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Abstract With use of cumulants of two-electron density ma-
trices semiempirical methods are analyzed from a point of
view of their suitability to describe qualitative features of
electronic correlation important for calculation of electronic
structure of the transition metal complexes (TMC). It is shown
that traditional semiempirical methods relying upon the
Hartree–Fock–Roothaan form of the trial wave function suf-
fer from a structural deficiency not allowing them to dis-
tinguish the energies of the atomic multiplets of the TMCs’
d-shells. On the other hand, the effective Hamiltonian of the
crystal field (EHCF) previously proposed by the authors is
shown to be suitable for further parameterization and has been
successfully applied for calculations on polyatomic TMCs.
Here we describe in details its recent modifications performed
in relation to the SINDO/1 parameterization scheme and
present the results of the calculations on spin-active Fe(II)
complexes with nitrogen-containing polydentate ligands in
relation with interpretation of the Mössbauer measurements
performed on these complexes.

1 Introduction

The molecular modeling of the transition metal complexes
(TMC), reproducing characteristic features of their stereo-
chemistry and electronic structure, is one of the important
goals in the modern computational chemistry. The need for
such modeling arises while studying and developing various
processes involving TMCs.
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The tools generally available for performing a required
modeling are inconsistent with the problem. Quantum chem-
istry (QC) in general seems to be indispensable for perform-
ing the required modeling since the number of bonds (or
coordinated ligands) may become variable. Also the pres-
ence of the open d-shell of the metal ion requires quantum
mechanical modeling tools since a number of the electronic
(spin) states of the complex closely lying on the energy scale
arises, and thus the PESs belonging to different electronic
terms closely approach each other, or even cross, which man-
ifests itself in experimentally observed spin transitions [1]
or Jahn-Teller distortions [2]. However, employing ab initio
QC methods for the purpose of TMC modeling faces seri-
ous problems since the molecules under consideration are
generally rather large whereas the computational costs of the
methods to be used in order to reach at least an acceptable
result scale up to N7 with the system size (N is the number
of AOs in the molecule) due to the importance of electron
correlation.

When a similar problem, the necessity of modeling of
large molecular systems like polypeptides or simply
polyatomic organic molecules, is faced by “organic” QC,
semiempirical methods are usually applied.With clearly iden-
tifiable exceptions like the long polyene chains or systems
with breaking σ -bonds these methods in general perform
quite reasonably giving relative heats of formation within se-
ries of related molecules and corresponding molecular geom-
etries with “chemical” precision. The progressive route of
improvements in the semiempirical methods as applied to
“organic” molecules consisted of (1) increasing the number
of the Coulomb interaction integrals taken into account, (2)
the sophistication of the core-core repulsion terms added to
the semiempirical electronic energy. However, the numerous
readjustments of the parameterization of the traditional semi-
empirical protocols were not too much profitable for their us-
age for modeling of TMCs which previously faced and still
faces severe problems. These problems are widely known in
the literature as reviewed in Refs. [3,4]. Briefly they can be
formulated as follows:
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1. the Koopmans’ theorem is not valid for the states with
large contributions from the atomic d-states;

2. the Aufbauprinzip frequently breaks for the orbitals with
significant contributions from the atomic d-states;

3. the iteration procedures implied by the Hartree–Fock–
Roothaan (HFR) approximation converge very slowly or
oscillate.

In a more general aspect one can state based on the anal-
ysis even of the recent attempts of semiempirical treatment
of TMCs [5–8] that the errors can be generally characterized
as unexpected and nonsystematic deviations in the calculated
ground state spins and symmetries from the corresponding
experimental data. The long persistence of these problems (in
fact, for several decades) indicates their fundamental rather
than technical character. Something is wrong with the very
idea to parameterize the traditional HFR-based semiempiri-
cal description for the electronic structure of TMC.

The paper is organized as follows. In the next section, a
formal point of view on the problem of constructing a semi-
empirical description of TMCs is presented and applied to
analysis of the corresponding difficulties. Further sections
are devoted to description of a semiempirical procedure of
effective Hamiltonian of crystal field (EHCF) satisfying the
validity conditions to be used for TMCs’ modeling and of its
application to analysis of spin-active complexes of iron (II).
Finally, discussion and conclusions are given.

2 Theory

2.1 Electron correlations and density matrix cumulant

The relevant formal treatment starts from the notion that all
the quantities related to the electronic structure of molecules
can be calculated with use of only one- and two-electron den-
sity matrices for the relevant electronic state of the system
under study [9]. Taking the energy for the sake of definiteness
we get:

E(CQ�S | ω)

= min
ξ

[∫
ρ

(1)
CQ�S(ξω | x, x ′)h(1)(CQω | x ′, x)dx dx ′

+
∫

ρ
(2)
CQ�S(ξω | x1x2, x

′
1x

′
2)h

(2)

× (CQω | x ′
1x

′
2, x1x2)dx1 dx2 dx ′

1 dx ′
2

]
(1)

The meaning of the notations introduced is the following. We
assume that the electronic energy of the chemical species with
the composition C is calculated at the nuclear configuration
Q for its ground electronic state having the spatial symmetry
� and the total spin S. Considering ground states of different
spins and symmetry allows for description of the electronic
spectra of the species to some extent. Variable ω of which
the result is dependent refers to the set of parameters of the
electronic problem: Slater or gaussian exponents, contraction
coefficients, semiempirical parameters of the Hamiltonians
(Fockians) etc. Set of variables ξ refers to true variables

(something which varies) of the electronic problem: MO
LCAO expansion coefficients, CI configurations’ or coupled
clusters’ amplitudes, etc. The matrix elements of the one-
and two-electron parts of the Hamiltonian: h(1)(CQω | x ′, x)
and h(2)(CQω | x ′

1x
′
2, x1x2), respectively, depend on the sys-

tem composition, nuclear configuration (those defining the
“external” Coulomb field acting upon electrons) and also on
the parameters ω adopted in the method. The one-electron
state indices x = (r, σ ), x′, x1, x2, x′

1, x′
2 can be understood

either as continuous spatial coordinates of electrons or as dis-
crete set of quantum numbers characterizing the states in the
adopted restricted basis set. In the latter case the integration
can be understood as summation over discrete values of x’s
giving the necessary traces of the matrix products.

In practice the density matrices are constructed as partial
integrals of the corresponding trial wave functions�CQ�S(ξω
| x1, x2, . . . , xN) for the given composition, nuclear config-
uration, and the specified total spin and spatial symmetry:

ρ
(1)
CQ�S(ξω | x, x ′)

= N

∫
�∗

CQ�S(ξω | x, x2, . . . , xN)

×�CQ�S(ξω | x ′, x2, . . . , xN)dx2 · · · dxN (2)

ρ
(2)
CQ�S(ξω | x1x2, x

′
1x

′
2)

= N(N − 1)

2

∫
�∗

CQ�S(ξω | x1, x2, x3, . . . , xN)

×�CQ�S(ξω | x ′
1, x

′
2, x3, · · · , xN)dx3 . . . dxN (3)

The necessity of using much more complex objects as are
theN -electronic wave functions�CQ�S (antisymmetric func-
tions of N points in the direct space and N discrete spin
projections) instead of by far more simple density matrices
which are functions of only two or four points and spin pro-
jections, respectively, is that in the many-electron systems
not any function ρ(1) and ρ(2) (even satisfying the hermicity,
normalization, and symmetry conditions) can be a density
matrix. The density matrix functions must result from the
partial integration as stipulated by Eqs. (2, 3), which ensures
the property of N -representability reflecting the extremely
complex structure of the wave functions �. The N -repre-
sentability problem is not solved so far at least for the ρ(2)

density matrices [10], so that the only available method to
parameterize the two-electron density matrices is one with
mediation of the trial wave functions, as formally presented
by Eqs. (2, 3).

The expressions Eqs. (1 – 3) are completely general. In
order to adjust these technique for using in relation to the
TMCs’ modeling, we have to consider a circle of concepts
known as electron correlation [11]. Indeed, the statement that
the motion of electrons is correlated can be given an exact
meaning only with use of the two-electron density matrix
Eqs. (2, 3). Generally, it looks like (with the normalization
of paper [12])

ρ(2)(x1, x2; x ′
1, x

′
2) =

∣∣∣∣ρ
(1)(x1, x

′
1) ρ(1)(x2, x

′
1)

ρ(1)(x1, x
′
2) ρ(1)(x2, x

′
2)

∣∣∣∣
−χ(x1, x2; x ′

1, x
′
2) (4)
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Table 1 Spin-crossover iron(II) complexes with nitrogen-containing polydentate ligands selected for calculations

Complex Ligand Spin transition characteristics Structural data Ref.

[Fe(mtz)6]2+ 1-methyl-tetrazole-N4 Hysteresis in magnetism with T ↓=
167 and T ↑= 179 K

X-ray for HS form of
the isomorphic Ni(II)
complex

[43]

[Fe(ptz)6]2+ 1-propyl-tetrazole Steep transition at T = 178 K X-ray for HS form [44]
[Fe(teec)6]2+ 1-(2-chloroethyl)-tetrazole Two iron(II) sites with different spin-

crossover behavior; both gradual and
hysteresis transitions observed

X-ray for HS form [45]

[Fe(Hpt)3]2+ 3-(2-pyridyl)-1,2,4-triazole Gradual transition with T1/2 = 135 K X-ray for HS and LS
forms

[41]

The first term in this expression expands as

∣∣∣∣ρ
(1)(x1, x

′
1) ρ(1)(x ′

1, x2)

ρ(1)(x1, x
′
2) ρ(1)(x2, x

′
2)

∣∣∣∣ = ρ(1)(x1, x
′
1)ρ

(1)(x2, x
′
2)

−ρ(1)(x1, x
′
2)ρ

(1)(x ′
1, x2) (5)

and corresponds to the model where electrons are indepen-
dent i.e., non-correlated. Strictly speaking, correlations are
present also in this term: omitting them by dropping the term
with the “minus” sign in Eq. (5) would result in the two-elec-
tron density which would be a simple product of one-electron
densities: ρ(1)(x1, x1)ρ

(1)(x2, x2). (The two-electron density
is the density of the conditional probability to observe two
electrons at points x1 and x2, simultaneously. This proba-
bility density is the diagonal element of the corresponding
two-electron density matrix: ρ(2)(x1, x2; x1, x2).) However,
the Fermi correlations, represented by the second term in
Eq. (5) have too fundamental character and neglecting them
would be equivalent to breaking the Pauli’s exclusion princi-
ple, which is certainly too crude approximation (the Hartree
approximation) to be followed further in the context of molec-
ular modeling. Therefore, these correlations are included in
the definition of independent fermions. The χ -term on the
other hand is responsible for reducing the above product of
densities when it is too large. The correspondence of the
above picture with the standard language of quantum chem-
istry based on the many-electron wave functions rather than
on the density matrices can be reestablished by noticing that
the trial wave function � taken in the form of a single Slater
determinant formed by molecular orbitals (MO), where the
variation parameters ξ are the expansion coefficients of MOs
taken as linear combinations of atomic orbitals (LCAO) (HFR
approach) automatically results in the two-electron density
matrix of the form of Eq. (5) [10]. Thus in this framework
the two-electron density matrix is not an independent quan-
tity any more and the properties of the system are ultimately
expressed through its one-electron density matrix.

All the technical tricks invented to go beyond the HFR
calculation scheme in terms of different forms of the trial
wave function or various perturbative procedures reduce in
fact to attempts to estimate somehow the second term χ in
Eq. (4) which is the cumulant of the two-particle density
matrix [12] responsible for deviation of electrons’ behavior
from the model of independent fermions. It comprises the
qualitative features of electron correlations.

2.2 Semiempirical parameterizations of the HFR
approximations for TMC

The above considerations may seem to be too much theoret-
ical and to lay too far from the practical needs of modeling
electronic structure of TMC’s. It is not true, however. It is
easy to understand that the nature of failure of the long lasting
attempts to construct an acceptable semiempirical parameter-
ization for the transition metal compounds within the frame-
work of the HFR MO LCAO paradigm lays precisely in the
inadequate treatment of the cumulant of the two-electron den-
sity matrix.

The procedure of developing a semiempirical parame-
terization can be formalized in terms of Eq. (1). From this
point of view a set of experimental energies E(CQ�S) cor-
responding to different chemical compositions C, molecu-
lar geometries Q, and electronic states with specific values
of S and � is given. Developing a parameterization means
to find a certain (sub)set of parameters ω which minimizes
the norm of the deviation vector δEω with the components
E(CQ�S) − E(CQ�S | ω) numbered by the tuples CQ�S:

min
ω

(δEω |M| δEω) , (6)

where the norm is calculated with some positively (semi)
definite metric matrix M . On one hand we know that quite a
number of enterprizes of this sort were very successful lead-
ing to the whole family of semiempirical procedures useful
largely for describing the ground state of “organic” mole-
cules [13]. At the same time in case of TMCs the success is
much more modest (as briefly mentioned above) and even
the ground state multiplicities and spatial symmetries escape
from being correctly reproduced. One can easily realize that
the reason is the SCF approximation built in the computation
scheme of semiempirical methods. Indeed, from a very gen-
eral point of view the energies E(CQ�S | ω) are the linear
functionals of the density matrices Eqs. (2, 3) as well as the
components of the deviation vectors δEω. When the cumu-
lant of the two-electron density comes into play the energies
E(CQ�S|ω) and the deviations become quadratic function-
als of the one-electron density matrix and remain the linear
functionals of the cumulant (just the same as previous lin-
ear function of the two-electron density matrix). The HFR
approximation is nothing but restricting the corresponding
functionals to their respective quadratic parts with respect to
the one-electron density matrix and dropping the cumulant
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dependent contribution completely. By this two states hav-
ing the wave functions yielding the same one-electron den-
sity matrices, but different two-electron density matrices are
deemed to have the same energy. (It is obvious that two such
states differ namely by the cumulant of the two-electron den-
sity matrices, since the determinantal parts produced by the
same one-electron density matrices apparently coincide). If
such a situation (a pair of states having the above property)
happens, the optimization procedure Eq. (6) would try to
drive the one-electron densities in these states to be different.
However, it may be impossible for the symmetry reasons
if the latter is high enough at least effectively. Let us con-
sider e.g., a two-orbital two-electron model system. Let the
orbitals be a and b which can be understood as notation of
one-dimensional irreducible representations. In this case, it
is easy to see that the corresponding singlet and triplet states
1B and 3B (� = B, S = 0, 1) are given correspondingly by:

�B0(x1, x2) = 1

2
[α(s1)β(s2) − β(s1)α(s2)]

× [a(r1)b(r2) + b(r1)a(r2)]

�B1(x1, x2) = 1

2
[α(s1)β(s2) + β(s1)α(s2)]

× [a(r1)b(r2) − b(r1)a(r2)] , (7)

irrespective of the values of subscripts CQ introduced after
Eq. (1) and the actual values of either parameters ξω. Per-
forming the integration according to Eqs. (2, 3) we immedi-
ately get that irrespective of the total spin of these states the
exact one-electron density matrices become:

ρ
(1)
BS(x, x ′) = 1

2

[
α∗(s)α(s ′) + β∗(s)β(s ′)

]
× [

a∗(r)a(r′) + b∗(r)b(r′)
]

(8)

and do not depend on total spin [14]. Obviously, the Har-
tree–Fock approximation for the two-electron density matri-
ces coming from the one-electron densities Eq. (8) gives a
wrong result since the exact two electron density matrices
calculated according to their definition Eqs. (2, 3) from the
wave functions Eq. (7) are different:

ρ
(2)

B(0
1)

(x1x2, x
′
1x

′
2) = 1

4

[
α∗(s1)β

∗(s2) ∓ β∗(s1)α
∗(s2)

]
× [

α(s ′
1)β(s ′

2) ∓ β(s ′
1)α(s ′

2)
]

× [
a∗(r1)b

∗(r2) ± b∗(r1)a
∗(r2)

]
× [

a(r′
1)b(r′

2) ± b(r′
1)a(r′

2)
]

(9)

with the upper sign corresponding to S = 0 and the lower one
to S = 1, irrespective of the values of the subscripts CQ and
parameters ξω. Opening the brackets in the above expression
gives rather long formula which contains the part depending
on the total spin i.e., which is different for the singlet and
triplet states of the same spatial symmetry B. The physical
consequences of this difference are well known: it is what
immediately leads to the first Hunds rule stating that in an
atom the term of a higher spin (under other equal conditions)
has lower energy. The energy difference between these terms
is nothing but the exchange integral. By this we clearly see

that the situation we face in TMCs is intimately related to
the (grammatically) correct treatment of the cumulant of the
two-electron density matrix. Two states of say d-shell differ-
ing by the total spin only must have different energy whereas
the HFR theory does not provide any quantity to which this
difference can be anyhow ascribed. Notice, that the problem
is not in the type of the Coulomb exchange integrals whether
appearing or not in the parameterization scheme, but in its
density cumulant counterpart the integral must be multiplied
by. Even in the case when the Hartree–Fock part of the two-
electron density matrix provides a multiplier to be combined
with that or another type of exchange integrals which are
responsible for the energy difference between the states of
the different total spin, in the absence of the necessary com-
ponent of the two-electron cumulant this difference remains
zero anyway. In more complex situation than that of two
electrons occupying each its orbital one can expect much
more sophisticated interconnections between the total spin
and two-electron densities than those demonstrated above. In
any case they are concentrated in the cumulant. This explains
to some extent the failure of almost 40 years of attempts to
squeeze the TMCs into the semiempirical HFR theory by
extending the variety of the two-electron integrals included
in the parameterization.

We do not intend to further elaborate on characteristics
of the widespread semiempirical methods. It is enough to
say, that all of them which are restricted to the HFR approx-
imation suffer from the shortcoming described above and,
hence, one has not to have too much hope to reach a consis-
tent description of TMCs within their framework. The recent
semiempirical attempt to develop a parameterization for the
transition metal compounds is the PM3 (tm) method [15,
16]. It is intensively applied to calculations of various TMCs.
The calculations carried out [6,7] show that the method is
not capable to reproduce even very simple characteristics
in a series of TMCs having similar structure, though other
authors [8,17] state that in some cases reasonable estimates
of geometrical characteristics may be received, nevertheless.
This situation can be understood by thorough analysis of the
sets of complexes used by different groups of authors. In
papers [6,7] authors study the uniform set of about 30 com-
plexes of Ni2+ with the ligands bound by the nitrogen donor
atoms. The analysis of this series performed there clearly
shows that PM3 (tm) fails for Ni2+ for the now understand-
able reason. In the papers [8,17] the authors by contrast try to
explore a comparable number of complexes but much more
dispersed over the range of molecule classes which includes
both the first and second row transition metal complexes,
high- and low-spin ones, those having “ionic” and “cova-
lent” bonds etc. In this test set the problematic classes of
compounds are presented by a couple of examples each and
look out to be completely isolated exceptions. This can serve
as an example of how trying to test the method on a wide
and apparently “random” selection of objects may lead to
a smeared picture due to absence of clear criteria designed
to introduce an adequate classification within the chosen set.
On the other hand, we have to mention that the semiempirical
method ZINDO/1 [18] which allows for some true correlation
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by taking into account the configuration interaction may be
considered as a setting prospective for further parameteriza-
tion.

3 Consistent description of TMCs’ electronic structure

The grim prospects to obtain the semiempirical HFR-based
picture of electronic structure of TMCs which follow from
the above analysis are in a sharp contrast with the situation
with the empirical understanding of detailed features of the
latter. The description of TMCs used to interpret and ana-
lyze their UV–VIS spectra, magnetic and partially structural
properties is based on the crystal field theory (CFT) [19,20]
allowing qualitatively correct description of these character-
istics of TMCs.

3.1 The crystal field theory

The CFT was introduced in the classical work by Bethe [19]
devoted to the description of splittings of atomic terms in
crystal fields of various symmetry. The qualitative pattern
of this splitting is established by considering the change of
symmetry properties of atomic wave functions while low-
ering the spatial symmetry from the spherical one (in case
of an atom) down to the symmetry of a point group of the
crystal environment. To calculate the energies of the d-d-
excitations in this model, it is necessary to diagonalize the
matrix of the Hamiltonian constructed in the basis of nd -
electronic wave functions (nd is the number of d -electrons).
Matrix elements of the Hamiltonian are expressed through
the parameters of splitting (10Dq–in case of an octahedral
field) and those of the Coulomb repulsion of d-electrons,
that are the Slater-Condon parameters Fk(dd), k = 0, 2, 4,
or the Racah parameters A, B, C related to the former. In
a simplest version of the CFT these quantities are taken as
empirical parameters and determined from comparison of the
excitation energies, calculated within this ionic model, to the
experimental ones. Such an approach allows to describe with
high accuracy the spectra of lower excitations of the impurity
ions in crystals and of the TMCs, and in many cases to assign
successfully the absorption bands observed experimentally.

Although the predictive force of the described approach
is lost due to presence of empirical parameters in the theory,
which makes it dependent on completeness of experimental
data, the CFT correctly reproduces the basic qualitative fea-
tures of the electronic structure of transition metal ions in
crystals and TMCs well known to chemists. These features
are the presence of specific group of electrons in the d-shell
and symmetry of the external field which both determine the
form of the spectrum of lower excitations. Analysis of the
basic assumptions and constructs of the CFT shows its strik-
ing difference from those of the semiempirical HFR-based
methods. Indeed, the CFT restricts itself with the electrons
in the d-shell only, whereas the HFR-based semiempirical
methods extend their description to all valence electrons. On
the other hand the CFT uses possibly the most precise form

of the electronic wave function: the full configuration inter-
action (FCI) one in the space of the considered one-elec-
tron states, which allows to reproduce all the components
of the cumulant on the two-electron density matrix “block”
which relates to the corresponding subset of the one-electron
states. Incidentally, the problem of simultaneous descrip-
tion of several many-electron terms of similar occupancy
of the one-electron states but of different total spin arises
in the context of molecular modeling, namely, when it goes
about TMCs and more precisely about the states of their open
d-shells.The latter preserve largely their characteristics inher-
ited from the free atoms or ions and thus the corresponding
system of multiplets. The latter to be reproduced requires
as it is shown above a proper description of electron cor-
relations or equivalently correct form of the two-electron
density matrix cumulant. The HFR wave function on the
other hand neglects all the nontrivial parts of electron cor-
relation. Our belief is that the above difference reflects the
distinction between the details of electronic structures of the
compounds described by them. The HFR form of the wave
function springs from the Hückel method. In early years of
development of quantum chemistry this type of the wave
function had been applied to “organic” molecules like ben-
zene and other aromatic compounds whereas the constructs
specific for the CFT were used to describe “inorganic” mol-
ecules and materials reproducing by this the separation of
chemistry itself into organic and inorganic and thus taking
into account specificity of compounds related to these two
classical subtopics of chemistry. The essential differences in
the corresponding electronic structures are reflected in the
form of the trial wave function accepted as zero approxima-
tions. Further development, dominated largely by numerical
methods stemmed from the Hückel form of the wave func-
tion rather than qualitative reasoning, faces problems when
addressing open d-shells. The general theorems (the Löwdin
theorem, for example) are not of much help here since they are
existence theorems which only state the possibility of obtain-
ing the exact many-electron wave function as an expansion
over Slater determinants composed of orthogonal one-elec-
tron states, for example, coming from the HFR–MO–LCAO
procedure, but says nothing about how long an expansion
giving an acceptable accuracy is going to be.

The CFT by contrast gets directly to business when it
goes to TMCs’ description. All key features of the electronic
structure of TMC are fixed in the structure of this theory and
the only problem is a consistent and independent estimation
(calculation) of parameters of the crystal field induced by
the metal ion’s environment. All the development of CFT
was concentrated on this problem. It is the basic difficulty,
that has no solution in the framework of the CFT itself. The
reason of this failure is transparent enough and consists in
oversimplified description of the transition metal ion envi-
ronment with the purely ionic model. It neglects all electrons
outside the d-shell and takes into account only the symmetry
of the external field and electron-electron interaction inside
the d-shell. This deficiency can be lifted by considering the
CFT as a special case of the effective Hamiltonian theory for
one group of electrons being part of an N -electron system



102 M. B. Darkhovskii et al.

where other groups of electrons also present. This allows a
sequential deduction of the effective Hamiltonian for the d-
shell as performed in Ref. [3]. By this the matrix elements
of the said Hamiltonian are expressed through characteristics
of the electronic structure of the metal ion’s environment. A
brief description of the corresponding moves is given in the
next Section.

3.2 Effective Hamiltonian of the crystal field (EHCF)
method

The deduction [3] of the EHCF is based on representation
of the wave function of TMC in a form of the antisymmet-
rized product of the group function for d-electrons and of
that for other (valence) electrons of a complex which sep-
arates the electronic variables. The detailed analysis of the
formal elements of the electronic structure theory together
with that of the electronic structure of TMCs, distinguishing
these from molecules not containing transition metal atoms
reveals the basic features which must be taken into account
when developing an adequate semiempirical description of
their electronic structure:

1. A TMC molecule contains strongly localized electrons in
its partially filled valence d-shell of the transition metal
atom;

2. The electrons inside the d-shell of transition metal atom
are strongly correlated;

3. Total charge transfer between the d-shell of transition
metal atom and the ligand environment is small;

4. The spectrum of low-energy excited states of partially
filled d -shell of transition metal atom (d-d-spectrum) is
dense and well separated on the energy scale from other
excitations of the system (e.g., those with electron trans-
fer from or to the d-shell).

These features on one hand constitute the physical reasons
why the HFR based approaches do not apply for the descrip-
tion of electronic spectra of TMCs, and on the other hand
prove the necessity of the localized description of d-electrons
of transition metal atom in TMC with explicit account for
effects of electron correlations inside the d-shell. This can be
done if one explicitly takes into account correlations of elec-
trons in the d-shell of the transition metal atom (mentioned
further as the d-shell). In a zero approximation for the TMCs’
wave function one may use the function formalizing the CFT
ionic model, i.e., one with a fixed number of electrons in
the d-shell. The interactions responsible for electron trans-
fer between the d-shell and the ligands can be considered
as perturbations. Following the standards of semiempirical
theory, we restrict the AO basis for all atoms of TMC by the
valence ones. For the metal ion the vacant 4s-and 4p-orbitals
are included. All the AOs are separated into two subsets from
which one (the d-system) contains 3d-orbitals of the transi-
tion metal atom, and another (the “ligand subsystem”, or the
l -system) contains 4s-and 4p-orbitals of the transition metal
atom and the valence AOs of all the ligand atoms. Further-
more, we consider only such complexes, where excitation

energies in the l-system are by far larger than the excita-
tion energies in the d-shell of the metal atom. This singles
out a subset of the Werner TMCs which can be alternatively
characterized as ones with the close electronic shells ligands,
such as F−, Cl−, Br−, I−, saturated organic molecules with
donor atoms. This comprises the set of objects we are going
to cover in this theory.

Formally the theory evolves as following. The electronic
wave function for the n-th state of the complex is written as
the antisymmetrized product of wave functions of the elec-
tron groups introduced above:

�n = �
(n)
d ∧ �l (10)

This reflects the main feature of the electronic structure of the
TMC, that is the presence of the strongly correlated d-shell
and of relatively inert ligands. The low-energy d-d-spectrum
of the whole TMC described by the Hamiltonian

H = Hd + Hl + Hc + Hr (11)

where Hd is the Hamiltonian of d-electrons, Hl is the Ham-
iltonian of the ligand system, Hc is the Coulomb interaction,
and Hr is the resonance interaction, is that of the effective
Hamiltonian for the d-system:

H eff
d =

∑
µνσ

U eff
µν d†

µσ dνσ

+1

2

∑
µνρη

∑
στ

(µν | ρη)d†
µσ d†

ρτ dητ dνσ (12)

where the d-electron Coulomb interaction term is inherited
from the free ion and the effective core parameters U eff

µν con-
tain contributions from the Coulomb and the resonance inter-
action between the d- and l-systems:

U eff
µν = δµνUdd + W atom

µν + W field
µν + W cov

µν , (13)

where

W atom
µν = δµν

(∑
α∈s,p

gµαPαα

)
, (14)

is the repulsion of electrons in the d-shell from those in the
4s- and 4p-AO’s of the metal,

W field
µν =

∑
L

QLV L
µν , (15)

is the Coulomb interaction of d-electrons with the net charges
on the ligand atoms, having the standard CFT form [21]; and
the covalent part:

W cov
µν = −

∑
i

βµiβνi

(
1 − ni

�Edi

− ni

�Eid

)
(16)

ultimately comes from the resonance interaction between the
d- and l-systems. According to the EHCF method [3] the
l-system is described by a single Slater determinant �l which
has to be obtained from an HFR procedure using the effec-
tive renormalized Hamiltonian of the ligand subsystem. Solv-
ing the HFR problem for the l-system allows to determine
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one-electron density matrix Pαβ , orbital energies εi , and the
MO–LCAO coefficients ciα . These quantities completely de-
fine the electronic structure of the l-system and are used to
calculate the effective Hamiltonian (12) by Eqs. ( 14)–(16),
where QL = ∑

α∈L Pαα − ZL is the effective charge of the
ligand atom L; ZL is the core charge of the ligand atom L;
V L

µν is the matrix element of the potential energy operator
describing the interaction between a d-electron and a unit
charge placed on the ligand atom L; ni is the occupation
number of the ith l-MO (ni = 0 or 1); �Edi (�Eid ) is the en-
ergy necessary to transfer an electron from the d-shell (from
the ith l-MO) to the ith l-MO (to the d-shell):

�Edi = −Ai + Id − γ̄di

�Eid = Ii − Ad − γ̄di , (17)

where Ii and Ai are the ionization potential and the elec-
tron affinity of the ith l-MO within the HFR scheme equal to
−εi–the corresponding orbital energy with the opposite sign,
Id and Ad are, respectively, the effective ionization potential
and the electron affinity of the d-shell, and γ̄di is the Cou-
lomb integral averaged over the d orbitals of a transition metal
atom. The resonance integrals βµi in Eq. (16) are given by

βµi =
∑

α

βµαciα (18)

where ciα is the MO-LCAO coefficient, and βµα is the reso-
nance integral between the α-th l-AO and the µ-th d-AO.

3.3 Semiempirical implementations of the EHCF paradigm

In the context of the EHCF construct described in the previous
Section the problem of semiempirical modeling of TMCs’
electronic structure is seen in a somewhat different perspec-
tive. The EHCF implicitly contains the crucial element of the
theory: the block of the two-electron density matrix cumu-
lant which relates to the d-shell. Instead of hardly justifiable
attempts to extend a parameterization to the transition metals
it is now possible to check in a systematic way the value of
different parameterization schemes already developed in the
“organic” context for the purpose of estimating the quanti-
ties necessary to calculate the crystal field according to pre-
scriptions of the EHCF theory Eqs. (14)–(16). Solving the
wave equation for the effective Hamiltonian for the d-sys-
tem H eff

d with the matrix elements which are estimated with
use of any “organic” semiempirical scheme with the CI wave
function constructed in the basis of the d-system, we obtain
the complete description of the many-electron states of the
d-shell of the metal ion in the complex. In such a formula-
tion the EHCF method was parameterized for calculations
of various complexes of metals of the first transition row,
with mono- and polyatomic ligands. In the works [3,4,22–
24], parameters for compounds with donor atoms N, C, O,
F, Cl and doubly and triply charged ions V, Cr, Mn, Fe, Co,
Ni are fitted. These parameters do not depend on details of
chemical structure of the whole ligand, but are characteristic
only for each pair metal-donor atom. The dependence of the

excerted effective field on details of geometry and chemi-
cal composition of the ligands are believed to be reproduced
in a frame of a standard HFR-based semiempirical proce-
dure used to describe “organic” l-system within the proposed
hybrid approach. The further evaluations [23–25] have shown
applicability of the fitted system of parameters for calcula-
tions of the electronic structure and spectra of numerous com-
plexes of divalent cations with use of the CNDO parameter-
ization for the l-system. In Refs. [26,27] the EHCF method
is also extended for calculations of ligands by the INDO and
MINDO/3 parameterizations. In all calculations the experi-
mental multiplicity (spin) and spatial symmetry of the corre-
sponding ground states were reproduced correctly. The sum-
mit of this approach was reached [25] in the calculations on
the complex cis-[Fe(NCS)2(bipy)2]. The molecular geome-
try is known for both the high- and low-spin isomers of the
said compound. The calculations reproduce the respective
ground state spins and the spectra of low lying d-d-excita-
tions in remarkable agreement with the experimental data.

Another semiempirical implementation of the EHCF met-
hod is based on the well-known SINDO1 scheme developed
by Jug et al. [28–30]. The SINDO1 scheme has some spe-
cific features which seem to be very important in the light
of the EHCF formulation. First of all, the explicit account of
the nonorthogonality of the atomic orbitals by using a Löw-
din orthogonalized basis set provides a validity of the strong
orthogonality condition between the group functions �n

d and
�l and justifies the derivation of the system of the effective
Schrödinger-like equations for the electronic subsystems of
a TMC. The second quite important point is that the SINDO1
method uses a theoretically justified and well parameterized
expression for the semiempirical resonance integrals. This
expression makes it possible to reproduce the features of the
distance dependence of the resonance integrals in the rela-
tively wide range of bond distances.

The details of the EHCF/SINDO1 implementation are
described in details in [31]. Here, we will briefly outline
the specific features arising from using the orthogonalized
atomic basis sets in the parameterization scheme.

The single-determinant wavefunction �l for the ligand
subsystem is calculated with slightly modified SINDO1 meth-
od using the effective Fockian for the l-subsystem. First, the
matrix elements of the core Hamiltonian of the l-system are
renormalized to reflect the interaction of the ligand electrons
with the electron density in the d-system. At the next stage,
the effective core Hamiltonian matrix is transformed to a
symmetrically orthogonalized atomic orbital (OAO) basis
set. This transformation takes into account the d-orbitals of
the metal atom as well, so that the resulting OAO basis set in
the l-system and the transformed d-orbitals of the metal are
orthogonal to each other. The resulting effective core Ham-
iltonian matrix elements in the OAO basis for the l-system
include two types of the first-order orthogonalization cor-
rections originating from ligand atomic orbitals and metal
d-orbitals, respectively. The two-center off-diagonal matrix
elements of the core Hamiltonian in the OAO basis (reso-
nance integrals) have additional empirical correction terms
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with adjustable pair parameters fit to reproduce the geome-
tries, heats of formation, and ionization potentials for a rep-
resentative set of transition metal compounds [31].

Compared to the Eq. (13) the effective one-electron param-
eters for the d-system U eff

µν in EHCF/SINDO1 scheme contain
two additional contributions

U eff
µν = δµνUdd + W atom

µν + W field
µν + W cov

µν + W exch
µν

+W orth
µν . (19)

The exchange correction terms W exch
µν originate from the ex-

change interactions between d-electrons and electrons on the
MOs of the ligand subsystem. They have the following form:

W exch
µν = −1

2

{L}∑
k,l

Pkl(µk | νl). (20)

The exchange integrals (µk | νl) are calculated using the
Mulliken approximation (M is a metal atom; A and B are
ligand atoms):

(µMkA | νMlB) = 1

4
SµkSνl (γ̄dd + γMA + γMB + γAB) ,

(21)

where Sij are the overlap integrals; γ̄dd is an average one-cen-
ter Coulomb integral of the type (dd | dd) and the γMA, γMB ,
γAB are average two-center Coulomb integrals. The average
values for the Coulomb integrals have been used in order to
secure the invariance with respect to orthogonal transforma-
tions of the atomic basis set.

The term W orth
µν is a first order correction originating from

the Löwdin orthogonalization of the d orbitals with respect
to the ligand orbitals:

W orth
µν = −1

2

{L}∑
l

(
SµlLνl + LνlSµl

)
, (22)

where Sµl are the overlap integrals between metal d-orbitals
and ligand AO’s, and Lνl are the empirical terms used in the
SINDO1 parameterization of the resonance integrals [32]:

Lνl = −1

2
(ζ 2

ν + ζ 2
l )

Sνl (1 − |Sνl|)
1 + 1

2 (ζν + ζl)RML

. (23)

Here ζi are basis set exponents and RML is the distance be-
tween the metal atom and the ligand atom on which the atomic
orbital l is centered.

The EHCF/SINDO1 method has proved to be useful for
calculations of spectra of low-energy excitations in some
iron(II) complexes and ionic crystals [31]. In all cases the
method reproduces not only the experimentally observed spin
and symmetry of the electronic ground state but also provides
the excitation energies with a good accuracy. The calculation
of the splittings of the d-levels of the metal complex with
partitioning of the total splittings into various contributions
according to Eq. (19) gives a unique possibility to analyze the
details of the electronic structure of the complex in simple
terms analogous to the crystal field theory, so widely used
by inorganic chemists for the interpretation of the electronic
spectra of these compounds.

3.4 Calculation of quadrupole splittings
in Mössbauer spectra

The quadrupole splitting measured in the Mössbauer spectra
of iron compounds is due to the interaction of the quadrupole
moment Q of the 57Fe nucleus in its excited state and the
electric field gradient (EFG) at the position of this nucleus.
The EFG at r = R(Fe) in the presence of the external charge
density ρ(r) (electrons and other nuclei) is represented by
the traceless tensor with the components

Vαβ =
∫

vαβ(r)ρ(r) d3r , (24)

vαβ(r) = 3(rα − R(Fe)
α )(rβ − R

(Fe)
β ) − δαβ

∣∣r − R(Fe)
∣∣2∣∣r − R(Fe)

∣∣5 ,

(25)

where rα , rβ are the cartesian components of the position
vector r.

In a line with the EHCF representation of the total wave-
function as an antisymmetrized product Eq. (10) of the group
functions for the d-system and l-system the total EFG tensor
for the TMC in its n-th electronic state can be expressed as a
sum of two contributions

V
(n)
αβ = V

(n)
αβ (nd) + Vαβ(nl) (26)

The first contribution V
(n)
αβ (nd) is due to the d-electrons

of the metal atom

V
(n)
αβ (nd) =

∑
µν

〈
µ
∣∣vαβ

∣∣ ν〉∑
I,J

C
(n)
I C

(n)
J

〈
I

∣∣∣Êµν

∣∣∣ J 〉 , (27)

where µ, ν represent the one-electron atomic d-orbitals; I ,
J are the nd -electron basis states (belonging to the irreduc-
ible representations of the unitary group U(nd)); Êµν =∑

σ d†
µσ dνσ are the generators of the unitary group; and C

(n)
I ,

C
(n)
J are the eigenvector amplitudes at the basis configura-

tions I and J , respectively.
The second contribution Vαβ(nl) is due to the electrons

and nuclei of the l-subsystem. It can be further partitioned
into the contribution of the valence 4p-electrons of the metal
atom V

4p

αβ and the contribution of the effective charges on the
ligand atoms V L

αβ (the contribution of the valence 4s electrons
vanishes due to the spherical symmetry)

Vαβ(nl) = V
4p

αβ + V L
αβ (28)

V
4p

αβ =
∑

p,q∈4p

Ppq

〈
p
∣∣vαβ

∣∣ q〉 (29)

V L
αβ =

∑
A∈L

QAvαβ(rA) (30)

Here, Ppq are the elements of the one-electron SCF density
matrix for the l-system and QA = ZA − ∑

q∈A Pqq is the
effective charge on the atom A.
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Table 2 d-d Excitation energies (cm−1) for spin crossover Fe(II) complexes

[Fe(mtz)6]2+

HS (X-ray [43]) LS (EHCF/MM)

Transition Calculated Exp.[43] Transition Calculated Exp.[43]
5T2 → 5E(1) 10211 1A1 → 1T1(1) 14929
→ 5E(2) 10284 11750 → 1T1(2) 14980 18200

→ 1T1(3) 15083
→ 1T2(1) 22963
→ 1T2(2) 23075 26600
→ 1T2(3) 23130

[Fe(ptz)6]2+

HS (EHCF/MM) LS (EHCF/MM)

Transition Calculated Exp.[44] Transition Calculated Exp.[44]
5T2 → 5E(1) 8774 1A1 →1T1(1) 14478
→ 5E(2) 8855 12590 → 1T1(2) 14577 19231

→ 1T1(3) 14666
→ 1T2(1) 22512
→ 1T2(2) 22533 27778
→ 1T2(3) 22650

[Fe(teec)6]2+

HS (X-ray [45])

Transition Calculated Exp.[45] Transition Calculated Exp.
5T2 → 5E(1) 6550
→ 5E(2) 6972 11800

[Fe(Hpt)3]2+

HS (X-ray [41]) LS (X-ray [41])

Transition Calculatedb Exp.[41] Transition Calculatedb Exp.[41]
5T2 → 5E(1) 6625 (8896) 1A1 → 1T1(1) 10995 (13564)
→ 5E(2) 8169 (10412) 11765 →1T1(2) 11426 (13893) 18868

→ 1T1(3) 11668 (14613)
→ 1T2(1) 17993 (20892)
→ 1T2(2) 18778 (21999)
→ 1T2(3) 19448 (23148)

Calculated excitation energies correspond to the actual symmetry of the complexes which is lower than Oh, hence the splittings between the
components of the degenerated E and T states
b numbers in brackets are the results of calculation with the geometry of the complex optimized with hybrid EHCF/MM method

The one-electron matrix elements
〈
µ
∣∣vαβ

∣∣ ν〉 and〈
p
∣∣vαβ

∣∣ q〉 have the following structure〈
µ
∣∣vαβ

∣∣ ν〉 = 〈
r−3

〉
3d

f αβ
µν (31)

〈
p
∣∣vαβ

∣∣ q〉 = 〈
r−3

〉
4p

gαβ
pq , (32)

where the radial factors
〈
r−3

〉
are calculated with the cor-

responding radial atomic wavefunctions and the analytical
expressions for the angular factors f αβ

µν and g
αβ
pq for 3d and

4p atomic orbitals are presented in Appendix A.
Due to the presence of electrons in the inner shells of the

iron atom the contributions to the total EFG tensor have to
be corrected to reflect the shielding and antishielding effects
of inner electrons. The shielding effects for the valence 3d
and 4p electrons and antishielding effects for the charges on
ligand atoms are described by the Sternheimer factors 1 − R
and 1 − γ∞, respectively [33] (in this work we adopted the
values R = 0.32 and γ∞ = −9.1 used previously for Fe(II)

complexes [34,35]). With this taken into account the total
EFG tensor is represented as

V
(n)
αβ = (1 − R)V

(n)
αβ (nd) + (1 − R)V

4p

αβ

+(1 − γ∞)V L
αβ (33)

The total temperature dependent EFG tensor Vαβ(T ) can
be calculated by averaging all the components over all the
excited electronic states acording to Boltzmann statistics

Vαβ(T ) =
∑

n V
(n)
αβ exp (−En/kBT )∑

n exp (−En/kBT )
(34)

Finally, the quadrupole splitting �EQ in 57Fe Mössbauer
spectra is given by the expression

�EQ = 1

2
eQVZZ

(
1 + η2

3

) 1
2

, (35)

where e is the (positive) unit charge, Q is the nuclear quadru-
pole moment of the Mössbauer nucleus, VZZ is the main
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Fig. 1 Temperature dependence of the quadrupole splitting �EQ in
Mössbauer spectra of high spin (HS) and low spin (LS) forms of
[Fe(mtz)6]2+ complex. The calculated data are shown with solid lines
and experimental data [43] are shown with diamonds (HS) and circles
(LS)

component of the EFG tensor defined by |VZZ| ≥ |VYY | ≥
|VXX|, and η is the asymmetry parameter

η = |VXX| − |VYY |
|VZZ| . (36)

3.5 Hybrid method EHCF/MM

In its simple version the EHCF/X method treats the electronic
structure of the ligands within a semiempirical approxima-
tion X. These methods are not, however, designed to conduct
the systematic studies of potential energy surfaces (PESs) of
TMCs. Further application of the EHCF methodology would
be to develop a method for the calculation of PESs of TMCs.
The CNDO or INDO parameterizations for the ligands are
probably of high enough accuracy when it goes about the
charge distribution in the ligands and the orbital energies at
fixed experimental geometries. However, these methods do
not suit for geometry optimizations (or more generally for
searching PESs) of TMCs. Applying the electron partition-
ing into groups [9] allows to effectively formulate hybrid
schemes of the QM/MM type. In the original implementa-
tion [3] EHCF method does not allow to follow the PESs
of TMCs. Nevertheless, the EHCF method can be adapted
for this application in a framework of the hybrid scheme
QM/MM. Indeed, according to [12] complete electronic en-
ergy of the wave function (14) in its nth state is:

En = Eeff
d (n) + El , (37)

where Eeff
d (n) is the energy of the n-th state of the effective

Hamiltonian for d-electrons in the crystal field. An alter-
native to the step by step improvement of semiempirical
descriptions of the ligand’s electronic structure X for the com-
putation of the PES of TMCs would be to use the molecular
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Fig. 2 Temperature dependence of the quadrupole splitting �EQ in
Mössbauer spectra of high spin (HS) and low spin (LS) forms of
[Fe(ptz)6]2+ complex. The calculated data are shown with solid lines
and experimental data [44] are shown with diamonds (HS) and circles
(LS)

mechanics (MM) model to calculate the ligand’s energy El .
In such a setting the EHCF/X (X = CNDO, INDO) method is
only retained for the d-shell electrons [36,37]. This simply
replaces the ligand’s energy El by EMM, estimated by an MM
calculation. The total energy of the state n becomes:

En = Eeff
d (n) + EMM . (38)

This represents a natural way of combining MM and EHCF
[38–40]. Thus calculating energy of multielectronic states
of the d-shell Eeff

d (n) for different nuclear configurations of
TMC and ligand energy EMM it is possible to obtain approx-
imate PES for various states of the d-shell of TMC.

The general scheme of the energy evaluation Eq. (38) is
based on the implementation of the EHCF method in which
the wave function �l for the l-system is calculated within
a semiempirical version of the HFR approach (for exam-
ple, CNDO) and then used to construct H eff

d . This scheme
appears rather expensive to be used for searches of PES, since
it requires the HFR calculations on the l-system for each
geometry of the complex. To clear this, we have developed
the local version of the EHCF method which allows to cal-
culate the crystal field much more economically.

Not going into too much details we can say that the local
EHCF method developed for this purpose allows to calcu-
late the covalent contribution to the effective crystal field
through the characteristics of ligands’ lone pairs. The lo-
cal EHCF method was implemented and used for the anal-
ysis of the molecular geometries of complexes of iron (II)
in works [38,39]. In our work [40] we describe the effect
of electrostatic field of the metal ion on the ligands within
the electrostatic polarization model. The appropriate objects
allowing to test the described approach are spin isomers of
TMCs. Satisfactory precision of the estimates of geometry
dependence of the effective crystal field in a series of com-
plexes of iron (II) and cobalt (II) (both low- and high-spin
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Fig. 3 Temperature dependence of the quadrupole splitting �EQ in
Mössbauer spectra of the high spin form of [Fe(teec)6]2+ complex.
The calculated data are shown with a solid line and experimental data
(roughly estimated from the Mössbauer spectra presented in Ref. [45])
are shown with diamonds

ground states) is achieved [40]. We considered totally 26
six-coordinated iron complexes with mono- and polydentate
ligands, containing both aliphatic and aromatic donor nitro-
gen atoms (mixed complexes with different types of donor
nitrogen atoms and different spin isomers of one complex
are included in this number) and ten cobalt complexes also
with different types of donor nitrogen atoms and coordina-
tion numbers ranging from four up to six. Deviations of cal-
culated bond lengths Fe–N and Co–N from the experimen-
tal ones are randomly distributed according to the normal
(Gauss) law with almost zero mean value, thus, indicating
to the evanescence of the systematic error and with the dis-
persions of 0.004 and 0.001Å2, respectively. These data are
obtained from the set of 180 Fe–N and 46 Co–N internuclear
separations.

4 Electronic spectra and Mössbauer quadrupole
splittings in spin-crossover Fe(II) complexes

Using the EHCF/SINDO1 method we performed the calcu-
lations of the electronic spectra and quadrupole splittings in
Mössbauer spectra of four spin-crossover Fe(II) complexes
with nitrogen-containing polydentate ligands.A short descrip-
tion of these complexes is presented in Table 1. The geom-
etries of the high-spin (HS) forms of the complexes have
been determined from X-ray experiments (see references in
Table 1) and we used these geometries in our calculations.
The structural data for the low-spin (LS) forms of the first
three complexes listed in Table 1) are not available due to the
experimental difficulties with the isolation of syngle crys-
tals. In such cases the geometries were obtained by optimi-
zation of the structures for the corresponding LS forms using
the hybrid EHCF/MM method [40]. In all calculations of
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Fig. 4 Temperature dependence of the quadrupole splitting �EQ in
Mössbauer spectra of high spin (HS) and low spin (LS) forms of
[Fe(Hpt)3]2+ complex. The calculated data for the experimental and
optimized with EHCF/MM method geometries are shown with solid
and dashed lines, respectively, and experimental data [41] are shown
with diamonds (HS) and circles (LS)

Mössbauer and spectral parameters we used the standard set
of EHCF/SINDO1 parameters [31], the Racah parameters B
and C were set to 650 cm−1 and 2400 cm−1, respectively,
as in our previous calculations of the Fe(II) spin-crossover
complexes [25].

The calculated d-d excitation energies for all four
selected complexes are presented in Table 2. In all cases the
EHCF/SINDO1 method correctly reproduces the spin mul-
tiplicity of the ground state in accordance with experimen-
tal observations. The calculated excitation energies for the
first three complexes are also in satisfactory agreement with
the experimental measurements, especially taking into ac-
count that the interpretation of the experimental spectral data
and assignment of the spectral bands in the visible region
is usually done using the simple crystal field model for the
octahedral environment and the presented measured exci-
tation energies actually correspond to the average over the
convolution of several overlapping spectral lines which are
sometimes very difficult to resolve. The calculated excitation
energies for the [Fe(Hpt)3] complex seem to be underesti-
mated compared to the available experimental data,
especially for the LS form of the complex. However, the
observed transition at 18868 cm−1 interpreted in Ref. [41] as
the 1A1 →1 T1 d-d transition might be interpreted based on
our calculations as the transition from the ground 1A1 state
to one of the Jahn-Teller components of the excited 1T2 state.
Unfortunately, the details of the interpretation of the mea-
sured ligand-field spectrum are not discussed in Ref. [41].

The Mössbauer spectra of the spin-crossover iron com-
plexes are with no doubt a very powerful source of informa-
tion about electronic structure and nature of spin transitions
in these complexes. The measured parameters of the spectra,
isomer shift and quadrupole splitting, differ significantly for
two spin isomers which allows to monitor the composition
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of the sample by decomposing the measured spectrum into
HS and LS components and evaluating their relative con-
tributions. From the theoretical point of view the calcula-
tions of the Mössbauer spectral parameters and comparing
the results to the experimental data presents a unique and
very sensitive way of probing the local electronic structure
of the metal ion in the complex due to the extreme sensitivity
of the isomer shift and quadrupole splitting to the details of
the electron density in the vicinity of the iron atom and to
the symmetry of the electrostatic field created by the envi-
ronment (ligands). We performed the calculations of the tem-
perature dependent quadrupole splittings for the HS and LS
forms of the complexes listed in Table 1 using the wavefunc-
tions obtained in our EHCF/SINDO1 calculations. For the
quadrupole moment of the 57Fe nucleus we used the value of
Q = 0.187 barn, for the radial factors

〈
r−3

〉
4p

and
〈
r−3

〉
3d

we
used the values of 1.697 and 4.979, respectively, obtained in
HFR atomic calculations [42]. No other empirical parame-
ters were introduced in Eq. (35). The calculation results are
presented in Figs. 1–4 along with the available experimen-
tal data. The agreement between the calculated and experi-
mental data for the first three complexes (Figs. 1–3) is quite
remarkable. That indicates that the EHCF/SINDO1 method
describes the electronic structure of the d-system as well
as the details of the electrostatic field in the vicinity of the
metal atom quite accurately.As in the case with the electronic
excitation spectra, the calculated quadrupole splittings for
the [Fe(Hpt)3] complex (especially for the HS form) are in
a relatively poor numerical agreement with the experimen-
tal data, although qualitatively the results are still satisfac-
tory. The true reason for this exceptional behavior remains
unclear, but one of the possible explanations can be related
to the uncertainties in the structural data. Among the com-
plexes considered the [Fe(Hpt)3] complex is the only one
which undergoes a gradual spin transition, so that both the
LS and HS forms are present in the sample over all range
of temperatures. To demonstrate the sensitivity of the calcu-
lated values of Mössbauer parameters to the geometry of the
complex we performed additional calculations of the quadru-
pole splittings for the geometries optimized with the hybrid
EHCF/MM method instead of experimental ones. As one can
see from Fig. 4, very slight changes in the geometry produced
by the EHCF/MM optimization on the HS form result in sig-
nificant variation of the calculated quadrupole splitting. In
any case further studies are necessary to elucidate the corre-
spondence between experimental and theoretical spectra and
molecular geometries of the present compound.

Despite of the mentioned difficulties, the overall results of
calculations strongly support the applicability of the EHCF
methodology for studying the electronic structure of poly-
atomic TMC’s for which high-level ab initio calculations are
not feasible. Moreover, the results of calculations also sup-
port the whole EHCF paradigm and its ability to describe the

most important features of the electronic structure of the sys-
tems with strongly localized correlated groups of electrons
on the quantitative level.

5 Concluding remarks

In the present paper, we tried to demonstarte the feasibility
of a semiempirical description of the electronic structure and
properties of the Werner TMCs on a series of rather sophis-
ticated examples. Spin active complexes (those undergoing
spin transitions) of iron(II) with nitrogen containing ligands
have been considered. It turned out that using a semiempirical
description with the electron correlation adequately “biult in”
to the structure of the method allows to reproduce the entire
collection of the relevant experimental data ranging from the
molecular geometry for the both observed spin isomers to the
optical and Mössbauer spectra.
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Appendix A

Angular parts of the EFG matrix elements

Here, we present the analytical expressions for the angular
factors f αβ

µν and g
αβ
pq (Eqs. 31, 32). The expressions are given

in the basis of the eigenfunctions of the angular momentum
operator |l, m〉, m = −l, −l + 1, . . . , l with l = 1 for the
4p-functions and l = 2 for the 3d-functions.

gxx
pq = (−1)mpG(0)

[
3G(1)

pq − 3
√

3√
2

(
G(2)

pq + G(3)
pq

)]

gyy
pq = (−1)mpG(0)

[
3G(1)

pq + 3
√

3√
2

(
G(2)

pq + G(3)
pq

)]

gzz
pq = 6(−1)mp+1G(0)G(1)

pq (39)

gxy
pq = i(−1)mp

3
√

3√
2

G(0)
(
G(3)

pq − G(2)
pq

)

gxy
pq = (−1)mp

3
√

3√
2

G(0)
(
G(5)

pq − G(4)
pq

)

gyz
pq = i(−1)mp+1 3

√
3√

2
G(0)

(
G(4)

pq + G(5)
pq

)
,
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where

G(0) =
(

1 2 1
0 0 0

)
=

√
2√
15

; G(1)
pq =

(
1 2 1

−mp 0 mq

)
;

G(2)
pq =

(
1 2 1

−mp 1 mq

)
; G(3)

pq =
(

1 2 1
−mp −1 mq

)
; (40)

G(4)
pq =

(
1 2 1

−mp 2 mq

)
; G(5)

pq =
(

1 2 1
−mp −2 mq

)
,

are the Wigner 3j -symbols.

f xx
µν = (−1)mµ

5√
70

[
3
√

2√
3

(
F (1)

µν + F (2)
µν

)− 2F (3)
µν

]

f xy
µν = i(−1)mµ

15√
35

(
F (2)

µν − F (1)
µν

)

f xz
µν = (−1)mµ

5
√

6√
70

(
F (5)

µν − F (4)
µν

)
(41)

f yy
µν = (−1)mµ+1 5√

70

[√
6
(
F (1)

µν + F (2)
µν

)+ 2F (3)
µν

]

f yz
µν = i(−1)mµ

5
√

6√
70

(
F (4)

µν + F (5)
µν

)

f zz
µν = (−1)mµ

20√
70

F (3)
µν ,

where

F (1)
µν =

(
2 2 2

−mµ 2 mν

)
; F (2)

µν =
(

2 2 2
−mµ −2 mν

)
;

F (3)
µν =

(
2 2 2

−mµ 0 mν

)
; F (4)

µν =
(

2 2 2
−mµ 1 mν

)
; (42)

F (5)
µν =

(
2 2 2

−mµ −1 mν

)
.
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