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Abstract. With use of cumulants of two-electron density matrices semi-
empirical and DFT methods are analyzed from a point of view of their
suitability to describe qualitative features of electronic correlation impor-
tant for molecular modeling of electronic structure of the transition metal
complexes (TMC). It is shown that traditional semiempirical methods rely-
ing upon the Hartree-Fock-Roothaan form of the trial wave function suffer
from a structural deficiency not allowing them to distinguish the energies of
the atomic multiplets of the TMCs’ d-shells. The same applies to the DFT
methodology. On the other hand, the effective Hamiltonian of the crystal
field (EHCF) previously proposed by the authors is shown to be suitable
for further parameterization. It has been applied for calculations of geome-
tries in a series of polyatomic spin-active TMCs and has shown remarkable
precision and an overall consistency. This allowed to solve in a sequen-
tial manner two long standing problems: extending molecular mechanics to
transition metals and developing semiempirical quantum mechanical (QM)
methods for transition metals.



2 A.L.TCHOUGRÉEFF AND M.B. DARKHOVSKII

Sicut omnes homines naturaliter scire desiderant veritatem, ita naturale
desiderium inest hominibus fugiendi errores, et eos cum facultas adfuerit
confutandi [1].

1. Introduction

Molecular modeling of transition metal complexes (TMC), reproducing
characteristic features of their stereochemistry and electronic structure, is
in high demand in relation with studies and development of various pro-
cesses of complex formation with an accent on ion extraction, ion exchange,
isotope separation, neutralization of nuclear waste, and also when studying
structure and reactivity of metal-containing enzymes. Solving these techno-
logical problems requires modeling methods allowing massive simulations
of potential energy surfaces (PES) of TMCs in a wide range of molecular
geometries including (in the case of, say, complexation processes) internu-
clear separations corresponding to dissociation of coordination bonds be-
tween metal ions and ligands’ donor atoms. The tools generally available
for performing a required modeling range from fully empirical molecular
mechanics (MM) to quantum mechanical (QM) or quantum chemical (QC)
methods of different degree of refinement and sophistication. From a bird
view perspective all mentioned approaches seem to be rather successful in
a technical sense since normally it is possible to find a suitable and inex-
pensive method for modeling at least certain classes of molecules. However,
when it goes about TMCs the methods of each family may turn to be
inconsistent with the problem at hand. The sources of these seemingly un-
predictable and nonsystematic failures of all mentioned modeling methods
will be one of the main topics of the present paper. In the next Section we
briefly review the existing methodologies as applied to TMCs and provide
explanations of their limitations in this context. Further Sections present
a formal point of view on constructing a QM (likely ab initio, semiempiri-
cal, and DFT) description of TMCs and apply it to analysis of the corre-
sponding difficulties. The rest of the paper is devoted to description of the
effective Hamiltonian of crystal field (EHCF) method and of its semiempir-
ical implementation satisfying which can be used for TMCs’ modeling and
to its application to analysis of spin-active complexes of iron (II). Finally
discussion and conclusions are given.
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2. Methods for evaluating PES and electronic structure as ap-
plied to TMCs.

2.1. METHODS OF MOLECULAR MECHANICS

The elementary empirical tool for the molecular modeling of polyatomic
systems is the method of molecular mechanics (MM) [2, 3]. It explicitly
employs intuitively transparent features of molecular electronic structure
like localization of chemical bonds and groups. The basic assumption of the
MM is the possibility to directly parameterize molecular PES in the form
of a sum of contributions (force fields) relevant to bonds, their interactions,
and to interactions of non-bonded atoms:

E = Ebond + Ebend + Etors + Eimp + Enb + Erep (1)

The contributions related to bonding are the sum of bond stretching en-
ergies Ebond, that of energies of valence angles bending Ebend, and that of
torsion interactions Etors. In case of stretching and bending energies the
additional guess of the Hook-like law is accepted for the dependence of
these contributions on variations of the corresponding geometry parame-
ters: the deviations of the bond lengths and valence angles from their ideal
values. Respective elasticity constants, the ideal bond lengths and valence
angles pertain to the MM parameter set. The sum of the Lennard-Jones
pair potentials Enb, the energy of improper plane deformations Eimp and
energy of electrostatic interaction of effective charges residing on atoms
Erep are listed among interactions of non-bonded atoms. The correct de-
scription of the dissociation limit under the infinite separation of metal and
ligands in term Ebond is achieved by employing the Morse potential for the
bond-stretch energies instead of the Hook law.

In the literature [4–10] various MM constructions are considered as ef-
fective methods for modeling PES of TMCs. It is noteworthy that in the
case of metal complexes in general and of TMCs in particular the very ba-
sic characteristics of electronic structure comprising the basis of MM may
be questioned. In fact when it goes about the metal ion in a complex it
is not possible to single out transferable two-center bonds involving the
metal. Also the number of bonds formed by a metal atom (the coordina-
tion number) may be variable and namely these variabilities may be the
main topic requiring the modeling as indicated in the Introduction. Also
the great variety of accessible coordination polyhedra makes it difficult to
set the preferential valence angles. In review [6] the extensive summary of
results of calculations on coordination compounds of a wide variety of met-
als by the MM methods (as of 1993) is given. During the following decade,
numerous subsequent works quoted in reviews [8,11,12] were performed, in
which PES of special classes of metal complexes in that or another manner
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is parameterized by some MM-like force fields. As it can be seen from the
recent review [9] the situation did not change too much since then. The
conceptual problems mentioned above manifest themselves in extremely
cumbersome and awkward appearence of the set of force fields in case of
metal atoms as compared to traditional ’organic’ force field systems. For
example, it becomes necessary to introduce a double set of optimal valence
angles for octahedral (or plane squared) complexes to assure these impor-
tant molecular shapes are reproduced in the calculation as are the relative
energies of the cis- and trans-isomers [6, 8]. The number of other bonding
parameters also rapidly grows, and it is difficult either to assign any clear
physical sense to all these, or to restrict reasonable interval of parameter
values and thus to separate probable ones from improbable.

An alternative to the valence force field approach based on the concept
of preferable valence angles is to reload the responsibility for the descrip-
tion of the shapes of coordination polyhedra in TMCs to the non-bonding
interactions. Such approach exists in the literature in two versions. The
first is represented by the Kepert model, termed also as one of the ’points
on a sphere’ (POS) [13, 14] in which the terms responsible for the metal-
ligand bond stretching energy are taken into account by harmonic terms as
previously. Everything that concerns the dependence of the bending energy
of the valence angles at the metal atom, is replaced by the terms rep-
resenting an effective interaction (van-der-Waals-like) either between the
donor atoms, or between effective repulsion centers placed somewhere on
the metal-donor atom bond [15,16]. The second version is called the electro-
static model [17,18]. It completely neglects any specific bonding interactions
in the nearest coordination sphere and substitutes the Coulomb interaction
between effective charges residing on atoms of the complex for the overall
interaction energy. The repulsive part of the metal-ligand van-der-Waals
potential acts to prevent collapse of the system. The basic weakness of this
approach is, certainly, lack of the reasonable method allowing independent
estimates for effective charges.

Despite the considerable progress achieved in MM modeling of TMCs
(for example, MM models of the complexes of cyclic polyamines with met-
als like Cu(II), Co(III), Ni(II) are reported [11,12,19,20]), many questions
including those of practical importance, remain unanswered. The first one
is the problem of consistent modeling of metal complexes with variable
number of the ligands. The need for such description arises in context of
molecular-dynamic studies (see, for example, [21]) of metal ions soluted
in complexation solvents containing chelating ligands (crown-ethers, cyclic
polyamines etc.). In such systems one may expect formation of numer-
ous complexes with different number of ligands or degree of coordination
(the chelate number), which should be considered at one level of accuracy



MOLECULAR MODELING OF COMPLEXES 5

to keep uniform energy scale. Obviously, the harmonic approximation for
stretching energy of metal-donor atom bond usually employed in MM, as,
for example, in [7], can not describe such effects. A direct replacement of
the harmonic potential by another one, with more suitable asymptotic be-
haviour (for example, by the Morse potential), does not solve the problem,
since it neglects many other factors, that apparently matter (different mu-
tual influence effects just to give an example).

Another important point specific namely for TMCs is the presence of
the partially filled d-shell on the metal ion which produces a whole set of
electronic states of the complex of different total spin and spatial symmetry
in a narrow energy range close to the ground state energy. Geometry depen-
dence of these energies may be rather confusing which results in existence
of the areas in the nuclear coordinate space where the PESs belonging to
different electronic terms, closely approach each other and even intersect,
leading to experimentally observed spin transitions [22–25] or Jahn-Teller
distortions [26]. Thus, the very problem of including the transition metals
in the MM context implies certain contradiction: in the presence of several
close in energy (or even crossing) electronic terms there is no object for the
MM modeling in a strict sense, since there is no uniform (and single) PES
of the complex. This specificity of the electronic structure of TMCs can be
clearly observed in the results on blue copper proteins with aproximately
trigonal-bipyrmidal coordination of the coper ion as reviewed in [9]. The
Cu2+ cation is known to be a Jahn-Teller ion due to the spatial degen-
eracy of its respective 2Eg and 2T2g ground state terms in the octahedral
and tetrahedral environments. The latter Jahn-Teller instability is inher-
ited also by the trigonal bipyramidal environment where the ground state is
2E due to the electron count in the d-shell of the Cu2+ cation. Clearly the
spatial degeneracy of the ground state is the limiting case of the closeness
of electronic terms on the energy scale. This degeneracy is lifted when the
molecular geometry deviates from the symmetrical arrangement and this
is the content of the Jahn-Teller theorem (see for details [26]; an original
and what is important – a concise proof is given in [27]). Technically the
Jahn-Teller instability manifests itself in the presence of multiple minima
on the PES, having a close total energy. It must be understood, however,
that these minima are a result of the sufficiently quantum behaviour of
the d-shell of the Cu2+ cation which as it has been noticed previously in
a certain sense prevent the usage of the classical MM picture. Indeed, as
it is mentioned in [28, 29], the physical pre-condition of successful use of
MM theories for common organic molecules is that their electronic excited
states are well separated from the respective ground states on the energy
scale. Only one quantum state of their electronic system is experimentally
observed in ‘organics’ at ambient conditions and the MM (a sort of clas-
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sical) description becomes valid. By contrast, the behavior of the metal
valence d-shell is sufficiently quantum: several electronic states may appear
in a narrow energy range close to its ground state and this quantum feature
requires a special care, not reducible to a simplistic adjustment of the form
and parameters of no matter how sophisticated force fields.

A plausible way out of this situation has been proposed by R. Deeth
( [30] and references therein). In order to handle quantum beavior of the
d-shell the ligand filed stabilisation energy (LFSE) term is added to the
MM energy expression Eq. (1). The LFSE is written as a sum of the or-
bital energies of the d-orbitals in its turn calculated in the angular overlap
approximation (see below) whose parameters are taken to be linearly de-
pendent on the internuclear separation betwen the metal and donor atoms.
Applying such a model solves many complications inherent to the MM
of TMCs since the LFSE is a pure quantum contribution to the energy.
For exmple the Jahn-Teller in Cu2+ compounds must be perfectly covered
within such a setting. On the other hand the LFSE is by construction a
sum of one-electron energy contributions whereas the energy of the d-shell
is very much dependent of the two-electron contributions to the energy
particularly when it goes about relative energies of the stets of different
total spins and spatial symmetries. Bringing the latter into the MM con-
text requires much more evolved and refined theory which will be explained
below.

Turning in this context to a main topic of our interest, namely to model-
ing of the spin active TMCs we notice that the above considerations apply
to them in a large extent. The change of the spin state of a complex is
possible if at least two different electronic states (differing by the value of
the total spin) have their respective minima at quite similar geometries of
the complex at hand so that their respective total energies become equal at
some intermediate geometry. As in the case of the Jahn-Teller Cu2+ cation
in that of the spin-active ions (e.g. d6 Fe2+) the unique PES of the complex
does not exist and at least two of them (the low-spin – LS – for S = 0
and the high-spin – HS – for S = 2) must be considered. Previously the
MM force fields using different parameter sets for different spin states of
the central atom were in use [31], but due to no predictive force they are
considered to be obsolete by now. However, the basic principles of their
construction do not differ from those which explicitly use different parame-
ter sets for say axial and equatorial ligands in the Cu2+ complexes [8] since
the latter are as well designed to imitate by means of a classical potential
sufficiently quantum characteristics of the TMC’s electronic structure. On
this way one can expect pretty different sets of parameters say for four-
coordinate complexes of the Ni2+ ion which must be tetrahedral in their
triplet states and square planar in the singlet states. In this respect the
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recent paper [32] is very remarkable. The authors try to construct the MM
potential capable to describe transfromation between the square pyramidal
and two trigonal bipyramidal forms of the pentacoordinate [Ni(acac)2py]
complex (acac stands for acetylacetone, py – for pyridine ligands). To do so
these authors propose to employ a specially designed force field dependent
on L–Ni–L′ angle posessing two minima at 90◦ and 120◦ separated by a
barrier of the hight larger than 5 eV (500 kJ/mole). This clearly indicates
some problems which can be clearly revealed by a simple analysys: The
trigonal bipyramidal forms of the complex are obviously [33] triplet (two
d-levels degenerate in the trigonal field filled by two electrons) whereas the
square pyramidal from may well be singlet. This spin switch has to take
place somewhere along the rearragnement reaction coordinate but is by no
means reflected in the MM picture. There remains a question whether the
aproach emplying the LFSE is capable to describe such a low-symmetric
and potentially correlation dpendent situation.

2.2. METHODS OF QUANTUM CHEMISTRY

We see, that in the case of TMC any description of PES by the MM methods
may be as well rather successful and rather poor. The borderline between
potentially successful and unsuccessful cases looks out rather peculiar from
the point of view of standard chemical nomenclature. Why Ni(II) is some-
times successful, and sometimes not, Cu(II), Fe(II), and Co(II) are very
difficult, whereas Co(III) brings no special problem? A general conclusion
is that a more detailed description of the electronic structure of TMCs than
one implicitly put in the base of the entire MM picture is necessary. It must
take into account all the important features of the former. Physically it is
rather clearly formulated in terms of experimental accessibility of low-lying
excited states, whose spectrum is responsible for the observed i.e. quantum,
behavior of the TMCs. Quite naturally a quantum description is given by
methods of quantum chemistry (QC). The latter further subdivides into ab
initio, DFT, and semiempirical domains. Although the semiempirical meth-
ods are nowadays frequently treated as obsolete, taking into account the
number of atoms in TMCs and thus incurred computational costs (see [10]
and below) which may become prohibitive despite considerable progress of
the computational hardware they still deserve attention as a pragmatic tool
for the massive PES simulations. On the other hand the DFT based meth-
ods which are almost unianimously considered to be the method of choice
for TMCs [34] will be shown to suffer of basically the same structural defi-
ciency as do the semiempirical ones. We shall analyse briefly these extended
classes of QC methods used for evaluation of PESs and of other properties
of TMCs from a common point of view allowing to further consider specific
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difficulties pertinent to each of these classes of methods when applied to nu-
merical modeling of TMCs. The main problem referenced in the literature
in relation to QC description of TMCs is that of electron correlation [35].
It is a general belief that the correlations are possibly reproduced only by
high-quality ab initio methods, but also can be adequately modeled by the
DFT based methods. On the other hand the common opinion is that the
semi-empirical methods are not suitable for modeling correlation effects at
all. We shall show that two latter opinions are largely an exaggeration and
that the potential of the DFT when applied to TMCs is considerably over-
sold whereas broadly understood semi-empirical methods by contrast still
may be useful.

2.3. ELECTRONIC STRUCTURE IN TERMS OF DENSITY MATRICES
AND THEIR CUMULANTS

The relevant formal treatment starts from the notion that all the quantities
related to electronic structure of molecules can be calculated with use of
only one- and two-electron density matrices for the relevant electronic state
of the system under study [36]. Taking the energy for the sake of definiteness
we get:

E(CQΓS|ω) = min
ξ

[
Spρ(1)h(1) + Spρ(2)h(2)

]
=

= 〈T̂e〉 + 〈V̂ne(Q)〉 + 〈V̂ee〉 + Vnn(Q)
Spρ(1)h(1) =

∫
ρ

(1)
CQΓS(ξω | x, x′)h(1)(CQω | x′, x)dxdx′

Spρ(2)h(2) =
∫

ρ
(2)
CQΓS(ξω | x1x2, x

′
1x

′
2)×

× h(2)(CQω | x′
1x

′
2, x1x2)dx1dx2dx′

1dx′
2

(2)

The meaning of the notations introduced is the following. We assume that
the electronic energy of a chemical species of composition C is calcu-
lated at the nuclear configuration Q for its ground electronic state hav-
ing the spatial symmetry Γ and the total spin S. Considering the ground
states of different total spin or symmetry allows for description of the elec-
tronic spectra (the low-energy excited states) of the species to some ex-
tent. Symbols ω refer to the set of parameters of the QC method: Slater
or gaussian exponents, constant contraction coefficients, semiempirical pa-
rameters of the Hamiltonians (Fockians). Symbols ξ refer to variables of
the (electronic) problem: MO LCAO expansion coefficients, CI configu-
rations’ or coupled clusters’ amplitudes, etc. The matrix elements of the
one- and two-electron parts of the Hamiltonian: h(1)(CQω | x′, x) and
h(2)(CQω | x′

1x
′
2, x1x2), respectively, depend on the system composition,

nuclear configuration (defining the ”external” Coulomb field acting upon
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electrons) and also on the parameters ω adopted in the method. The one-
electron state indices x = (r, s), x′, x1, x2, x

′
1, x

′
2 can be understood either

as continuous spatial coordinates of electrons or as discrete set of quan-
tum numbers characterizing the states in the adopted restricted basis set.
In the latter case the integration must be understood as summation over
discrete values of x’s giving the necessary traces of the matrix products. In
the coordinate representation the above averages acquire familiar forms:

〈
T̂e

〉
= −(1/2)

∑
σ

∫
r=r′

∆′ρ(1)(rσ, r′σ)dr

〈
V̂ne(Q)

〉
= e2

∑
i

Zi
∑
σ

∫
ρ(1)(rσ, rσ)dr

|Ri − r|〈
V̂ee

〉
=

e2

2
∑
σσ′

∫
ρ(2)(rσ, rσ; r′σ′, r′σ′)

|r− r′| drdr′

Vnn(Q) =
e2

2

∑
i�=j

ZiZj

|Ri − Rj| ; where

∆′ = ∂2

∂x′2 + ∂2

∂y′2 + ∂2

∂z′2

(3)

where the density matrices and the left parts of the above equations are as-
sumed to be specific for a given composition, geometry and electronic state;
and the first row is the kinetic energy of electrons, second row is the energy
of Coulomb attraction of electrons to nuclei, the third row is the energy of
interelectronic repulsion; the last one is the energy of Coulomb repulsion
nuclei. The sum of the first two rows yields the average of the one-electron
part of the Hamiltonian h(1)(CQ) and the energy of the electron-electron
repulsion is the average of the two-electron part h(2)(CQ). In the above
expressions the nuclear radius-vectors Ri have to be undestood as func-
tions of configuration variables Q: Ri = Ri(Q), whereas the composition
C is a designation for the set of nuclear charges present in the system:
C = {Zi|i = 1, ...}.

The density matrices are by definition partial integrals of the corre-
sponding trial wave functions ΨCQΓS(ξω | x1, x2, . . . , xN ) obtained for the
given composition C and nuclear configuration Q so that they have the
specified total spin S and spatial symmetry Γ:

ρ
(1)
CQΓS(ξω | x, x′) = N

∫
Ψ∗

CQΓS(ξω | x, x2, . . . xN )×
× ΨCQΓS(ξω | x′, x2, . . . , xN )dx2 . . . dxN

ρ
(2)
CQΓS(ξω | x1x2, x

′
1x

′
2) = N(N−1)

2

∫
Ψ∗

CQΓS(ξω | x1, x2, x3, . . . xN )×
× ΨCQΓS(ξω | x′

1, x
′
2, x3, . . . , xN )dx3 . . . dxN

(4)
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The expressions Eqs. (2) ,(4) are completely general. To address the
aspects important for the TMCs’ modeling we notice that the statement
that the motion of electrons is correlated can be given an exact sense only
with use of the two-electron density matrix Eq. (4). Generally, it looks
like [35] (with subscripts and variables’ notations ξω omitted for brevity):

ρ(2)(x1, x2;x′
1, x

′
2) =

∣∣∣∣ ρ(1)(x1, x
′
1) ρ(1)(x2, x

′
1)

ρ(1)(x1, x
′
2) ρ(1)(x2, x

′
2)

∣∣∣∣ − χ(x1, x2;x′
1, x

′
2), (5)

where the first term expands as
∣∣∣∣ ρ(1)(x1, x

′
1) ρ(1)(x′

1, x2)
ρ(1)(x1, x

′
2) ρ(1)(x2, x

′
2)

∣∣∣∣ = ρ(1)(x1, x
′
1)ρ

(1)(x2, x
′
2)−ρ(1)(x1, x

′
2)ρ

(1)(x′
1, x2)

(6)
and corresponds to the model where electrons are independent i.e. non-
correlated. The second term in Eq. (5) – the cumulant of the two-particle
density matrix [37] – is responsible for deviation of electrons behaviour from
the model of independent fermions, i.e. for their correlations. The corre-
spondence of the above picture with the standard language of quantum
chemistry based on the many-electron wave functions rather than on the
density matrices can be reestablished by noticing that the trial wave func-
tion Ψ taken in the form of a single Slater determinant formed by molecular
orbitals (MO), where the variation parameters ξ are the expansion coeffi-
cients of MOs taken as linear combinations of atomic orbitals (LCAO)
(Hartree-Fock-Roothaan – HFR – approach) automatically results in the
two-electron density matrix of the form of Eq. (6) [38]. So, in the HFR
framework the two-electron density matrix is not an independent quantity
any more and the properties of the system are ultimately expressed through
its one-electron density matrix.

In the following Sections we analyse the previously listed classes of QC
methods of electronic structure modeling in terms of the density matrices.

2.3.1. Ab initio methods
The modeling by ab initio QC methods bases on complete description of
electronic structure for which it is necessary to consider a set of one-electron
states (basis functions), number of electrons in the system and nuclear
charges. All consequent modeling is the computer work which involves cal-
culating the matrix components h(1), h(2) of the electronic Hamiltonian,
for the set of selected basis functions (whose parameters are above denoted
as ω).

In ab initio methods the HFR approximation is used for build-up of
initial estimate for ρ(1) and ρ(2) which have to be further improved by
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methods of configurational interaction in the complete active space (CAS)
[39], or by Møller-Plesset perturbation theory (MPn) of order n, or by the
coupled clusters’ [40,41] methods. In fact, any reasonable result within the
ab initio QC requires at least minimal involvement of electron correlation.
All the technical tricks invented to go beyond the HFR calculation scheme
in terms of different forms of the trial wave function or various perturbative
procedures represent in fact attempts to estimate somehow the second term
of Eq. (5) – the cumulant χ of the two-particle density matrix.

In application of non-empirical methods to TMCs there exist specific
difficulties caused by the correlation strength. This can be formulated as
essential deviation of ρ(2) from the HFR approximate form Eq.(6) which
makes it necessary to take it into account at the initial stage of calcula-
tion. Meanwhile, the listed (systematic) methods of taking the correlation
into account are based on the assumption that the correlations appear as a
smaller corrections to the mainly HFR approximate wave function at least
when it goes about the ground state. This is an assumption leading to the
whole variety of the single-reference (SR) perturbative and coupled clus-
ter methods, where by the single refence state to be improved is assumed
to be a single Slater determinant. The actual physics of TMC’s is some-
times much more complex. Even obtaining of the approximate solutions of
the electronic problem within the HFR approximation although they are re-
quired only as starting points (reference states) for further improvements in
case of TMCs may represent a serious problem. It is known that for TMCs
the HFR methods in many cases yield the electronic structure breaking
the Aufbauprinzip, according to which MOs are filled by electrons begin-
ning from the lowest energy levels. However, any variational function of the
HFR approximation giving the minimum of energy with respect to relevant
variational parameters must satisfy this requirement. Another problem well
known to practical workers in the field is the slow convergency of the HFR
iterations or nonrare cases of being trapped into oscillatory regime. These
problems are numerical manifestations of electron correlation. In this sit-
uation the HFR solution even if it is obtained may lay too far from the
correct ground state of the TMC. The latter can not be derived from this
approximation by those homeopathic medication which is provided by the
perturbation or coupled cluster theories. The problem is that for exam-
ple the formally ’excited’ configuration may have the same energy as the
’ground state’ one thus preventing proper treatment by either MP or CC
methods. From the general point of view the situation is comepletely clear
– one has to use configuration interaction (CI – multireference – MR) or
CAS methods. Pragmatically, however, there remains the question: what
amount and which configurations have to be included. In any case the poor
initial approximation requires for curing a large number of configurations.
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The ab initio calculations on TMCs date back to late sixties when the
first examples of such calculations in the HFR approximation as applied
to simple NiF4−

6 ion had been published [42–44]. In those early times the
optimistic belief [45] was that ‘It is mostly computational limitations which
have in the past more or less prevented a wide application of the ab initio
techniques to the chemistry of transition metal compounds ... with techni-
cal developments which may be forecast for the next few years, this type of
calculations will probably become much more common’. It, however, hap-
pened that within ten years a collection of papers edited by one of the
previous authors came out where the description of TMCs has been recog-
nized as a ’challenge’ [46]. The above analysis shows the reason. Neverthe-
less, within two subsequent decades the hardware improved significantly so
that the TMCs of modest size became available for direct more or less com-
plete numerical ab inito study. Examples of such approach are numerous
in the literature. Their range is extremely wide: from studies of structure
and properties of ’helide’ molecules HeM2+, where M is the doubly charged
cation of the first transition row metal [47] by various ab initio methods (in-
cluding those with relativistic corrections). Of course, this is not the topic
of our main interest. On the other hand the wide usage of the ab initio
methods as a molecular modeling tool for TMCs is still prevented by enor-
mous computational costs. In ab initio HFR MO LCAO methods used as
zero-approximation calculations of correlation corrections required to make
the result somehow acceptable are so complex that the dependence of time
and other necessary computing resources on the size of the molecular sys-
tem (N as number of AOs) scales up as N5 ÷N7. Therefore, at larger sizes
of systems under study calculations of TMCs electronic structure become
very expensive. This prompted an approach which hardly can be called
methodologically sound, but which is widely represented in the literature:
considering at a (currently acquired) ab initio level only a smaller part
of the molecule of interest ignoring the rest of the system as it is demon-
strated in the representative collection of reviews [48]. It is clear that the ab
initio methods do not provide any tool for adjusting the presumably “ex-
act” result obtained for a nonexisting model to the needs of analysis of an
experimental situation. Nevertheless, when cautiously applied this model
approach can be useful. In most studies on TMCs of say biological or indus-
trial interest only a model small compound of it is actually considered. The
following provides representative examples. In paper [49] various models
of the active site of metal-containing enzyme glutathiontransferase having
structures with five and six coordinated ions Mn2+ and Fe2+ are explored.
In both cases it is assumed, that the respective metal ion is in its HS state.
It essentially facilitates calculation since such a ground state can be rea-
sonably modeled by a single-configuration (HFR) wave function. Structural
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studies of the Jahn-Teller effect in TMCs by the ab initio CC methods are
performed in [50,51]. An attractive testbed for testing various QC methods
as applied to TMCs is provided by metal-porphyrins being rather interest-
ing from various practical points of view but simulataneously polyatomic
enough to raise the efficiency issues and also well studied experimentally.
The early attempts to apply ab initio QC methods are reviewed in Ref. [52].
With use of models of various extent of realism (including those with exact
number of atoms and electrons) it was shown that HFR MO LCAO turns
out to be good in the extremal cases of Co(II) and Mn(II) whose ground
state spin were reproduced correctly to be 1/2 and 5/2, respectively, and
fails in the practically most important case of Fe(II) prophirine which was
known to be of intermediate total spin S = 1 in its ground state. Despite 20
years of development this result quite well established experimentally many
times escaped from ab initio workers. Even the most recent results [53,54]
do not allow to make a definitive conclusion on the capacity of the ab initio
methods.

Unfortunately the ab initio workers are not cautious enough as is ex-
emplified by Ref. [55]. In it a wide set of experimental data on catalytic
reactions taking place in the presence of Pd complexes with substituted
phosphine ligands PR3 is modeled by ab initio methods applied to models
where the whole variety of the ligands is represented by the unsubstituted
phosphine PH3 molecule. The main problem with such an approach is that
the sensitivity of the processes under study to the number and nature of
organic substituents at the phosphorous atom is well known in the litera-
ture.

The above mentioned computational costs lead to a necessity to find a
fragile compromise between the requirements of precision and feasibility of
a calculation. That of course raises interest to applying the hybrid QM/MM
methods to TMCs. The more traditional version of this approach consists
in taking rather large portion of the TMC (including the metal atom) to
the QM subsystem and in treating the distant groups on a lower level of
the theory. Approaches of that type are quite frequently applied to the
TMCs and the recent review of it is given in [56]. The general problem
of this approach is the nonsystematic character of the treatment of the
intersubsystem border (junction) accepted in most standard packages. The
detailed discussion of these problems is given in our recent review [57]. More
specific argument can be borrowed from the metal porphyrin problem as
well. In the literature there are reliable experimental data concerning the
influence of the periferal substitutents on the electronic structure of the
central ion in the case of tetraphenylporhyrinates of iron (III) additionally
substituted in the phenyl rings (see [58] and references therein). This type of
effect cannot be attributed to any steric hinrdance or whatever of that sort
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and must be ascribed to the influence of the substituent upon the electronic
structure of the transition metal atom. In the standard setting employing
the QM/MM technique is precluded for such a problem and a total QC
calculation is required. The latter is, however, very difficult since although
chemically tetraphenyl porphyrins do not seem to be very different from the
nonsubstituted ones the total number of basis functions is approximately
as twice as large for the substituted species thus increasing the required
computational resources may by factors 25 to 27.

2.3.2. Semiempirical treatments of TMCs based on the HFR
approximation
In the previous Section we briefly described the problems arising when the
ab initio QC methods are applied to the modeling of TMCs. These problems
may be considered largely as technical ones: if the computer power is suffi-
cient the required solution of the many electron problem can be obtained by
brute force even if the initial guess for the wave function is poor. Pragmat-
ically, however, the resource requirements may become prohibitively high
for using the ab initio QC techniques as a tool for massive PES model-
ing. In this situation the semi-empirical methods can again come into play
as 40 years since the pioneer works [59–61] where the CNDO and INDO
parameterizations by Pople and Beveridge [62] were extended to transi-
tion metal compounds. Now there is an extensive sector of semiempirical
methods differing by expedients of parametrizations of the HFR approxi-
mation in the valence basis. In many of them the parametrization at least
is formally extended to the transition metal atoms, for example, in meth-
ods ZINDO/1, SAM1, PM3(tm), PM3∗ etc. [63–69], although, principles of
parametrization may differ as stipulated by the need to reproduce different
experimental characteristics. The attempts to construct an acceptable pa-
rameterization for TMCs are all undertaken within the framework of the
HFR MO LCAO paradigm. It is easy to understand that the nature of
failures which accompany this direction of research as long as it exists lays
precisely in the inadequate treatment of the cumulant of the two-electron
density matrix by the HFR MO LCAO.

The procedure of developing a semi-empirical parameterization can be
generally formalized in terms of Eq. (2) as follows. A set of experimen-
tal energies E(CQΓS) corresponding to different chemical compositions C,
molecular geometries Q, and electronic states with specific values of S
and Γ is given. In the case when a response to an external field is to be
reproduced the latter can be included into the coordinate set Q. Devel-
oping a parameterization means to find certain (sub)set of parameters ω
which minimizes the norm of the deviation vector δEω with the components
E(CQΓS) − E(CQΓS|ω) numbered by the tuples CQΓS:
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min
ω

(δEω |M | δEω) (7)

which is calculated with some positively (semi)definite metric matrix M .
Quite a number of enterprises of this sort were very successful leading to the
whole family of semi-empirical procedures useful largely for describing the
ground state of “organic” molecules [70]. In the case of TMCs the success is
known to be much more modest and even the ground state multiplicities and
spatial symmetries escape from being correctly reproduced. We shall show
that the reason is the HFR approximation built in the computation scheme
of semiempirical methods. Indeed, the calculated energies E(CQΓS|ω) are
the linear functionals of the density matrices Eq.(4). When the cumulants of
the two-electron density come into play the energies E(CQΓS|ω) and the
deviations δEω become quadratic fucntionals of the one-electron density
matrices and remain the linear functionals of the cumulant (just the same
as the previous linear functional of the two-electron density matrix). The
HFR approximation is nothing but restricting the corresponding functionals
to their quadratic parts in the one-electron density matrix and dropping the
cumulant dependent contribution completely. By this two states having the
wave functions yielding the same one-electron density matrices but different
two-electron density matrices are deemed to have the same energy. This is
precisely the situation one can face while treating the electronic structure of
the TMC’s the most important characteristic of which is the sophisticated
multiplet structure of the low energy spectrum of their partially filled d-
shell. It can be easily understood that namely the cumulant of the two-
particle density matrix serves for distinguish the different mani-electron
states in the d-shell. Let us consider e.g. a two-orbital two-electron model
system with the orbitals a and b which can be understood as notation for
one-dimensional irreducible representations of the point group of a TMC.
In this case it is easy to see that the corresponding singlet and triplet states
1B and 3B (Γ = B,S = 0, 1) are given correspondingly by:

ΨB0(x1, x2) = 1
2 (α(s1)β(s2) − β(s1)α(s2)) (a(r1)b(r2) + b(r1)a(r2))

ΨB1(x1, x2) = 1
2 (α(s1)β(s2) + β(s1)α(s2)) (a(r1)b(r2) − b(r1)a(r2))

(8)

irrespective to the values of subscripts CQ introduced after Eq. (2) and
the actual values of either parameters ξ and ω. Performing the integration
according to Eq. (4) we immediately get that irrespective to the total spin
of these states the exact one-electron density matrices become:

ρ
(1)
BS(x, x′) =

1
2

(
α∗(s)α(s′) + β∗(s)β(s′)

) (
a∗(r)a(r′) + b∗(r)b(r′)

)
(9)
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and do not depend on the total spin. This result is well known for decades
and appears even in textbooks [71]. Obviously, the HFR approximate two-
electron density matrices coming from the one-electron densities Eq. (9)
give a wrong result since the exact two electron density matrices calculated
according to their definition Eq. (4) from the wave functions Eq. (8) are
different:

ρ
(2)

B(0
1)

(x1x2, x
′
1x

′
2) =

1
4 (α∗(s1)β∗(s2) ∓ β∗(s1)α∗(s2)) (α(s′1)β(s′2) ∓ β(s′1)α(s′2))×
(a∗(r1)b∗(r2) ± b∗(r1)a∗(r2)) (a(r′1)b(r′2) ± b(r′1)a(r′2))

with the upper sign corresponding to S = 0 and the lower one to S = 1,
irrespective to the values of the subscripts CQ and parameters ξω. The
physical consequences of this difference are well known: namely it is re-
sponsible for the validity of the first Hund’s rule stating that in an atom
the term of a higher spin has a lower energy (under other equal conditions).
A capacity of a theoretical method to reproduce such characteristics is in-
timately related to the (grammatically) correct treatment of the cumulant
of the two-electron density matrix. Let us assume that we want to fit some
experimental data to the model

f(x, y) = ax + by
y = x2 + z
f(x, z) = ax + bx2 + bz

(10)

Quantitatively a simplified model

f0(x) = ax + bx2 (11)

may be even not that bad: if z is small. But qualitatively the approximate
model Eq. (11) cannot distinguish experimental points which have the same
value of x and differ by the value of z only. This situation clearly is one we
face in TMCs when the data related to a set of states of the different spin
with the same number of d-electrons are to be reproduced in different ligand
environments. The HFR theory in its simplest form (see below) does not
provide any quantity to which this difference can be anyhow ascribed. The
problem is not in that or another type of the Coulomb exchange integrals
whether apperaing or not in the parameterization scheme, but in their den-
sity matrix cumulant counterpart. Even in the case when the HFR part of
the two-electron density matrix provides a multiplier to be combined with
that or another exchange integral ultimately responsible for the energy dif-
ference between the states of the different total spin, in the absence of the
component of the two-electron cumulant dual to this exchange integral this
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difference remains zero any way. In a more complex situation than that of
two electrons occupying each its orbital one can expect much more sophis-
ticated interconnections between the total spin and two-electron densities
than those demonstrated above. The general statement follows from the
theorem given in [72] which states that no one-electron density can depend
on the permutation symmetry properties and thus on the total spin of the
wave function. For that reason the difference between states of different to-
tal spin is concentrated in the cumulant. If there is no cumulant there is no
chance to describe this difference. This explains to some extent the failure
of almost 40 years of attempts to squeeze the TMCs into the semiempirical
HFR theory by extending the variety of the two-electron integrals included
in the parameterization.

We do not intend to further elaborate on characteristics of the semiem-
pirical methods. It it enough to say, that all of them which are restricted to
the HFR approximation suffer from the shortcoming described above and,
hence, one has not to have too much hope to reach a consistent description
of TMCs within the HFR framework. The recent semiempirical attempt
to parameterize the TMCs in the PM3(tm) method [73] is very instruc-
tive in this respect. The calculations carried out in Ref. [74] show that the
method is not capable to reproduce even very simple characteristics in a
series of TMCs having similar structure, though other authors [68,75] state
that in some cases reasonable estimates of geometrical characteristics may
be received, nevertheless. This situation can be understood by thorough
consideration of the sets of objects chosen for analysis in different works.
In [74] authors study a uniform set of about 30 Ni2+ complexes with the
ligands bound by nitrogen donor atoms. The analysis of this series per-
formed there clearly shows that the PM3(tm) method fails for these Ni2+

complexes for the now understandable reason. However, in [68,75] the au-
thors try to explore a comparable number of complexes but much more
dispersed over the range of classes, which includes compounds of the first
and second transition row atom, HS and LS ones, those having “ionic” and
“covalent” bonds etc. For that reason in the test sets [68, 75] the prob-
lematic classes are represented by a couple of examples each, which look
out as completely isolated exceptions. This can serve as an example of how
trying to test the method on a wide and apparently ”random” selection
of objects may lead to a smeared picture due to absence of clear criteria
of any adequate classification of the chosen set. That said above does not
mean that a semiempirical parameterization based on the HFR MO LCAO
scheme and valid for a certain narrow class of compounds or even for a
specific purpose cannot be built. It is done for example in [69] for iron(II)
porphyrins. But in a more general case there is no way to arrive to any
definite conclusion [76] about the validity of a semi-empirical parameteri-



18 A.L.TCHOUGRÉEFF AND M.B. DARKHOVSKII

zation in the HFR context. On the other hand we have to mention that the
semiempirical method ZINDO/1 [77] which allows for some true correlation
by taking into account the configuration interaction may be considered as
a prospective setting for further parameterization, provided the HFR so-
lution required by this method as a zero approximation can be obtained.
This will be discussed in a more detail below.

2.3.3. Density functional theory methods. Why not DFT?
Methods of density functional theory (DFT) originate from the Xα method
originally proposed by Slater [78] on the base of statistical description of
atomic electron structure within the Thomas-Fermi theory [79]. From the
point of view of Eq. (3), fundamental idea of the DFT based methods consist
first of all in approximate treatment of the electron-electron interaction
energy which is represented as:

〈Vee〉 = EH + Exc;
Exc = Ex + Ec.

The “classical” part of the interaction energy – the Hartree energy:

EH =
e2

2

∑
σσ′

∫
ρ(1)(rσ, rσ)ρ(1)(r′σ′, r′σ′)

|r − r′| drdr′ (12)

is taken exactly, whereas the exchange and correlation parts:

Ex = −e2

2

∑
σ

∫
ρ(1)(rσ, r′σ)ρ(1)(r′σ, rσ)

|r− r′| drdr′ (13)

Ec = −e2

2

∑
σσ′

∫
χ(rσ, rσ; r′σ′, r′σ′)

|r − r′| drdr′ (14)

whose precise definitions consistent with the theoretical setting given by
Eqs. (2),(5) are given just above, are assumed to be functionals of the one-
electron density only (diagonal of the one-electron density matrix in the
coordinate representation). The main goal of the DFT paradigm is to re-
duce the whole electronic structure theory to a single quantity: one-electron
density — the diagonal part of the one-electron density matrix. If it had
been possible it would considerably simplify the theory. Pragmatic meth-
ods pertaining to the DFT realm are based on use of the Hohenberg-Kohn
“existence theorems” [80, 81] which state, first, an existence of a universal
one-to-one correspondence between one-electron external potential and the
one-electron density in that sense that not only the one-electron potential
acting upon a given number of electrons uniquely defines the ground state
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of such a system i.e. its wave function and thus the one-electron density –
which is trivial, – but also that for each given density integrating to a given
number of electrons a one-electron potential yielding that given density is
uniquely defined (v-representability).

Further pragmatic moves are described in details in numerous books and
reviews of which we cite the most consize and recent Ref. [82]. Two furhter
hypotheses are an important complement to the above cited theorems. One
is the locality hypothesis another is the Kohn-Sham orbital trick. The lo-
cality has been seriously questionned by Nesbet in recent papers [83, 84],
however, it remains the only practically inplemented solution for the DFT.
The simplest one is the local density approximation (LDA):

ELSDA
x = − e2

a0

9
4
α

[
3
4π

]1/3 ∑
σ

∫ [
ρ(1)(rσ, rσ)

]4/3
dr (15)

where α refering to an empirical parameter scaling the exchange strength
enters in the name of the Xα method itself. Such a definition of exchange-
correlation energy assures the semiempirical status of the DFT based meth-
ods since the actual relation neither between the cumulant χ nor between
the off-diagonal density matrix elements ρ(1)(rσ, r′σ) and the exact diago-
nal one-electron density ρ(1)(rσ, rσ) is not known. Subsequent development
brought a lot of diversity to the simple physical picture of exchange con-
ceived by Slater. It is largely related to constructing and parameterizing
the functional forms obeying the sum rules and asymptotic conditions. The
probelems of the TMCs modeling are by contrast concentrated largely in
the local d-shell and that is why we shall now concentrate on fundamental
features of DFT which allows to assess its capacity as a molecular modeling
tool for TMCs.

During last decades the DFT based methods have received a wide cir-
culation in calculations on TMCs’ electronic structure [34, 85–88]. It is,
first of all, due to widespread use of extended basis sets, allowing to im-
prove the quality of the calculated electronic density, and, second, due to
development of successful (so called – hybrid) parameterizations for the
exchange-correlation functionals (vide infra for discussion). It is generally
believed, that the DFT-based methods give in case of TMCs more reliable
results, than the HFR non-empirical methods and that their accuracy is
comparable to that which can be achieved after taking into account per-
turbation theory corrections to the HFR at the MP2 or some limited CI
level [88–90].

As in all axiomatic theories relying upon existence theorems partcu-
lar attention has to be paid to the consequences of these theorems which
sometimes can be rather peculiar. Although the general validity of the
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Hohenberg-Kohn theorems cannot be questioned the example Eq. (8) obvi-
ously presents two different wave functions with different energies yielding
the same one-electron density matrix and thus of course the density itself.
For that reason the qualitative effects of electron correlation which are cru-
cially important for correct TMC modeling and for which the term χ in
Eq. (5) takes care, can not be reproduced by the DFT based methods at
all since these do not contain the necessary elements of the theory for it
(although MP2 and even limited CI do). Whatever attempt to do that is
going to have a restricted character due to restricted treatment of the cu-
mulant. In that respect the situation is analogous to that in the HFR-based
semi-empirical methods. In terms of the “data-fit” model Eq. (7) the DFT
methods can be understood as ones with the fitting model of the form:

f̃0(x) = ax + g(x)

using may be a very sophisticated function g(x) instead of bx2 in order to
mimic the independent variable y. However, whatever refined is g(x) the
resulting model will not be able to distinguish the data which differ only
by the value of the independent variable z (see above) and have the same
values of x. Incidentally, as it was stated above, namely the relative energies
of the states differing by the cumulant of the two-electron density matrix
must be correctly reproduced in order to obtain a satisfactory description
of the spectra (relative energies of the states) of the TMCs’ d-shells. In
this context it is possible to say, that the DFT-based methods take into
account electron correlations in the same sense, as all (even the elemen-
tary) semiempirical QC methods do. If these latter are parameterized to
reproduce some experimental characteristics of molecules the parameters of
these methods implicitly take into account correlation of electrons. By this
it may be possible to achieve quantitative agreement with a narrow seg-
ment of experimental data, but not with those which require reproducing
qualitative effects of correlations. The latter can be simulated neither by
semiempirical methods nor by the DFT-based methods. Therefore advan-
tages of the DFT-based methods are primarily observed for trivial TMCs
where the correlations in the open d-shell representing a problem for single
determinant methods actually absent (as in d0- or d10-complexes or in the
complexes of the second and third transition row or in carbonyls or other
organometallic compounds cited in abundance in [34]). Remarkably enough
that the counter-example Eq. (8) is well known in the DFT context, and
it brought the author [34, 91] to the conclusion that the theory employing
ELSDA

x is valid only for the single determinant wave function. That is pre-
cisely what other people meant saying that the DFT (at least in its original
form) does not apply to TMCs at all which also may be an exaggeration.
However, the recipe proposed in Ref. [91] to cure this problem is to apply
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the Slater sum rules. These are, however, not universally valid since repre-
sent a special case of the Roothaan prescriptions for the open shells. Only
in those cases when the energy of a multiplet state can be represented as a
weighted sum of determinant energies i.e. of the diagonal matrix elements
of the Hamiltonian in the one-determinant basis the [91] prescription can
be applied. This can be only possible if the multiplet states are uniquely
obtained by applying operators projecting to the specific rows of the irre-
ducible representations to the basis Slater determinants. Obviously it is not
possible when the symmetry is not high enough: in this case the number of
different symmetry labels does not suffice to satisfy all the Slater detrmi-
nants. There is a deep analogy with the Roothaan old MC SCF theory [92]
where spin/angular momentum dependent coupling coefficients a and b are
introduced ultimately to express the two-electron density matrix through
the one-electron one in a symmetry consistent fashion. This included the
exchange integrals responsible for the Hund’s rule in the case of the pn

configurations. It turned out, however, that for the dn-configurations the
recipe [92] of constructing the two-electron density matrix does not work
for a major part of the atomic electronic terms of the transition metal
ions [93]. Further studies revealed that constructs similar to [92] are, nev-
ertheless, possible also for some other terms for which the name of the non-
Roothaan terms [94,95] was coined not very conveniently (the point is that
the Roothaan and non-Roothaan terms together do not exhaust the whole
set of terms). The Roothaan and non-Roothaan terms together are those
where it is possible to get the precise CI amplitudes from the one-electron
occupation numbers for the d-orbitals on purely symmetry grounds. This is
of course related to the high O(3) symmetry of the system. However, even in
free ions the extra terms (as compared to the Roothaan and non-Roothaan
together) namely the multiple terms of the same spin and orbital momen-
tum – which are correlated by nature do exist. Their energies cannot be
expressed linearly through the say Racah or Slater-Condon parameters. In
the free ions these energies require maximum 2×2-diagonalization [96] and
thus their analytical expressions contain square roots (for a handy reference
see [97]). This moment is crucial – it is not possible to get rid out of the
irrational term (square root) in the expression for the energy by linearly
combining the parameters of the Hamiltonian. Incidentally, the example of
such possibility given in [87] applies only to the case explicitly considered
in that paper: the case of the d2 configuration, for which as one can see
from [96, 97] the energies of all allowable terms can be linearly expressed
through the Racah parameters. The situation clearly becomes less favor-
able in lower symmetries where the terms of the same spin and symmetry
span the subspaces of dimensionalities higher than two. For example, in
the octahedral environment the LS states of d4- (d6-) configuration span
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upto seven-dimensional spaces of many-electronic states [98]. Clearly that
at an arbitrarily low symmetry the problem of linearly expressing the exact
energy of many-electronic terms through the Racah parameters cannot be
solved and obviously the energy of any of such multiple terms cannot be
expressed as a linear combitation of the diagonal matrix elements of the
Hamiltonian only.

In a more general setting the recipe [91] can be considered as an im-
plementation of another suggestion by Gunnarsson and Lundqvist [99] and
von Barth [100] known also at a pretty early stage of the development of
the DFT technique of employing different functionals to describe different
spin or symmetry states. In other words the simplified model for the data
fit Eq.(11) changes to:

f̃ΓS
0 (x) = ax + gΓS(x)

where gΓS(x) represent exchange-correlation functionals specific for each
ΓS. As the model f0(x) the model f̃ΓS

0 (x) cannot distinguish experimental
points with equal values of x differing by the values of z if they belong to
the same spin and symmetry, but the difference in z which distinguishes
one set ΓS from another one is implicitly buint into the functional.

This all explains the nature of failures of the DFT based methods in
those cases, when correlations substantially come into play as in e.g. d6-
iron (II) ferrocene molecule. Here the errors even of advanced DFT methods
become catastrophic. For example, in Ref. [86] the calculated enthalpies of
dissociation of ferrocene to the free Fe2+ ion and two Cp− anions (Cp =
C5H5 – cyclopentadienyl) depending on the functional used appear to be
by 3-4 eV smaller than the experimental value. The reason is transparent
enough in the context of the above consideration. It is the insufficiency of
whatever DFT for the description of the switching between the electronic
terms: from the LS d6 Fe2+ in ferrocene to the HS one in the free ion,
along the dissociation pathway. Authors of work [101] have faced the same
problem, when addressed the spin isomers of the iron(II) complex with the
hexadentate ligand tetrakis(2-pyridylmethyl)-ethylenediamine. The DFT
method (B3LYP/3-21G/6-311G(d)) they used could properly reproduce
neither the ground state spin nor the structural parameters of the iso-
mers. This result is not an isolated failure. An analogous picture appears
in [102–104] despite the use of the B3LYP/6-311G∗ functional/basis the
results are somewhat mixed: The relative energies of the HS and the LS
states of the nitrogen bound [Fe(tpa)(NCS)2] complex appear to be in a
correct order on the energy scale, whereas the Fe-N bond lengths come out
with a considerable and nonsystematic error between −0.06 and +0.05 Å
which is pretty much as compared to the magnitude of the effect itself:
the spin transitions in iron(II) complexes are accompanied by the average
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displacement of nitrogen atoms by 0.15 Å [23,105]. On the other hand the
calculations performed on the charged complex ions with tris(pyrazolyl)
ligands in [104] manifest significant dependence of the result obtained on
the functional/basis set used for calculation. Their B3LYP/6-311G∗ com-
bination while being successful in the previous case turned out to yield the
qualitatively wrong order on the energy scale of the LS and HS forms of
the tris(pyrazolyl) complexes. Other combinations possible for the BLYP
and PW91 functionals and LANL2DZ basis set performed not too much
better. The most recent review of this activity [106] does not indicate se-
rious improvement either in terms of the geometry reproduction or that of
the energy gaps between the HS and LS states.

In the remarkable series of papers [107–109] the authors attempted to
reproduce the relative energies of the LS and HS terms in a series of pseudo-
octahedral Fe(II) complexes with ligands bound to the metal atom through
sulfur and nitrogen donor atoms. It was achieved only by the cost of ad-
justment of the weight of the Hartree-Fock exchange energy in the hy-
brid B3LYP functional leading to development of the B3LYP∗ functional
(see below). These authors conclude, that the hybrid functionals (B3LYP)
in the DFT based methods favor mainly the HS states. As one can see
namely the Fock exact exchange is responsible for the Hund’s rule con-
formity. Indeed the HFR estimates of the LS-HS splitting given in all the
cited papers amount several eV with the wrong sign (HS state below the
LS state). The reason was transparent yet in the year 1993: unbalanced ac-
count of correlations and exchange in the DFT schemes. The Hartree–Fock
exchange strongly stabilizes the HS state of the open d-shell even if the
single-determinant wave function is used, whereas the correlations which
can potentially stabilize multi-determinant LS states are absent. The LSDA
estimate of exchange gap taken together with some contribution of corre-
lation by contrast strongly underestimates the latter and by this favors the
LS states to become lower on the energy scale. This discrepancy has been
tried to remove by developing hybrid functionals which reduces to elimi-
nation of the disbalance between different contributions to the exchange–
correlation terms by taking different estimates of the latter and ascribing
them different weights fit to reproduce some data (ourdays taken largely
from a numerical experiment performed on an ab initio level, but for sure
whatever experimental data could be used). For the specific example of the
B3LYP functional – the most popular one:

EB3LYP
xc = ELSDA

x + c1E
B88
x + c2E

LYP
c +(1− c2)EVWN

c + c3[Eex.ex.−ELSDA
x ],

where ELSDA
x is the Slater exchange, Eex.ex. is the exact (Hartree-Fock) ex-

change energy computed by Eq. (13) from the one-electron density matrix
obtained from the Kohn-Sham orbitals; ELYP

c and EVWN
c are the Lee-Yang-
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Parr (LYP) Ref. [110], and the Vosko-Wilk-Nusair (VWN) Ref. [111] corre-
lation functionals which have too complex analytical expressions to be given
here. The parameters in common use are c1 = 0.72, c2 = 0.81, c3 = 0.20.
From the point of view of our general consideration the B3LYP proce-
dure is one of semi-empirical parameterization schemes whose parameters
(ci; i = 1 ÷ 3) take certain amount of correlation upon themselves. The
actual amount taken is determined ultimately by the set of the objects
used for parameterization. When the B3LYP parameteric functional is ap-
plied to the spin-active compounds of iron(II) it turns out that it still
underestimates the relative role of correlation vs. exchange in the d-shell
of the metal atom. The B3LYP∗ functional cures this overestimate of the
exchange energy by taking a smaller fraction of the Hartree-Fock one in
to the overall energy estimate. Purely empirically the value of the relative
weight c3(= 0.15) has been found to be acceptable to reproduce the energy
difference between the minima of the HS and LS forms of the Fe(II) com-
plexes with the ligands with the sulphur donor atoms. Of course, there is
neither explanation for this value nor any hope that it is anyhow stable.

In order to reach an agreement with similar data on iron(II) complexes
with ligands containing nitrogen donor atoms [107] the value of c3 = 0.12
had had to be introduced. Similar measures are necessary even for very sim-
ple metals cations like Cu2+. In [112] it was found that the most commonly
used DFT functionals give a too covalent ground state of D4h [CuCl4]2−.
A novel hybrid functional with 38% HF exchange (c3 = 0.38) can give
the good agreement between the calculated and experimental ligand field
and ligand-to-metal charge transfer excited state energies. Incidentally, the
EHCF theory (see below) gives as much as accurate results on the d-d
transitions as all the standard DFT procedures whereas the much better
agreement in [112] is achieved by the cost of unusually high weight of the
HF exchange, which basically has no other substantiation. The entire situ-
ation thus looks out to be rather comic: after 40 years of claims of existence
of the unique density functional and after 30 years of similar claims of an
extraordinary power of the DFT-based theories in the realm of TMCs it
turns out that namely for TMCs no single functional could be found so
far. Whatever implementation reasonable from a practical point of view re-
quires specific nonuniversal functionals dependent on spin, symmetry and
chemical nature not only of the metal, but also of the donor atoms in the
ligands.

We see from the above discussion that staying within the DFT it is
not possible to describe the multiplet structure of the d-shell (incidentally
all the success stories reported so far are limited to the p-shells [82, 113]
whereas in the d-shells only average energies of several multiplet states can
be reproduced [114]). In this context it seems to be necessary to analyse the
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attempts to achieve it which are available in the literature (see [87, 115]).
These attempts, however, have a nature absolutely different from the DFT
itself so they will be described in an appropriate place below.

2.3.4. TDDFT: the same but not the same
Currently the time dependent DFT methods are becoming popular among
the workers in the area of molecular modeling of TMCs. A comprehensive
review of this area is recently given by renown workers in this field [116].
From this review one can clearly see [117] that the equations used for the
density evolution in time are formally equivalent to those known in the time
dependent Hartree-Fock (TDHF) theory [118–120] or in its equivalent – the
random phase approximation (RPA) both well known for more than three
quarters of a century (more recent references can be found in [36,121,122]).
This allows to use the analysis performed for one of these equivalent theories
to understand the features of others.

According to analysis of Ref. [117] the excitation energies evaluated by
TDDFT correspond to taking into account interactions between configura-
tions obtained from the original single-determinant ground state by single
electron excitations (CIS). This is obviously equivalent to the so called
Tamm-Dankoff approximation in the energy domain [121]. For the latter it
is known that in sertain situations when the HOMO-LUMO gap becomes
small as compared to the Coulomb interaction matrix elements or in other
words in a vicinity of the stability loss by the corresponding HFR solution
the excitation energies thus obtained may become negative thus indicat-
ing some serious problems. The reason is quite transparent: the electron
correlation (interaction of the configurations) is taken into account in an
unbalanced manner; it is accounted in the singly excited manyfold but is
completely neglected for the ground state. If the bare gap (orbital energy
difference) is not too small (othervise the problem becomes evident) the
unbalanced correlation account manifests itself in that the excitation en-
ergies estimated in the Tamm-Dankoff approximation are somewhat lower
than necessary. That is precisely which is reported in [123] on example of
Pd complexes (and for other systems in Ref. [124]): the TDDFT excitation
energies are systematically lower than the experimental ones. In this con-
text it becomes clear that the TDDFT may be quite useful for obtaining
the excitation energies in those cases when the ground state is well sepa-
rated from the lower excited states and can be reasonably represented by a
single determinant wave function may be for somehow renormalized quasi-
particles interacting according to some effective law, but shall definitely
fail when such a (basically the Fermi-liquid) picture is not valid. In a way
this is what the other prominent authors in the field of the TDDFT recog-
nize as inherent drawbacks of this approach [124, 125]. According to these
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authors nothing can be done if the one-electron states used have wrong one-
electron energies or if the ground state is not a single determinant built of
the Kohn-Sham orbitals. But these are the situations we must be ready
for when addressing the TMCs.

This brief analysis allows to conclude that the fact that “the superiority
of the TDDFT method . . . has not been unequivocally established ... in
particular for d → d transitions” [116] is not an unfortunate accident but a
logical consequence of deeply rooted deficiencies inherent to the underlying
single-determinant nature of the TDDFT method and the announced proof
of superiority will hardly whenever take place.

3. Basic principles of the description of TMCs’ electronic struc-
ture

3.1. PHYSICAL PICTURE OF TMCS ELECTRONIC STRUCTURE

The above review of the methods of molecular modeling (both QC – in-
cluding DFT – and MM), given above, has shown that none of them is
completely suitable for molecular modeling of TMCs. The MM methods do
not allow to consider multiple PES corresponding to several energetically
close electronic states of TMCs. Ab initio QC methods appear to be too de-
manding to computational resources when employed to model chemically
interesting TMCs with bulky organic ligands; HFR-based semiempirical
methods and even the DFT-based methods suffer from the same deficien-
cies as MM methods, since within their respective frameworks it is not
possible to reproduce relative energies of electronic states of different spin
multiplicity without serious ad hoc assumptions.

We shall note, that the difficulties arise precisely when modeling is to
be applied to molecules involving transition metal atoms mainly of the
second half of the first transition row. Moreover, even among the TMCs
formed by these atoms the problems are not uniformly distributed: the
normal chemical nomenclature does not provide here an adequate classifi-
cation. When it goes about metal carbonyls or about metals of the second
or even third transition row, the DFT methods seem to be able to do the
job quite decently. However, turning to compounds of the first transition
row metals with open d-shells raises many problems. Intuitively distinction
in behaviour of two types of the metal compounds is clear to any chemist.
In a row of isoelectronic species Ni(CO)4, Co(CO)−4 , Ni(CN)2−4 , Fe(CO)2−4
they readily recognize the “not a family member”, but probably fail to give
a reason. In terms of the traditional theory of chemical bonding the clas-
sification is rather vaguely formulated in terms of covalent, polar covalent,
ionic, metallic, coordination, donor-acceptor and other types of chemical
bonds. Clearly enough such a classification is not relevant in the case of
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TABLE 1. Chemical bonds classification by electronic structure and properties [97]

Bond type Electronic structure Compounds example Typical properties

Valence MOs are localized between CH4 Distinct character of

pairs of atoms and occupied NH+
4 bond energy, dipole moments,

by two paired electrons Diamond frequencies, polarizabilities etc.

C2H4

Orbital MOs are delocalized in one Benzene There are no distinct

or two dimensions Graphite characteristics; conductivity,

cycles aromaticity

Coordination MOs are delocalized CuCl2−4 There are no distinct

in space — three-dimensional CoCl2 (crystal) characteristics; variable

coordination number and magnetic moment,

strong mutual influence of ligands

interest. Remarkable alternative systematic of types of chemical bonds is
given in [97]. We reproduce it in Table 1 partially abridging.

Although this classification also is not particularly satisfying it can be
used as a starting point for further discussion. The classification of Table 1
relies upon the MO LCAO, i.e. ultimately the HFR, picture of molecular
electronic structure. As it is discussed above, the HFR is not very much re-
liable when it goes about TMCs. Nevertheless we can observe that the lack
of regularity both in bond lengths, and in oscillatory frequencies of bonds
in complexes is associated, according to [97], with a three-dimensional de-
localization of one-electronic states involved. As an example though, the
metal-ligand bonds in TMCs are given and the optical spectra and magnetic
moment distinguishing them from all other compounds are given as spe-
cific characteristics. However, the non-characteristicity of the bond lengths
and valence angles leading to flexibility of shapes of coordination polyhedra
and the coordination numbers themselves are equally common for the com-
plexes of nontransition metals (for example, alkaline or alkali earths). This
shows a necessity to turn to somewhat more formal description of molecu-
lar electronic structure than it can be provided by the traditional theory of
chemical bonding, but still more qualitative than it appears from the nu-
merical experiments arranged in the framework of no-matter-how-precise
QC methods.

The qualitative description of the electronic structure can be given in
terms of even older concept of “chromophores”. According to the IUPAC
definition the chromophore is an atom or group of atoms in the molecule
that gives color to the molecule. This definition unites two aspects — one
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related to the system’s response to an external perturbation: the spectrum.
By this the concept of chromophore is related to experimental behavior
of molecular systems. Another aspect relates to the structure understood
as a localization of the excited states controlling the tentative response
to that perturbation. The examples of chromophores are well known from
the textbooks. On the part of the modern theory of electronic structure
the concept of chromophore formalizes in the McWeeny’s theory of elec-
tron groups. (The analogy between chromophore concept and McWeeny’s
theory for the special case of TMCs has been early noticed also in a remark-
able work [126]). Within this theory the zero approximation to the system’s
electronic wave function is taken as an antisymmetrized product of rather
local group multipliers referring to relatively isolated elements of molecu-
lar electronic structure. These elements – electron groups – are physically
identified as two-electron two-center bonds, conjugated π-systems etc. Of
course, these groups are not totally isolated and ascribing excitations to
only one of them is an idealization. Nevertheless, the effective Hamiltonian
technique is available to reduce manifestations of the intergroup interac-
tions to renormalizations of the effective group Hamiltonians which allows
to interpret the response of the system to any external perturbation in
terms of excitations localized in the groups.

Further analysis is based on the idea that the characteristic experimental
behavior of different classes of compounds and the suitability of those or
other models used to describe this behavior is ultimately related to the
extent to which the chromophores or electron groups physically present in
the molecular system are reflected in these models. It is easy to notice,
that the MM methods work well in case of molecules with local bonds
designated in Table 1 as valence bonds; the QC methods apply both to
the valence bonded systems, and for the systems with delocalized bonds
(referred as “orbital bonds” in Table 1). The TMCs of interest, however,
not covered either by MM or by standard QC techniques can be physically
characterized as those bearing the d-shell chromophore. The magnetic and
optical properties characteristic for TMCs are related to d- or f -states
of metal ions. The basic features in the electronic structure of TMCs of
interest, distinguishing these compounds from others are the following:

1. Molecule contains strongly correlated electrons in the partially filled
valence d-shell of the transition metal central atom;

2. The overall charge transfer (electron density) between the d-shell of
transition metal atom and its ligand environment is small;

3. The low-energy spectrum is spanned by excited states of the partially
filled d-shell (d-d-spectrum) and it is rather dense.

These properties of the d-shell chromophore (group) prove the necessity
of the localized description of d-electrons of transition metal atom in TMCs
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with explicit account for effects of electron correlations in it. Incidentally,
during the time of QC development (more than three quarters of century)
there was a period when two directions based on two different approximate
descriptions of electronic structure of molecular systems coexisted. This
reproduced division of chemistry itself to organic and inorganic and took
into account specificity of the molecules related to these classical fields. The
organic QC was then limited by the Hückel method, the elementary version
of the HFR MO LCAO method. The description of inorganic compounds —
mainly TMCs,— within the QC of that time was based on the crystal field
theory (CFT) [127,128]. The latter allowed qualitatively correct description
of electronic structure, magnetism and optical absorption spectra of TMCs
by explicitly addressing the d-shell chromophore. Let us consider the CFT
in more detail.

3.2. THE CRYSTAL FIELD THEORY

Basics of the CFT were introduced in the classical work by Bethe [127]
devoted to the description of splitting of atomic terms in crystal environ-
ments of various symmetry. The splitting pattern itself is established by
considering the change of symmetry properties of atomic wave functions
while spatial symmetry goes down from the spherical (in the case of a free
atom) to that of a point group of the crystal environment. The energies of
the d-d-excitations in this model are obtained by diagonalizing the matrix
of the Hamiltonian constructed in the basis of nd-electronic wave functions
(nd is the number of d-electrons). Matrix elements of the Hamiltonian are
expressed through the parameters describing the crystal field and those of
the Coulomb repulsion of d-electrons, that is Slater-Condon parameters F k,
k = 0, 2, 4, or the Racah parameters A, B, and C. In the simplest version of
the CFT these quantities are considered as empirical parameters and deter-
mined by fitting the calculated excitation energies to the experimental ones.
This approach devoids any predictive force (except for the splitting pattern
itself) due to presence of empirical parameters in the theory, which are spe-
cific for each compound. The CFT gives a description to the characteristic
properties of TMCs at the phenomenological level. All important features
of their electronic structure are fixed by this theory and the perpetual prob-
lem remains obtaining consistent estimates of its parameters (strength of
the crystal field). All further development of the CFT was concentrated on
attempts to obtain independent estimate of its parameters [129]. Within the
standard CFT this problem, however, has no solution due to oversimplified
picture of the transition metal ion environment (ligands). Indeed the CFT
theory uses the ionic model of the environment and calculates the splitting
of the initial term of the free metal ion as if it were a pure electrostatic ef-
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fect. The symmetry of the environment is correctly reproduced even in this
simplistic model, whereas all the chemical specifics of this environment gets
lost. For this reason it is not surprising that the heaviest strike upon the
CFT from the (semi)quantitative side was given by TMC spectroscopy yet
in 30-ties. Spectroscopic experiments allowed to range the strengths of the
crystal fields exerted by different ligands to the so called spectrochemical
series [97,128,130]:

F− < OH− < Cl− < Br− <
1
2
Ox2− < H2O < SCN− < NH3,py <

<
1
2
En < CN− < CO

It turned out that the fields are systematically weaker for charged species
than for the uncharged ones with the utter example of the CO molecule
excerting the strongest crystal field, but bearing neither charge nor notice-
able dipole moment. Other relative strengths observed in the experiment
also cannot be explained within the CFT by means of the ionic model of
the environment. These observations clearly indicate that purely electro-
static effects may be only of minor significance in determining the strength
of the crystal field. Early attempts to get the required estimates led to the
ligand field theory (LFT) [128, 131]. In it the environment is considered
more realistically: the one electron states of the surrounding atoms are ex-
plicitly considered. Within such a setting only qualitative explanations can
be obtained. These had been formalized within the angular overlap model
(AOM) [129, 132] with an additional observation that different ligands (or
more precisely – donor atoms) contribute to the effective crystal ligand field
almost independently on each other and that each ligand when coming in
interaction with a given transition metal ion can be characterized by a
small number of parameters (AOM parameters) describing its contribution
to the total effective field felt by the d-shell. However, the AOM parameters
remained as much empirical quantities, both ligand and metal dependent,
as were the 10Dq’s in the original CFT.

The problem of estimating crystal field parameters can be solved by
considering the CFT/LFT as a special case of the effective Hamiltonian
theory for one group of electrons of the whole N -electronic system in the
presence of other groups of electrons. The standard CFT ignores all elec-
trons outside the d-shell and takes into account only the symmetry of the
external field and the electron-electron interaction inside the d-shell. The
sequential deduction of the effective Hamiltonian for the d-shell, carried out
in the work [133] is based on representation of the wave function of TMC as
antisymmetrized product of group functions of d-electrons and other (va-
lence) electrons of a complex. This allows to express the CFT’s (LFT’s or
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AOM’s) parameters through characteristics of electronic structure of the
environment of the metal ion. Further we shall characterize the effective
Hamiltonian of crystal field (EHCF) method and its numerical results.

3.3. EFFECTIVE HAMILTONIAN FOR THE CRYSTAL FIELD (EHCF)

The TMCs’ electronic wave function formalizing the CFT ionic model is
one with a fixed number of electrons in the d-shell. In the EHCF method it
is used as a zero approximation. The interactions responsible for electron
transfers between the d-shell and the ligands are treated as perturbations.
Following the standards semiempirical setting we restrict the AO basis for
all atoms of the TMC by the valence orbitals. All the AOs of the TMC are
then separated into two subsets from which one (the d-system) contains 3d-
orbitals of the transition metal atom, and another (the “ligand subsystem”,
or the l-system) contains the 4s- and 4p-orbitals of the transition metal
atom and the valence AOs of all ligand atoms. We shall try to cover within
the present theory only the complexes, where excitation energies in the l-
system are by far larger than the excitation energies in the d-shell of the
metal atom. This singles out a subset: the Werner-type TMCs which from
the point of view of chemical nomenclature can be characterized as ones
with the closed electronic shell ligands, such as F−, Cl−, Br−, I−, saturated
organic molecules with donor atoms etc.

Formaly the theory evolves in a following way. The low-energy d-d-
spectrum of the TMC can be obtained if the Hamiltonian is rewritten in
the form:

H = Hd + Hl + Hc + Hr (16)

where Hd is the Hamiltonian for the d-shell, Hl is the Hamiltonian for the
ligand system, Hc is the Coulomb interaction, Hr is the resonance one.
The electronic wave function for the n-th state of the complex is written
as antisymmetrized product of the wave functions of the electron groups
introduced above:

Ψn = Φ(n)
d ∧ Φl, (17)

where Φ(n)
d is assumed to be a full CI function for nd electrons in the d-

shell, and Φl is a HFR single determinant ground state for the l-system.
This reflects the main feature of electronic structure of the TMC, that is
the presence of the strongly correlated d-shell with low energy excitations
localized in it and of relatively inert ligands. Under these assumptions the
spectrum of the low-energy excitations is that of the effective Hamiltonian
for the d-shell only:
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Heff
d =

∑
µνσ

U eff
µν d+

µσdνσ +
1
2

∑
µνρη

∑
στ

(µν | ρη)d+
µσd+

ρτdητdνσ (18)

where the d-electron Coulomb interaction term is inherited from the free
ion and the effective core parameters U eff

µν contain contributions from the
Coulomb and the resonance interaction between the d- and l-systems:

U eff
µν = δµνUdd + W atom

µν + W field
µν + W cov

µν , (19)

where
W atom

µν = δµν(
∑

α∈s,p

gµαPαα) (20)

is the repulsion of electrons in the d-shell from those in the 4s- and 4p-AO’s
of the metal;

W field
µν =

∑
L

QLV L
µν (21)

is the Coulomb interaction of d-electrons with the net charges on the ligand
atoms, having the standard CFT form [130]; and the covalence part:

W cov
µν = −

∑
i

βµiβνi(
1 − ni

∆Edi
− ni

∆Eid
) (22)

ultimately comes from the resonance interaction between the d- and l-
systems.

Within the EHCF method [133] the single Slater determinant Φl has to
be obtained from semiempirical HFR procedure. Solving the HFR problem
for the l-system yields the one-electron density matrix Pαβ , orbital energies
εi, and the MO-LCAO coefficients ciα. These quantities completely define
the electronic structure of the l-system and are used to calculate the effec-
tive Hamiltonian Eq. (18) by Eqs. (20)-(22), where QL =

∑
α∈L Pαα − ZL

is the effective charge of the ligand atom L; ZL is the core charge of the
ligand atom L; V L

µν is the matrix element of the potential energy operator
describing the interaction between a d-electron and a unit charge placed on
the ligand atom L; ni is the occupation number of the i-th l-MO (ni = 0
or 1); ∆Edi (∆Eid) is the energy necessary to transfer an electron from the
d-shell (from the i-th l-MO) to the i-th l-MO (to the d-shell):

∆Edi = −Ai + Id

∆Eid = Ii − Ad,
(23)

where Ii and Ai are the ionization potential and the electron affinity of
the i-th l-MO within the HFR scheme equal to −εi — the corresponding
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orbital energy with the oppsite sign, Id and Ad are respectively, the effective
ionization potential and the electron affinity of the d-shell. The resonance
integrals βµi in Eq. (22) are given by:

βµi =
∑
α

βµαciα

where ciα is the MO-LCAO coefficient, and βµα is the resonance integral
between the α-th l-AO and the µ-th d-AO.

This comprises the EHCF picture for the electronic structure of the
Werner-type TMCs.

3.4. SEMIEMPIRICAL IMPLEMENTATIONS OF THE EHCF CONSTRUCT.

In the context of the EHCF construct described in the previous Section the
problem of semiempirical modeling of TMCs’ electronic structure is seen
in a perspective somewhat different from that of the standard HFR MO
LCAO-based setting. The EHCF provides a framework which implicitly
contains the crucial element of the theory: the block of the two-electron
density matrix cumulant related to the d-shell. Instead of hardly system-
atizeable attempts to extend a parameterization to the transition metals
it is now possible to check in a systematic way the value of different pa-
rameterization schemes already developed in the “organic” context for the
purpose of estimating the quantities necessary to calculate the crystal field
according to prescriptions Eqs. (20) - (22) of the EHCF theory. Solving
the eigenvalue problem with the effective Hamiltonian for the d-subsystem
(Heff

d ) with the matrix elements which are estimated with use of any “or-
ganic” semiempirical scheme with the CI wave function constructed in the
basis of the d-system, one obtains the complete description of the many-
electron states of the d-shell of the metal ion in the complex. In such a for-
mulation the EHCF method was parameterized for calculations of various
complexes of metals of the first transition row, with mono- and polyatomic
ligands. In papers [133–136] the parameters for the compounds with donor
atoms C, N, O, F, Cl and for doubly and triply charged ions of V, Cr, Mn,
Fe, Co, Ni and Cu are fitted. These parameters do not depend on details of
chemical structure of the ligands, rather they are characteristic for each pair
metal-donor atom. The dependence of the excerted effective field on details
of geometry and chemical composition of the ligands is to be reproduced
in a frame of a standard HFR-based semiempirical procedure. The further
evaluations [137, 138] have shown applicability of the fitted system of pa-
rameters for calculations of electronic structure and spectra of numerous
complexes of divalent cations with use of merely the CNDO parameteriza-
tion for the l-system. In [139, 140] the EHCF method is also extended for
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calculations of the ligands by the INDO and MINDO/3 parameterizations.
In all calculations the experimental multiplicity (spin) and spatial sym-
metry of the corresponding ground states was reproduced correctly. The
summit of this aproach had been reached in Ref. [141] by calculations on
the cis-[Fe(NCS)2(bipy)2]2+ complex. Its molecular geometry is known both
for the HS and LS isomers of the said compound. The calculation for the
both reproduces the respective ground state spins and the spectra of low
lying d-d-excitations in a remarkable agreement with experimental data.
Another good example is the treatment of metal porphyrins with use of the
EHCF method. As already said above, for the decades the ab initio meth-
ods fail to reproduce the experimental ground state of Fe(II) porphyrine.
It is really a complex case since it is an intermediate spin (S = 1— i.e.
neither HS nor LS) and spatially degenerate state (3E). However, applying
even very sophisticated methods (including CASPT2 which is considered
to be a method of choice for TMCs in the ab initio area) has not yet led
to the desired success. According to [54] the HS forms are ground states
and the hope to get a correct result is rather meagre since the gap amounts
up to 1 eV in favor of the HS state (although the interpretation given in
Ref. [54] is quite different). Meanwhile the EHCF method in its simplest
setting (CNDO type of parameterization employed for the l-system) yields
the experimental ground state 3E without any further adjustment of pa-
rameters.

3.5. EHCF VS. LFT AND AOM

The success of the EHCF method in reproducing the crystal field from ge-
ometry data and ligand electronic structure as described by semiempirical
QC procedure poses a question on possible relation between the EHCF
method and the successful parameterization scheme for the LFT, the al-
ready mentioned AOM. As it is shown below, a local version of the EHCF
method EHCF(L) derived and tested in our papers [28, 29] represents an
effective tool allowing to estimate the AOM parameters with a good preci-
sion. The derivation consists of two unitary transformations. The first one is
from the basis of canonical MOs (CMOs) of the l-system used in Eq. (22) to
the basis of localized one-electron states representing characteristic features
of the ligand electroic structure — like presence of lone pairs on the donor
atoms. These are obtained by the max Ψ4 localization procedure [142]. This
leads to the approximate formula for the covalent contribution Eq. (22) to
the effective crystal field:

W cov
µν =

∑
Λ

∑
L∈Λ

βµLβνLGadv
LL (Ad) (24)
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where Λ enumerates the ligands, the subscripts L enumerate the one-
electron local states referring to the lone pairs (LP’s) residing on the donor
atoms, and βµL is the resonance integral between the µ-th AO of the d-shell
and the L-th LP. The advanced Green’s function Gadv

LL (ε) for the local state
L in Eq. (24) is given by

Gadv
LL (ε) = −∑

i

nic
2
iL

ε − (gdi − εi)
(25)

where ciL is the coefficient of the LP’s expansion over CMO’s, gdi is the
interaction energy between d-electron and electron on the i-th MO, and εi

is the energy of the i-th CMO of the l-system in the TMC.
The second transformation is that of the d-orbitals from the global (lab-

oratory) coordinate frame (GCF) to the diatomic coordinate frame (DCF)
related to the ligand Λ, defined so that its z-axis is the straight line con-
necting the metal atom with the ligand donor atom, so that the resonance
integrals βµL in Eq. (24) can be expressed through the tL vector of the
resonance integrals between the metal d-AO’s and the L-th LMO in the
DCF:

βµL =
∑

λ
L∈Λ

RΛ
λµtLλ (26)

where the coefficients RΛ
λµ form a unitary matrix RΛ transforming d-orbitals

from the GCF to the DCF. Then, introducing the quantities:

eΛ
λλ′ =

∑
L∈Λ

tLλGadv
LL (Ad)tL+

λ′ , (27)

we obtain
W cov

µν =
∑
Λλλ′

RΛ
µλeΛ

λλ′RΛ
νλ′ (28)

where the matrix elements eΛ
λλ′ of the eΛ matrix in the DCF are labeled by

the indices λλ′ taking values σ, πx, πy, δxy, δx2−y2 according to the symmetry
of the metal d-orbitals with respect to the z-axis of the DCF. Eq. (28)
precisely coincides with the definition of the synonymic AOM parameters.
On the other hand the expression Eq. (27) defines the eΛ

λλ′ parameters
in terms of the quantities which can be calculated within the EHCF(L)
method. Thus Eq. (28) can be accepted as their definition in the EHCF
context. Their relation with the standard AOM [129,132,143] is described
in details in Ref. [28]. These equations have been used to calculate the
values of the eσ and eπ parameters for a series of octahedral complexes with
nitrogen containing ligands. That calculation was in a good agreement with
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experimental 10Dq values (within 10% accuracy). It was shown that the
splitting parameter 10Dq can be estimated with the error not exceeding
0.1 eV (this accuracy compares to that of the EHCF method itself).

3.6. HYBRID EHCF/MM METHOD

The EHCF methodology allowed to perform systematic calculations of the
crystal field for various ligand environments. The results of these calcula-
tions are in fair agreement with the experimental data, particularly with
respect to the spin multiplicity of the ground states of the complexes. In
the respective simple versions the EHCF/X methods treat the electronic
structure of the ligands within a semiempirical approximation X. These
methods are not, however, well suitable to conduct the systematic studies
on PESs of TMCs. Further application of the EHCF methodology would
be to develop a method for the calculation of PESs of TMCs. To do so
we notice that the CNDO or INDO parameterizations for the ligands are
probably enough accurate when it goes about the charge distribution in the
ligands and the orbital energies at fixed experimental geometries, although,
they do not suit for geometry optimizations (or more generally for searching
PESs) of TMCs. Nevertheless, the EHCF method can be adapted for the
PES search in a more general framework of the hybrid QM/MM method-
ology (standard reference here is [144]; for recent review see [57]). This
finally allows to “incorporate” quantum and correlated behavior of TMC
into the “classical” methodology of MM and to provide necessary flexibility
for quantum/classical interface (see below).

This is done as follows. According to [36] the total electronic energy of
the n-th state of a system with the wave function Eq. (17) is

En = Eeff
d (n) + El (29)

where Eeff
d (n) is the energy of n-th state of the effective Hamiltonian for

the d-shell in the crystal field. For estimating the total energy En for the
complex in n-th state, in work [28] we proposed to replace the energy of
ligands EL by its EMM estimate calculated in certain MM approximation.
Then the expression for the PES of the state n becomes:

En = Eeff
d (n) + EMM (30)

That represents a natural way of combining MM and EHCF [28], allowing
to calculate energies of low-level electronic states of the d-shell Eeff

d (n)
and the ligand energy EMM for different nuclear configurations of TMC. In
variance with the LFSE-based method proposed by Deeth [30] the energy
of the d-shell is calculated by a procedure taking into account qualitative
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manifestations of electronic correlation rather than using a one-electron
estimates of the energy. By this it becomes possible to obtain approximate
PES for various states of the d-shell of TMC.

Appropriate test objects for this approach is provided by the spin iso-
mers of TMCs already addressed in the context of the attempts to apply
the DFT-based methods to them. As during spin transition (ST) variation
of the Fe-N bond lengths makes up more than 10% of the bond length
itself in the LS complex, the harmonic approximation does not suffice for
the MM part of the energy. Thus, for Fe-N bond stretching potentials the
Morse potential was used. By Eq. (30) terms of the singlet, triplet and quin-
tet lowest states of the considered complex are constructed. Parameters of
MM-potentials at which metal atom influence (angle bending and bond
stretching) are fitted so that positions of minima on terms of singlet and
quintet have as much as possible coincided with experimental distances
Fe-N in HS- and LS-structures. The calculation has been carried out in
our work [28]. The general scheme Eq. (30) of energy evaluation using the
EHCF method for Eeff

d (n) requires an HFR semiempirical calculation of
the l-system for each geometry of a complex. To clear this, the local ver-
sion of the EHCF method which allows to calculate the crystal field at each
geometry without repeating HFR calculations can be employed.

According to [133–135, 137, 138] the covalent term Eq. (22) gives the
main contribution (up to 90%) to the splitting of d-electron levels. Re-
maining 10-20% of the splitting comes from the Coulomb interaction with
effective charges residing on the ligand atoms. The problem is how to cal-
culate the covalent contribution to the splitting without recalculation the
one-electron states of the l-system at each geometry. In Section 3.5 we re-
viewed the EHCF(L) theory which allows to estimate the crystal field in
terms of local electronic structure parameters (ESP) of the ligands. By this
method it can be done for arbitrary geometry of the complex, which is
prerequisite for developing a hybrid QM/MM method.

The proposed approach in certain respects is resemblant to the general
QM/MM techniques which are invented with the general purpose to treat
different parts of polyatomic systems at different levels of theory. The gen-
eral setting of this theory is discussed in detail in [57]. The main difference
between the setting of the standard QM/MM technique and the present
one is that the majority of authors working in the area of QM/MM see as
a desirable feature a possibility to extend the subsystem to be treated on a
quantum level as much as possible. This is seen as a medicine against the
uncontrolable errors introduced by uncautious cutting the entire electronic
system in parts treated by the QM and MM techniques respectively. The
hybrid EHCF/MM technique uses somewhat opposite approach: it tries not
to extend but to reduce the QM subsystem as much as possible and to treat
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the intersubsystem frontier in such a way that the interactions between the
quantically and classically treated parts are sequentially taken into account.
Since physically the true quantum effects — the low-energy excited states
in TMCs, — are located in the d-shell we restrict the true quantum de-
scription to these latter. This is related to the very understanding of the
notion “quantum” relevant to the present problem which we have already
mentioned at the beginning: in organic chemistry one normally deals with
the ground state only which on the energy scale is well separated from the
lowest excited state. This is the physical reason why the classical (MM)
description is possible for organics. The TMCs differ from that picture ob-
viously due to low-energy excitations in the d-shell accessible in experiment,
thus it must be treated on a quantum level.

The technical problem was to develop an adequate form of the inter-
subsystem junction precisely for the case when the quantum subsystem is
represented by the d-shell. The source of the problem here is that as it is
shown by clear advantage of the LFT taking into account the ligands’ elec-
tronic structure over the CFT the former must be somehow economically
reproduced in the otherwise MM calculation.

Since in the EHCF(L) the effective crystal field is given in terms of the l-
system Green’s function, the natural way to go further with this technique is
to apply the perturbation theory to obtain estimates of the l-system Green’s
function entering Eqs. (24) and/or (27). It was assumed and reasoned in [29]
that the bare Green’s function for the l-system has a block-diagonal form:

Gl
00 =

⊕
Λ

GΛ
0 (31)

Nonvanishing block GΛ
0 corresponds to a separate ligand Λ containing the

unperturbed diagonal Green’s function matrix elements (GΛ
0 (ε))adv

LL corre-
sponding to the LP L located on the ligand Λ:

(GΛ
0 (ε))adv

LL = lim
δ→0+

∑
i∈Λ

(cΛ
iL)2ni

ε − ε
(0)
Λi + iδ

(32)

where cΛ
iL is the same expansion coefficient as in eq.(25) but for the LP of the

separate ligand Λ, and ε
(0)
Λi is the i-th MO energy of that same free ligand.

Then Eq. (24) contains the Green’s function (GΛ
0 (ε))adv

LL of the free ligand
and the summations in Eq. (24) is performed over the separate ligands Λ
and their LPs indexed as L.

The Coulomb interaction between the ligands themselves and between
each of them and the metal ion when turned on does not break the block
diagonal structure of the bare Green’s function Gl

00. Then the approximate
Green’s function for the l-system conserves the form eq. (31) but with the
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poles now corresponding to the orbital energies of the ligand molecules in
the Coulomb field induced by the central ion and by other ligands (Λ′ �= Λ)
rather than to those of the free ligands.

The simplest picture of the effect of the central ion on the surrounding
ligands reduces to that of the Coulomb field affecting the positions of the
poles of the Green’s function (orbital energies) of the free ligand. The form
of the CMO’s of each ligand is left unchanged which corresponds to the rigid
ligands’ MO’s (RLMO) picture Ref. [29]. According to [145], the effect of
the Coulomb field upon the orbital energies is represented by:

(GΛ)−1 = (GΛ
0 )−1 − Σ(f) (33)

where GΛ
0 is the Green’s function for the free ligand and the self-energy

term Σ(f) is due to the external Coulomb field. The perturbed Green’s
function GΛ within the first order has the same form as GΛ

0 but its poles
are shifted by the self-energy parts Σ(f)

ii :

εi = ε
(0)
i + Σ(f)

ii , (34)

Σ(f)
ii ≈

∑
N∈Λ

ρiNδhN ,

where ρiN is the partial electron density of the i-th CMO of the ligand Λ
on the N -th atom of the ligand:

ρiN =
∑
α∈N

c2
iα, (35)

where ciα are the i-th MO LCAO coefficients of the free ligand, and the
core Hamiltonian perturbation δhN is:

δhN = −e2


(ZM − nd)

RN
+

∑
Λ′ �=Λ
N ′∈Λ′

QN ′

RNN ′


 (36)

The atomic quantities δhN are equal to the perturbations δhαα of the cor-
responding core Hamiltonian matrix elements in the ligand AO basis. This
is like that since within the CNDO approximation [62] accepted in [29],the
quantities δhαα are the same for all α ∈ N .

This model can be improved by taking into account polarization effects
in the ligand sphere. For this end the metal ion is considered as a point
charge equal to its oxidation degree or formal charge, which is the sparkle
model [146].
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Within models of the sparkle family the effect of the external Coulomb
field does not reduce to the renormalization of the orbital energies as it is
within the RLMO model (see above). By contrast, the electron distribution
also changes when the ligand molecules are put into the field. We model
this by classical polarizability. Accordingly the difference between effective
charge on atom A in the complex (polarized) and that in the free ligand
(non-polarized) is:

δQA=QA − Q0
A =

∑
B

ΠABδhB=

=
∑
B

ΠAB(δh0
B +

∑
C �=B

ΓACδQC) (37)

where ΠAB is the atomic mutual polarizability and δh0
A taken from Eq.

(36). Going to the vector notation this can be rewritten as:

δQ = Q − Q0 = Π(δh0 + ΓδQ)
δQ = (1 − ΠΓ)−1Πδh0

δQ = Πδh0 +
∞∑

n=1
(ΠΓ)nΠδh0 =

∞∑
n=1

δQ(n).
(38)

Though procedures of that sort are admitted in modern MM schemes
directed to the systems with significant charge redistribution [147] we con-
sider such a procedure to be too resource consuming and restrict ourselves
by several lower orders with respect to Π in the expansion. Then the term
Πδh0 corresponds to the first order perturbation by the Coulomb field
induced by the metal ion and bare (non-polarized) ligand charges. The sec-
ond order term corresponds to the perturbation due to the Coulomb field
induced by the mutually polarized (upto the first order) charges:

δQ(1) = Πδh0

δQ(2) = ΠΓΠδh0 (39)

The details on calculating mutual polarizabilities relevant to the EHCF/MM
context can be found in Ref. [148]. The charges thus obtained are used for
calculation of the Σ(f)

ii term according to Eq. (34). This model can be termed
as PS model (PS stands for Perturbative Sparkle). Specifically, PSn approx-
imation level of the PS model stands for the charge corrections employing
the series Eq. (38) up to the n-th order, while PS itself stands for the exact
expression with the inverse matrix in the second row of the same equation.
Then, Eqs. (37)-(39) comprise the perturbative form of the Sparkle model
of the l-system’s electronic structure (the PS model).

The proposed procedure improves the junction between the EHCF(L)
method playing role of the QM procedure and the MM part, as shown be-
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low, where details of the calculations performed within this approximation
are given.

The local version of EHCF method was implemented and used for the
analysis of the molecular geometries of complexes of iron (II) in works
[29,148,149]. The satisfactory agreement in the description of complexes ge-
ometry with different total spins is achieved when the effect of electrostatic
field of the metal ion on the ligands is taken into account through the elec-
trostatic polarization of the ligands. Satisfactory estimates of parameters
of the crystal field for series of complexes of iron (II) and cobalt (II) (both
LS and HS ground states) are achieved. Totally 35 six-coordinated iron
complexes with mono– and polydentate ligands, containing both aliphatic,
and aromatic donor nitrogen atoms (mixed complexes with different types
of donor nitrogen atoms and different spin isomers of one complex are in-
cluded to this number) and ten cobalt complexes also with different types
of donor nitrogen atoms and coordination numbers ranging from four to
six have been considered. Deviations of calculated bond lengths Fe–N and
Co–N from the experimental values are well enough described by the nor-
mal distribution. Parameters of that distributions were the following: the
mean value (average deviation over the dataset, µ = −0.037 Å and σ=0.054
Å in the case of Fe(II) complexes, and µ=0.017 Å and σ=0.044 Å in the
case of Co(II) complexes. The above values are quite acceptable for the
entire set of data but it turned out that they mask an inherent bias of the
proposed approach. In the iron(II) complexes the Fe-N bond lengths of the
HS complexes are systematically underestimated whereas those in the LS
come out slightly overestimated. In fact the parameters of the fit of the
empirical distrbution function of deviations restricted to the LS complexes
are µ=0.011Å and σ=0.034Å and those restricted to the HS complexes are
µ = −0.023Å and σ=0.054ÅṪhe reason seemed to be in the inherent “stiff-
ness” of the Morse potential. In order to avoid this, we tested another MM
bond stretching potential for the metal-ligand bonds in Fe(II) complexes:

ENR(r) =
A

r
+

B

r5
+

C

r9
(40)

originally proposed by Nı́ketić and Rasmussen (NR) [150] in their version
of the CFF force field. The NR potential can be characterized as a softer
potential than the Morse one in the following sense. The two potentials
are both three-parametric so that a one-to-one correspondence can be es-
tablished between the both by defining the potentials of two forms to be
equivalent if the well depth, minimum position, and elasticity constants
KNR and KM (the second derivative in the minimum) expressed through
the A, B, C parameters of the NR potential Eq. (40) or the D0 and α
parameters of the Morse potential, respectively, coincide. The necessary
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Figure 1. Comparison of the Morse (dashed line) and the Nı́ketiĉ–Rasmussen (solid
line) potentials. The abscissa axis is the bond length in Å and the ordinate is the energy
in kcal/mol.

estimates can be easily obained:

r4
0 =

−5B −√
25B2 − 36AC

2A

D0 =
A

r0
+

B

r5
0

+
C

r9
0

(41)

KNR =
A

r3
0

+
15B
r7
0

+
45C
r11
0

KM = D0α
2.

The Fig. 1 presents the curves of the equivalent Morse and NR po-
tentials. One can see that the NR potential increases much slower in the
asymptotic region than the Morse one. The parameters of the NR potential
equivalent to the Morse potential fitted in our paper [148] are given in Table
2. The value of the A parameter can be identified with the interaction of
some Coulomb charges. Extracting these effective values in Fe(II) complexes
with nitrogen-containing complexes we get QFe=1.757 e and QN = −0.293
e; the latter is close to the CNDO charges on the donor nitrogen atoms
obtained in the EHCF calculations for hexaammine Fe(II) complex [137].

Then the NR potential with the parameters of Table 2 is tested on the
set of Fe(II) HS and LS molecules described in the paper [148].
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TABLE 2. Fitted parameters of
the NR potential for Fe–N bonds in
the EHCF/MM method. Correspond-
ing parameters of the Morse potential
calculated by Eq. (41) are also given.

Parameter Bond

Fe–NA Fe–N3

A, kcal/mol·Å -189.3 -161.3

B, kcal/mol·Å5 -1084.4 -1940.9

C, kcal/mol·Å9 10817.4 19803.2

D0 110.0 102.9

α 1.49 1.59

r0 1.88 1.96

dr(Fe-N)
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Figure 2. EDF for difference of bond lengths (Å) of the overall test set of Fe(II)
complexes between experimental and calculated by the EHCF/MM method with NR
potential.

The corresponding empirical distribution functions for the Fe–N dis-
tances’ deviations for the overall data set and for the HS and LS subsets
separately, are given in Figs. 2–4 We get the following characteristics of
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Figure 3. EDF for difference of bond lengths (Å) of HS Fe(II) complexes between
experimental and calculated by the EHCF/MM method with NR potential.

the normal distribution of the deviations for the EHCF/MM calculations
with NR potential on the overall data set: µ = −0.031 Å, σ=0.052Å. The
both parameters are smaller than those obtained for the Morse potential
thus indicating some improvement both in terms of systematic errors and
the scattering of data. It is clearly seen from the EDF plots however that
the systematic error remains; on the other hand, it is also seen that the
mentioned difference in descriptions of the LS and HS complexes is now
removed so the structures of both types of complexes are now reproduced
accordingly with almost the same systematic error.

As it is known, the minima of the HS and LS terms lie on the right and
on the left positions relative to the crossection point of the pure electronic
quintet and singlet terms of the d-shell in Fe(II) complexes. Systematic
error may be due to some shift of that point from its true position. We
obtained a negative value of the mean error which is an indication that
the crossection point is shifted towards shorter bond lengths. Thus, moving
the crossection point to larger Fe–N distances, it is possible to remove the
systematic error. To get rid of the systematic error its possible source has to
be identified. As discussed in our paper [29], the position of the crossection
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dr(Fe-N)
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Figure 4. EDF for difference of bond lengths (Å) of LS Fe(II) complexes between
experimental and calculated by the EHCF/MM method with NR potential.

point in the EHCF/MM method depends on the the Racah parameters B
and C, which we have previously accepted as those for the free ion. It can
be achieved by slightly reducing of the Racah parameters as compared to
the free ion values, to the values B=850 cm−1 and C=3400 cm−1. The
set of MM parameters should be also changed in this case. We have done
it first for the NR potential. The parameters for the Morse potential are
also calibrated independently for the scaled Racah parameters. For the new
values see Table 3.

Thus, the corresponding EDFs for both potentials calculated for the
same test set of the Fe(II) complexes are plotted in Figs. 5, 8. The system-
atic errors in all cases are close to zero, as can be seen from the parameters
of the EDFs: for the EHCF/MM with the Morse potential — µ = −0.005,
σ=0.056; with the NR potential — µ =0.002, σ=0.052. However, although
somewhat improved the stiffness of the Morse potential again manifests
itself: the systematic errors for the separate LS and HS sets do exist and
only approximately cancel each other in the total set, whereas for the NR
potential errors distributions for HS and LS complexes are consistent both
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TABLE 3. Fitted parameters of the NR
and Morse potentials for Fe–N bonds
in the EHCF/MM method. The Racah
parameters are B=850 cm−1, C=3400
cm−1.

Parameter Bond

Fe–NA Fe–N3

A, kcal/mol·Å -149.0 -136.0

B, kcal/mol·Å5 -1385.0 -1660.0

C, kcal/mol·Å9 13650.0 18000.0

D0 73.0 65.0

α 1.69 1.73

r0 1.94 1.97

dr(Fe-N)
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Figure 5. EDF for difference of bond lengths (Å) of the overall test set of Fe(II)
complexes between experimental and calculated by the EHCF/MM method with Morse
potential and scaled Racah parameters.

having small and close systematic errors due to its “softness”, as opposed
to the Morse potential.

Among the applications of the EHCF methodology one can also mention
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Figure 6. EDF for difference of bond lengths (Å) of HS Fe(II) complexes between
experimental and calculated by the EHCF/MM method with Morse potential and scaled
Racah parameters.

a recent one to analysis of the Mössbauer spectra of spin-active compounds.
This experimental method received a great attention as one capable to mon-
itor the spin transition due to strong difference between the parameters of
the Mössbauer spectra of the LS and HS forms of the iron(II) complexes. In
our paper [151] we addressed this topic and it has been shown that, first the
EHCF method yields more than acceptable description of the quadrupole
splitting in the spin active complexes of iron(II) where the complex geome-
try was known. In those cases, however, when the geometry was not known
from the experiment the EHCF/MM derived geometry has been used to
estimate the Mössbauer parameters. It turned out that the agreement with
experiment even in the case of the calculation based on the EHCF/MM
optimized geometry is very good. Particularly in the more difficult case
of LS complexes the resuts in all cases practically coincided with exper-
imenal ones although the magnitude of the quadrupole splitting itself is
rather small (in the range 0.1 ÷ 0.2 mm s−1). By contrast applying the
DFT (hybrid) procedure to estimating the Mössbauer parameters in [104]
in the case of the LS complexes gave rather poor results: the experimental
splittings for the series of complexes in that paper were in the range 0.30
÷ 0.43 mm s−1, whereas the DFT estimates were in the range 0.01÷ 0.12
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Figure 7. EDF for difference of bond lengths (Å) of LS Fe(II) complexes between
experimental and calculated by the EHCF/MM method with Morse potential and scaled
Racah parameters.

mm s−1 which is obviously too low. Meanwhile for the HS complexes even
the temperature dependence of the quadrupole splitting is quite decently
reproduced [151] within the EHCF method.

Thus, a set of semiempirical methods based on EHCF approach allows
with good precision to calculate geometrical characteristics (structure) and
spectral transitions (splitting, electronic and Mössbauer spectra) of Fe(II)
and Co(II) complexes, which is hardly accessible by existent QC methods
or can be done only by enormous computational cost.

4. Discussion

In the present paper we tried to demonstrate that the problems faced by
most empirical and by (actual and so called) ab initio techniques when
applied to modeling TMCs have deep roots in the specific features of the
electronic structure of the latter and in approximations which tacitly drop
the necessary elements of the theory required to reproduce these features of
the former. Of course, the EHCF approach whose success story is described
here in details is not completely isolated from other methods. In general pic-
ture, the various CAS techniques must be mentioned in relation to it, first
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Figure 8. EDF for difference of bond lengths (Å) of the overall test set of Fe(II)
complexes between experimental and calculated by the EHCF/MM method with NR
potential and scaled Racah parameters.

of all. The characteristic feature uniting these two otherwise very different
approaches is the selection of a small subset of one electron states followed
by performing adequately complete correlation calculation restriced to this
smaller subset. The general problem with such aproaches is that ususally it
is taken for granted that the HRF MO LCAO is a good source for obtain-
ing the states to be used in the correlated calculation. Two pitfalls can be
expected and actually occur on this route. The first is that in the TMCs
the HFR MO LCAOs can be difficult to obtain or those obtained are of a
poor quality. The second is that even if the MO LCAOs are obtained cor-
rectly, they provide too much delocalized picture of electron distribution.
In terms first proposed by J.-P. Malrieu and then extensively used by P.
Fulde it is equivalent to saying that in the HFR solution for the TMC the
number of electrons in the d-shell too much fluctuates around may be cor-
rect average (integer) value. In both cases the limited CI (CAS) techniques
are applied to improve a very poor zero approximation. Taking only five
MOs of appropriate symmetry to model the d-shell may be too näıve since
the number of states to be included in the CI formation to reduce the ex-
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Figure 9. EDF for difference of bond lengths (Å) of HS Fe(II) complexes between
experimental and calculated by the EHCF/MM method with NR potential and scaled
Racah parameters.

cessive fluctuations must be much larger. Going to the one-electron states
obtained from the canonical MO LCAOs by some localization technique,
may be useful, but numerically expensive. The EHCF here advantageously
uses the fact that the exact wave function of the TMCs most probably
corresponds to very high localization of electrons in the d-shell which en-
ables taking their delocalization into account as a perturbation. Among
other approaches based on a similar vision of the situation in TMCs ones
of Refs. [152,153] must be mentioned.

When it comes to analysis of similar approaches stemming from the
DFT the numerous attempts to cope with the multiplet states must be men-
tioned [113,154]. In these papers an attempt is made to construct symmetry
dependent functionals capable to distinguish different multiplet states in a
general direction proposed by [99, 100]. It tuns out however, that the re-
sult [113] is demonstrated for the lower multiplets of the C atom which
are all Roothaan terms. It is not clear that this methodology is not go-
ing to work when applied to the d-shell multiplets which may be either
non-Roothaan ones or even nontrivially correlated multiple terms.
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Figure 10. EDF for difference of bond lengths (Å) of LS Fe(II) complexes between
experimental and calculated by the EHCF/MM method with NR potential and scaled
Racah parameters.

Another group of appoaches can be qualified as an attempt of using
the DFT in order to evaluate the parameters of the CFT/LFT theory. In
this respect the papers [87, 115] must be mentioned. The latter in a sence
follows the same line as the old semiempirical implementation [77] where
the MOs for the TMC molecule are first obtained by an approximate SCF-
like procedure and then a CI is done in some restricted subspace of the
latter. In some sence this approach is similar to the EHCF model too with
the general difference that the one-electron states used to construct the
complete CFT/LFT manifold are taken ”as is” from the KS calculation. In
this case one can expect some difficulties while selecting the MOs into the
set of those to be used in constructing the CI (it is not obvious whether
simple energy/symmetry criteria allow to select the necessary manifold of
the KS orbitals to reproduce the states in the d-shell; and what shall be
done when the symmetry is low?). Also the degree of delocalization of
the KS orbitals may interfere in evaluation of the CFT/LFT parameters
from the results of the DFT calculation. It looks like that it is precisely
what happened in [115] where the values of the Racah parametrs turned
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out to be strongly underestimated as compared to the values known to fit
the experiment within the CFT/LFT model by this indicating the excess of
delocalization of the KS orbitals as compared to that necessary to reproduce
the experimental data.

Generally one can notice that almost whatever review on computational
chemistry of TMCs starts from a sort of ”triple denial” of the old CFT/LFT
approaches as being pertinent to something which was happening ”once
upon a time”. Our point of view on the CFT/LFT picture is absolutely
different. It more or less corresponds to that given in the brilliant intro-
duction to the paper [87]. The clearcut conclusion to be derived from there
is that the CFT/LFT picture keeps track of very physical picture of the
low-energy spectrum of the TMCs. Whatever discrepance between the re-
sults obtained by no matter how refined QC methods and those appearing
from the CFT/LFT must be considered as failures of the QC rather than
“age effects” of the CFT/LFT. It is the purpose for a QC study to repro-
duce results obtained within the CFT/LFT paradigm and it is not easily
reacheable and in many cases has not been reached yet. This idea was
the leading one in our studies on TMCs from very beginning and its ade-
quate formal representation in terms of the group functions and the Löwdin
partition technique provided a crucial step forward which allowed the nu-
merical implementation of the EHCF method [133]. It immediately solved
the problem of constructing semi-empirical description of the TMCs which
otherwise remained unaccessible for 30 years. The cost of this was reject-
ing the HFR from of the wave function of the TMC which in the present
context cannot be considered as a big loss. Further development of this
approach and realizing its deeper relation to the general QM/MM setting
helped in evolving the corresponding EHCF/MM hybrid scheme. The lat-
ter is in relation with those proposed by Deeth [30] and Berne [155]. Both
involve the d-shell energy as an additional contribution to that of the MM
scheme and use the AOM model with interpolated parameters to estimate
the latter. In the case of the approach [30] there are two main problems.
First is that the AOM parameters involved are assumed to depend only
on the interatomic separation between the metal and donor atoms. This is
obviously an oversimplification since from the formulae Eq. (27) it is clear
that the lone pair orientation is of crucial importance. This is taken into
account in the EHCF/MM method Second important flaw is the absence of
any correlation in describing the d-shell in the model [30]. This precludes
correct desciption of the switch between different spin states of the open
d-shell, although in some situations different spin states can be described
uniformly.
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5. Conclusion

In the present paper we tried to demonstrate the feasibility of a semiempir-
ical description of electronic structure and properties of the Werner TMCs
on a series of examples. The main feature of the proposed approach was the
careful following to the structural aspects of the theory in order to preclude
the loss of its elements responsible for description of qualitative physical
behavior of the objects under study, in oiur case of TMCs. If it is done
the subsequent parameterization becomes sensible and succesful solutions
of two long lasting problems: semi-empirical parameterization of transition
metals complexes and of extending the MM description to these atoms can
be suggested.
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129. Schäffer, C. E. Pure Appl. Chem., pages 361–392, 1971.
130. Lever, A. V. P. Inorganic electronic spectroscopy. John Wiley, 1985.
131. Ballhausen, C. J. Indroduction to Ligand Field Theory. McGraw Hill, New York,

1962.
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