,N′) 2 QALMAR 86
28 0 QALMAR01 86
29 tetrakis(2-pyridylmethyl)ethylenediamine 2 KEZPEK 87
30 0 KEZPIO01 87
31 tris(2,2′-bipyridine) 3/2 CAMHED 88
32 bis(2,2′:6′,6′′-terpyridine) 3/2 CAPSAN 89
33 hexakis-imidazole 3/2 ROJXET 90
34 tetrakis(1,2-dimethylimidazole-N3) 3/2 FUJHAT 91
35 (4,14,19-tris(methoxymethyl)-1,4,6,9,12,14,19,21-octa-azabicyclo(7.7.7)tricosane) 3/2 NEBLIP 92
36 1,4,8,11-tetra-azacyclotetradecane 1/2 COANEC 93
37 aqua-12,14-dimethyl-1,4,8,11-tetra-azacyclotetradeca-11,13-diene 1/2 MTZCOF 94
38 (3-(1-(methylamino)ethylidene)-11-(1-(methylimino)ethyl)-

2,12-dimethyl-1,5,9,13-tetra-azacyclohexadeca-1,4,9,12-tetraene-N)
1/2 FAZPUR 96

39 aqua-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetra-azacyclotetradeca-4,11-diene 1/2 JASKUJ 95
40 (5,7,12,14-tetramethyl-2,3:9,10-dibenzo-1,4,8,11-tetra-aza(14)annulene) 1/2 JUHTIP 97
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coincide with the standard EHCF curve which for the purposes
of the present paper is considered as the exact one. Thus, it is
not necessary to use the renormalized Racah parameters, which
we used in refs 39 and 40. So, unlike the RLMO model,40 we

are able to use a single parameter set on the metal d shell for
ligands containing both the NA (sp2) and N3 (sp3) nitrogen atom
types.

Parametrizations for the NA and N3 atom types were
performed separately. The proposed EHCF(L)-PS1 method was
initially applied to a test set of the Fe2+ complexes. The test
set comprised complexes 1, 2, 12, and 13 (for NA) and 7, 19,
and 20 (for N3). Structures of the test set with different spin
states (singlet and quintet) were optimized by an analytical
gradient procedure starting from the experimental structures with
rigid (preliminary optimized with pure MMGK) ligands.
Optimization is performed until root-mean-squared (RMS)
energy gradient is smaller than 0.1 kcal mol-1 Å-1. Criteria for
good parametrization are the correct ground spin state and small
difference in molecular geometry of coordination sphere (bond
lengths and valence angles on metal atom). Obtained parameters
are presented in Table 1. One can see that the rigidity of the
metal-ligand bond, measured byD0R2 for the N3 type atom
parameter, is only slightly smaller than that for the NA type
atom. Geometry optimization for the rest of the series of the
investigated complexes was performed by the same scheme but
with the use of the parameters already defined.

Below we consider the results of our calculations of Fe(II)
complexes of Table 2. The possible terms or spin states
considered in calculations are quintet (5T2g) and singlet (1A1g)
prototypes for approximately octahedral coordination of the Fe2+

ion. For visualization, we put the inverse empirical distribution
function for root-mean-squared differences (RMSD), separately
for high- and low-state molecules and for the whole data set
(Figures 2-4), in the normal scale together with its linear fit to
test whether our results may deviate systematically from
experimental data. In general, plot of the empirical distribution
function (error function) is a good statistical test on systematic
error in the calculations. It characterizes both the range of
observed errors and the possibility to meet them in our sample.
It is supposed that the random errors are normally distributed
with zero dispersion. Thus, it is clear from the linear fit plots
in Figures 2-4 that systematic error is small for the whole data
set, whereas for the separate low- and high-spin sets, they are
larger. It can be seen also that for the low-spin complexes the
Fe-N bond lengths are on the average somewhat too long,
whereas for the high-spin ones, these lengths are somewhat too
short. By linear fit, we also obtained the most probable value
for RMSD, that is, the inverse coefficient of the linear fit. Thus,
the geometry of both low- and high-spin molecules is calculated
with the RMSD for the Fe-N bond lengths to be about 0.05
Å. If only the low-spin molecules are considered then RMSD
is 0.034 Å, whereas for the high-spin molecules, only the RMSD
is about 0.05 Å.

The detailed results of calculations can be found in Tables 5
and 6 of the Supporting Information, where calculated metal-
donor atom bond lengths and averaged valence angles centered
on metal atom are given for different spin states of the metal
together with corresponding experimental crystal structure
values.

Calculated geometries of this series of the complexes, in
general, agree rather well with the experimental data. We
especially notice that complexes with ligands containing dif-
ferent types of donor atoms (NA and N3) in the single molecule
are calculated correctly. However, making parametrization, we
should keep in mind that the crystal structure can be a result of
not only metal interaction with the ligands but also of
intermolecular interactions among the crystal neighbors. Thus,
major deviations from the experimental geometry may be a

TABLE 3: Comparison of Effective Charges on the Ligands
Obtained by Different Models

δQ

atom

free
ligand

(1)

sparkle
SCF
(2)

EHCF(L)
PS1
(3) (2)-(1) (3)-(1) (3)-(2)

Bipyridine in1
N -0.157 -0.412 -0.370 -0.255 -0.213 0.042
C(1) 0.095 0.121 0.084 0.026 -0.011 -0.037
C(2) 0.081 0.140 0.130 0.059 0.049-0.010
C(3) -0.030 -0.014 -0.020 0.016 0.010 -0.006
C(4) 0.035 0.083 0.070 0.048 0.035-0.013
C(5) -0.035 -0.017 -0.010 0.018 0.025 0.007

Terpyridine in6
N(1) -0.150 -0.403 -0.389 -0.253 -0.239 0.014
N(2) -0.158 -0.448 -0.432 -0.290 -0.274 0.016
C(1) 0.098 0.115 0.122 0.017 0.024 0.007
C(2) 0.087 0.143 0.139 0.056 0.052-0.004
C(3) -0.028 -0.014 -0.018 0.014 0.010 -0.004
C(4) 0.032 0.082 0.070 0.050 0.038-0.012
C(5) -0.035 -0.014 -0.018 0.021 0.017 -0.004
C(6) 0.098 0.137 0.137 0.039 0.039 0.000
C(7) -0.035 -0.020 -0.020 0.015 0.015 0.000
C(8) 0.031 0.083 0.071 0.052 0.040-0.012

Pyridine in11
N -0.149 -0.373 -0.348 -0.224 -0.199 0.025
C(1) 0.090 0.116 0.134 0.026 0.044 0.018
C(2) -0.015 -0.005 -0.010 0.010 0.005 -0.005
C(3) 0.041 0.079 0.077 0.038 0.036-0.002

Methyl-bipyridine in12
N(1) -0.147 -0.375 -0.323 -0.228 -0.176 0.052
N(2) -0.177 -0.407 -0.341 -0.230 -0.164 0.066
C(1) 0.102 0.112 0.125 0.010 0.023 0.013
C(2) 0.107 0.127 0.136 0.020 0.029 0.009
C(3) -0.031 -0.012 -0.017 0.019 0.014 -0.005
C(4) 0.051 0.077 0.080 0.026 0.029 0.003
C(5) -0.046 -0.017 -0.033 0.029 0.013 -0.016
C(6) 0.101 0.118 0.096 0.017 -0.005 -0.022
C(7) 0.128 0.161 0.129 0.033 0.001-0.032
C(8) -0.042 -0.030 0.073 0.012 0.115 0.103
C(9) 0.048 0.082 0.101 0.034 0.053 0.019
C(10) -0.039 -0.027 0.043 0.012 0.082 0.070
C(11) 0.009 -0.069 -0.064 -0.078 -0.073 0.005

Ethylenediamine in20
N(1) -0.236 -0.436 -0.416 -0.200 -0.180 0.020
C(1) 0.080 0.067 0.068 -0.013 -0.012 0.001
N(2) -0.234 -0.429 -0.412 -0.195 -0.178 0.017
C(2) 0.084 0.070 0.067 -0.014 -0.017 -0.003

TABLE 4: Comparison of Orbital Energies (a.u.) of the
Ligands Obtained by Different Models

MO
number

free
ligand

sparkle
SCF

EHCF(L)
PS1

Bipyridine in1
1 -1.9351 -2.2389 -2.2198
6 -1.3104 -1.5962 -1.5578
14 -0.8627 -1.1505 -1.1475
23 -0.5522 -0.8385 -0.7965
28 -0.4563 -0.7593 -0.7223
(HOMO)

Pyridine in11
1 -1.8319 -2.0728 -2.0683
2 -1.3946 -1.6510 -1.6447
4 -1.1013 -1.3178 -1.3152
6 -1.0037 -1.2336 -1.2295
9 -0.7026 -0.9566 -0.9524
11 -0.6526 -0.8776 -0.8745
15 -0.4826 -0.7188 -0.7146
(HOMO)
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result of crystal surrounding influence, especially that of
counterions (see discussion in ref 40). Statistical analysis of
obtained results performed above shows that geometry structure
details are in good agreement with crystal data. However, in
complexes 4-6 with low-spin experimental structure, our
method gives the wrong ground-spin state but the correct
geometry for the experimental low-spin state. For the high-spin
complexes 11-22 as well as for the low-spin complexes 1-3
and 7-10, we obtain both the correct ground spin state and
acceptable geometry. It can be concluded that current param-
etrization of the EHCF(L)-PS1 method is somewhat biased
toward the high-spin states. This manifests itself in the fact that
the calculated high-spin state equilibrium geometries correspond
to noticeably shorter Fe-N bond lengths than the experimental
ones. Technically, the reason may be the stiffness of the Morse
potential employed to model the Fe-N bonding MM energy
increment. For the complexes with spin isomers, we obtained

similar result, since in all of the cases the high-spin form of the
isolated molecular metal containing complex cations have lower
energy. Analysis of effects of counteranions upon the spin forms
in the spin-crossover compounds is given in ref 40.

We checked also the energy splitting between ground states
and excited states of different symmetry and spin in the studied
complexes and found that these states are considerably separated
in energy (at least, by≈20 kcal/mol).

To conclude, we notice that it is the first time when a
calculation is performed for such a wide range of Fe(II)
complexes (27 individual molecules) of different ground state
spins within single parametrization and reproduces ground state
spin as well as the geometry of the crystal structure with
reasonable accuracy. However, it is still hardly possible to
compare our results with any other semiempirical methods,
because, the authors were not in a position to find any pure

Figure 1. Ligands used in calculations. Donor atoms are marked explicitly (*).

6360 J. Phys. Chem. A, Vol. 108, No. 30, 2004 Darkhovskii and Tchougre´eff



semiempirical method which would be able even to calculate
the series of complexes we considered.

4.3.2. Spin States and Geometry of Cobalt(II) Complexes.
Within the proposed version of the EHCF(L) method, we also
calculated a series of Co2+ complexes with different shapes of
coordination polyhedra. For an illustrative presentation of the
results, we also constructed the empirical distribution function
in normal scale together with its linear fit, as we did for Fe(II)
complexes, separately for high- and low-state molecules and

for the whole data set (Figures 5-7). The detailed results of
calculations can be seen in Table 7 of the Supporting Informa-
tion.

We tried to have maximal diverse test calculation. Thus, we
selected octahedral 31-33, tetrahedral 34, and pyramidal 35
high-spin (quartet with the prototype state4T1g) complexes, the
low-spin square pyramidal 38 complex, and square planar
complexes 36-37 and 39-40 (doublet with the prototype state
2T1g). The entire set of the Co2+ complexes was used for
parametrization of the NA and N3 atom types. With use of the
Racah parametersB ) 800 cm-1 and C ) 3800 cm-1, the
ground spin states are reproduced for the whole set of the
compexes calculated at their experimental geometries. This
parametrization allows us to obtain even more precise results
than those for the Fe2+ complexes with the RMSD) 0.044 Å
for the bond lengths of the whole data set.

In the high-spin complexes 31-35, the structure and spin
states are correctly predicted with RMSD) 0.054 Å for Co-N
bond lengths (Figure 6). Interestingly, complex 32 is known to
be near the spin crossover point in the solution.98 According to
our calculations, the energy difference between quartet and
doublet minima for this complex is the smallest among all of
the complexes 31-35 and is equal to 3.7 kcal/mol, whereas in
other cases, it is more than 10 kcal/mol (see Table 7 of the
Supporting Information).

Remarkably enough that the same parametrization allows us
to reproduce the ground-state spin for the low-spin compounds
36-40 provided the calculation is performed with due caution.
Particularly, in complexes 37 and 39, we have to include in the
molecule a water ligand lying above the square plane by 2.21
Å and 2.28 Å correspondingly, taken from the experimental
crystal structure of the complexes, for correct calculation of the
crystal field. Its position was fixed during the optimization
procedure. On the contrary, the unit cell of the complex 36
contains two ClO4- counterions which were considered in ref
93 as extremely weakly bonded (the bond distance Co-
O(ClO4

-) is 2.409 Å). We optimize the ion complex 36 itself
and that including two ClO4- anions fixed at their positions
taken from the experimental unit cell. By our calculation, the
optimized geometry and spin of the ground state for the
molecule 36 and that with counteranions are entirely the same.
For the low-spin complexes 36-40, the average RMSD for the
Co-N bond lengths is 0.036 Å (Figure 7), so for the square

Figure 2. Empirical distribution function for RMSD bond lengths of
both high- and low-spin Fe(II) complexes in the normal scale.

Figure 3. Empirical distribution function for RMSD bond lengths of
low-spin Fe(II) complexes in the normal scale.

Figure 4. Empirical distribution function for RMSD bond lengths of
high-spin Fe(II) complexes in the normal scale.

Figure 5. Empirical distribution function for RMSD bond lengths of
both high- and low-spin Co(II) complexes in the normal scale.
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pyramidal 38 and the square planar 40, the geometry was also
correctly predicted.

The results show that the proposed method can be used for
precise calculation on geometry and spin states of Co2+

complexes with different coordination numbers and coordination
patterns. The proposed methodology thus covers in a uniform
way different ground-state spins and even coordination numbers
of the cobalt(II) complexes.

5. Conclusion

On the basis of the above analysis, it can be stated that the
concert usage of the EHCF(L)-PS1 procedure as a QM
component for describing the geometry dependence of the d
shell energy together with the MMGK procedure as the MM
component for describing the ligand energy, a unified QM/MM-

like description for the PES of different spin states of the iron-
(II) and cobalt(II) complexes with nitrogen-containing ligands
is achieved with use of the single spin-independent parametriza-
tion specific for each metal atom and MM type of the donor
atom.

The used EHCF(L) procedure allows for a detailed description
of the d shell energy as a function of composition and geometry
of the ligand sphere, taking into account the correlation of
electrons in the d shell by using the full CI wave function for
them. This allows us to handle correctly the reaction of the d
shell to subtle changes of the crystal field induced by the
surrounding and by this to be sure that the spin intersection
point is correctly located. The proposed method originated from
the EHCF theory and can be also applied to the description of
the low-lying excited states of certain TMCs.

Figure 6. Empirical distribution function for RMSD bond lengths of low-spin Co(II) complexes in the normal scale.

Figure 7. Empirical distribution function for RMSD bond lengths of high-spin Co(II) complexes in the normal scale.
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On the other hand, due attention is paid to reproducing the
dependence of the crystal field itself on the tiny ligand geometry
and ESPs variations. The explicit forms for the crystal field
matrix elements reproduce their dependence not only on
interatomic separations but also on all kinds of valence angles.
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