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ABSTRACT: The McWeeny’s group functions technique is a natural way to
introduce local description into quantum chemistry. It can also serve as a basis for
constructing numerically effective computational schemes with almost linear scaling of
computational costs with the size of a system. In this study, we apply it to the
coordination compounds of Zn(II)-containing ligands with nitrogen and oxygen donor
atoms. In these compounds, the electron group corresponding to the metal vacant 4s-
and 4p-atomic orbitals (AOs) of the Zn2� ion and its closest coordination sphere formed
by the lone pairs (LP) located on the donor atoms naturally separates. This group,
designated metal and lone pairs (MLP), is described by the SCF wave function within
the hybrid scheme of strictly local geminals/self-consistent field (SLG/SCF). The SLC/
SCF scheme is based on the group function approach combining different descriptions
for different electron groups: two-electron two-center bonds are described by geminals
(SLG groups), while all the remaining electron groups are described by Slater
determinants in the one-electron (SCF) approximation (SCF groups). The original
MNDO Hamiltonian parameterization for the Zn atom is adjusted for correct
description of geometry of the complexes. © 2006 Wiley Periodicals, Inc. Int J Quantum
Chem 106: 2268–2280, 2006
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Introduction

M odeling of metal ion complex formation
has remained a problem in computational

chemistry of coordination compounds for decades
[1]. Progress in modern quantum chemistry reliable
predictions regarding the electronic structure and
properties of polyatomic molecular systems, in-
cluding metal complexes. However, high-accuracy
methods, such as ab initio and density functional
theory (DFT) are still computationally too demand-
ing when dealing with coordination compounds.
Qualitative approaches, such as the points-on-a-
sphere (POS) [2] or metal-ligand size-match selec-
tivity concept [3], still play an important role in the
theoretical coordination chemistry of both transi-
tion and nontransition metals. Thus, effective nu-
merical tools suitable for modeling of coordination
bonds and reproducing their qualitative aspects are
in strong demand. Recent studies reviewed in Ref.
[4] are devoted to analysis of chemical bonding in
various metal complexes. They are focused mainly
on the covalent metal complexes with more or less
isolated two-center bonds. Thus, the electronic
structure of compounds considered in Ref. [4] dif-
fers on an intuitive level from the picture of unsat-
urable and nondirected “coordination” bonds char-
acteristic for complexes of metals having organic
ligands with donor atoms [5].

Recently a new hybrid semi-empirical method
has been proposed called strictly local geminals/
self-consistent field (SLG/SCF) [6], based on the
general strategy of describing molecular electronic
structure in terms of electron groups residing in
orthogonal carrier subspaces and each populated
by integer constant numbers of electrons [7]. This
method extends the original semi-empirical method
[8–11] based on SLG, where the trial wave function
is chosen in the form of an antisymmetrized prod-
uct of SLGs. Most geminal-based approaches pro-
posed in the literature use somehow predefined
carrier spaces of one-electron states, either empiri-
cally constructed or extracted from preceding Har-
tree–Fock (HF) calculations by some localization
procedure [12]. By contrast, employing of the spe-
cial form of one-electron basis states, that is, of
strictly local atomic hybrid orbitals (HOs), which
are variationally determined from the energy min-
imum condition, is the key feature of the SLG ap-
proach [8–11]. The quantum chemical scheme
[8–11] is implemented with use of semi-empirical
Hamiltonians. (There are also methods employing

optimized carrier spaces in the ab initio context
[13–15].) The MINDO/3 [16], MNDO [17], AM1
[18], and PM3 [19] parameterizations for the molec-
ular Hamiltonian were used. The accuracy of pre-
dicting molecular characteristics, such as heats of
formation, molecular geometries [8–11], and verti-
cal ionization potentials [20] for the SLG-based
semi-empirical methods [8–11] is comparable to,
and in some cases even better than, that of the
corresponding SCF-based methods. The character-
istic features of these methods, that is, linear scal-
ability of required computational resources [21],
correct asymptotic behavior of the electronic struc-
ture under �-bond cleavage, and variational deter-
mination of one-electron states, make the SLG-
based semi-empirical quantum chemistry an
important alternative to the common SCF-based
semi-empirical procedures. However, the SLG-
based methods are nonuniversal, since the SLG trial
wave function assumes the electronic structure of a
molecule to be well depictable by a combination of
two-electron chemical bonds and lone pairs. It is
clear that coordination compounds do not corre-
spond to this picture, along with many other im-
portant classes of molecular systems, such as those
containing conjugated � bonds. The extension of
the SLG approach to these classes of molecular
systems with essential delocalization of the electron
groups is proposed in Ref. [6]. It is done within the
framework of the general group function theory [7]
by treating different electron groups, using differ-
ent procedures: some of the groups (related to the
two-electron, two-center bonds and lone pairs) are
described by the SLGs; others are described by a
single determinant built from molecular orbitals
(MOs). This extension of the SLG approach puts the
SLG/SCF method among other hybrid methods,
when different parts of a molecule are treated by
different methods of quantum chemistry [22].

In Ref. [6], the analysis of electronic structure,
heats of formation, and geometries of a test set of
organic molecules with �-electron system is given
within this hybrid SLG/SCF method. The calcula-
tions show that molecular geometries and heats of
formation for both conjugated double bonds and
aromatic systems either formed by carbon atoms
only or containing heteroatoms are reproduced
with acceptable accuracy.

In the present work, we extend the approach [6]
to the coordination compounds. Among these we
chose for consideration the complexes of the Zn2�

ion. This choice is influenced by the facts that (i)
these compounds play a significant role in chemis-
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try and especially in biochemistry, as active sites of
many enzymes that contain the Zn2� ions with
different coordination numbers; and (ii) in this case
there is no need to describe the d-shell, which is
completely filled by electrons. For these reasons,
the Zn(II) complexes are intensively studied by var-
ious methods of computational chemistry. There
are model ab initio HF(MP2)/6-31�G* calculations
of binding enthalpy and frequencies on zinc hy-
drates Zn(H2O)n

2� (see Ref. [23] and references
therein). Binding energies of some small complexes
of Zn2� with multiple ligands, such as acetone,
N-methylacetamide, imidazole, and water are stud-
ied within the DFT on the B3LYP/6-311��G(d,p)
level approximation in a series of papers [24, 25]. In
one of the mentioned papers (Ref. [24]), the active
site of the carbonic anhydrase enzyme is modeled
by three imidazole and one water molecules, and
the free energy of the complex formation is calcu-
lated. However, the study was not extended to
complexes with larger ligands that characterize the
common capabilities of ab initio calculations in the
coordination chemistry of zinc.

The proposed sum of interactions between frag-
ments ab initio computed (SIBFA) [26] force field
has been used to predict the structure of some
Zn(II) model complexes with small ligands, such as
ammonia, water, glycine, and mercaptocarboxam-
ides. The SIBFA methodology of empirical calcula-
tions of molecular structure is based on the frag-
mentation of the complex to the metal and ligands
and on the modeling of electrostatic interactions
between them by that of transferable multipoles
and polarizabilities distributed on the atoms and
bonds of the fragments precalculated with the use
of an ab initio procedure [27]. The SIBFA force field
was tested by comparing its energy components
with ab initio ones singled out by the standard
energy decomposition procedure based on the “re-
duced variation space” decomposition [27–29]. An
important feature of the SIBFA approach is that it
includes an estimation of energy contribution on
the electron density transfer from the lone pairs of
donor atoms to the vacant orbitals of Zn2�, charac-
teristic of the coordination bond formation.

The COSMOS force field [30] represents another
approach to treating the coordination interactions.
It puts an accent on accounting of the polarization
of the ligands. The electron transfers are in contrast
with SIBFA included implicitly through a scheme
[31] employing Pauling’s “bond energy–bond or-
der” logarithmic relations [32]. The bond orders
used in the COSMOS are set constants, not depen-

dent on interatomic separations, so that it is not
possible to treat consistently elimination of one of
the coordinated ligands. The COSMOS method [33]
has been applied to the calculation of some four-
coordinated complexes of zinc with an experimen-
tally determined molecular structure [30]. How-
ever, the results of geometry and energy
calculations of these “real” complexes are briefly
reported in the cited work and are not compared
with the experiment in detail.

The most widely used semi-empirical ap-
proaches to modeling for the latter complexes are
the AM1, PM3, and MNDO/d methods. In Ref.
[34], the accuracy of these three semi-empirical
methods, when applied to a description of Zn(II)
complexes, is analyzed thoroughly. It is concluded
that the MNDO/d method is the most reliable one
for modeling zinc–donor atom interactions and
gives more accurate results compared with the
other two methods. The authors of Ref. [34] con-
clude that for coordination bonds of a zinc atom
with the oxygen and nitrogen donor atoms, the
MNDO/d method gives results of satisfactory ac-
curacy. However, the MNDO/d method encoun-
ters difficulties when describing complexes with
polydentate ligands. This analysis was in part re-
sponsible for inspriing the development of a new
“ZnB” parameterization [35] of the PM3 method for
Zn(II) compounds in biological systems. In that
paper, the heats of formation and geometry data,
both from the set of [36] and the authors’ [35]
extensive data set obtained for some zinc metallo-
enzyme mimics and water complexes by the DFT
(B3LYP/6-311G*) calculations, are used for param-
eterization. Indeed, the resulting coordination dis-
tances and heats of formation appear to be better
described by the new ZnB parameterization than by
either the PM3 itself or AM1 or MNDO. (The au-
thors of Ref. [35] did not include the MNDO/d
method for the comparison of distances and heats
of formation.) By contrast, the root-mean-square
(RMS) errors in distances for biological mimics and
water complexes are still too large: 0.08 and 0.12 Å,
respectively, which may also indicate uncertainty
of their positions as obtained from the experiment.

Taking into account that in the previous work [6]
the SLG/SCF approach was tested mainly with the
MNDO parameterization, we also decided to use
this version of the hybrid SLG/SCF approach for
calculations of Zn(II) complexes. Another reason
for our choice is that the AM1 and PM3 methods
seem to give artificial minima [38] at intermolecular
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separations characteristic for most of coordination
complexes.

In the next section, we briefly review the general
structure of the SLG/SCF hybrid method. We then
apply the proposed procedure to various Zn(II)
complexes, using an MNDO-based parameteriza-
tion of the electronic Hamiltonian of the SCF part
focused on the proper description of the closest
coordination sphere of the metal and of �-electron
subsystems of the ligands, when necessary. We
then discuss the results of our modeling.

Basics of the SLG/SCF Hybrid Method

The construction of the method is based on the
electron group functions formalism [7]. The electronic
structure of entire molecule is represented by a set of
electron groups. These groups correspond to chemical
bonds, lone pairs, local unpaired valencies, and delo-
calized �-electron systems, or they can be constructed
in other ways based on chemical intuition. The defi-
nition of any group includes the number of electrons
in it and the set of one-electron basis functions span-
ning the corresponding carrier space. The settings for
the group in the general case also include its spin state
and a method (approximate form of the trial wave
function) used for calculating the group wave func-
tion. The type of wave function imposes restrictions
on the molecular wave function. In the semi-empirical
realm, this weakness must be compensated by rele-
vant parameterization. Nevertheless, the required
modifications of the parameters, according to our ex-
perience [6], turn out to be marginal (although neces-
sary). Below we briefly sketch the construction of the
SLG/SCF approach, which is presented in detail in
Ref. [6].

Construction of the hybrid orbitals (HOs) re-
duces to orthogonal transformations of the atomic
orbitals (AOs) centered on the same atom:

tp�
� � �

i�A

hpi
Aai�

� , (1)

where ai�
� is the creation operator of the electron

with spin projection � on the ith AO, �tp�� � tp�
� �0� is

the HO, and the SO(4) matrix hA determines the
transformation from AOs to HOs on the atom A
bearing the valence sp-basis. The orthogonality of
matrices hA and that of the basis AOs centered on
different atoms (within the semi-empirical setting)
ensures the orthogonality of the carrier spaces as-

signed to the groups and, thus, the strong orthog-
onality of the electronic wave functions for different
groups. The transformation [Eq. (1)] is meaningful
only in the case of non-hydrogen atom with orbitals
belonging to at least two different electron groups.

Each HO is uniquely assigned to some electron
group. If the group is to be described by the SCF
method, the molecular spin-orbitals are constructed
as linear combinations of the hybrid spin-orbitals:

bi�
� � �

p��S�

cip
� tp�

� , (2)

where p runs over the HOs forming the one-elec-
tron basis in the Sth group treated by the SCF
approximation, and the expansion coefficients sat-
isfy usual orthonormalization conditions:

�
p��S�

cip
� cjp

� � �ij. (3)

Each geminal for the two-electron two-center
bond is, in turn, a superposition of three singlet
two-electron configurations:

gm
� � umrm�

� rm�
� � vmlm�

� lm�
� � wm�rm�

� lm�
� � lm�

� rm�
� �,

(4)

which are two ionic configurations (both electrons
are on the same end of a chemical bond) and the
covalent (Heitler–London type) one, respectively,
representing a two-center two-electron bond (the
HOs at the “right” and “left” ends of the bond are
denoted �rm� and �lm�). The normalization condition
for the geminal amplitudes um, vm, and wm reads:

�0�gmgm
��0� � um

2 � vm
2 � 2wm

2 � 1. (5)

In the case of an electronic lone pair, only one config-
uration survives with the amplitude equal to unity:

gm
� � rm�

� rm�
� . (6)

This may be equally considered as either an SCF or
an SLG function.

The wave function for the entire molecule in the
SLG/SCF approximation is represented by the an-
tisymmetrized product of molecular orbitals and
geminals:

�	� � ��
S

�
i��S�

�

bi�
����

m

gm
�� �0�, (7)
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where index S runs over all SCF-treated groups,
and i runs over the occupied MOs formed accord-
ing to Eq. (2) from the basis states spanning the Sth
SCF-treated group. Therefore, the wave function
[Eq. (7)] is quite general.

The electronic Hamiltonian in the NDDO ap-
proximation is transformed as well to the basis of
HOs. This transformation preserves the structure of
the Hamiltonian. The expressions for molecular in-
tegrals in the HO basis through the transformation
matrices hA and molecular integrals in the AO basis
can be found in Refs. [10, 11]. The total energy of
the molecule is found by averaging the electronic
Hamiltonian over the electronic wave function and
adding contribution representing the core–core re-
pulsion specific for the MNDO scheme [17].

The energy of the molecule is minimized with re-
spect to the electronic structure variables, which are
the MO LCAO coefficients cip

� [Eq. (2)], the Jacobi
angles defining the hA matrices (and thus the shapes
and directions of the HOs), and the amplitudes um, vm,
wm defining the geminals. An iteration scheme that
alternates the HO optimizations defining the groups’
carrier spaces and determinations of electron struc-
ture variables for the groups (the amplitudes of the
geminals and the MO expansion coefficients, respec-
tively) is implemented in Ref. [6]. The optimal HOs
are obtained by gradient minimization of the energy
with respect to sextuples of parameters determining
transformation matrices hA [10]. The geminal ampli-
tudes um, vm, and wm are obtained by diagonalization
of 3 
 3 matrices of effective Hamiltonians for each
geminal representing a chemical bond. For determi-
nation of MOs in the SCF groups, three procedures
well known in the literature [7] have been imple-
mented in Ref. [6]: restricted Hartree–Fock (RHF),
restricted open-shell Hartree–Fock (ROHF), and un-
restricted Hartree–Fock (UHF). The effective Fock op-
erators are constructed so that they take into account
the presence of other electron groups. This reduces to
modification of one-electron matrix elements of the
effective operator.

Results and Discussion

APPLICATION OF THE SLG/SCF METHOD TO
ZN(II) COMPLEXES

The hybrid method [6] briefly described in the
previous section permits calculation of the elec-
tronic structure of different electron groups at dif-
ferent levels, effectively taking into account inter-

actions between the groups. In the coordination
compounds, as is shown in Ref. [42], it is natural to
single out the group of electrons in the closest sur-
rounding of the metal ion. In the considered donor
complexes, the carrier space for this group of elec-
trons is spanned by the lone pair (LP) HOs of the
donor atoms and by the metal valence AOs (4s- and
4p-AOs, in the case of zinc). We denote the group
function describing electrons in metal (M) and LPs
as �MLP. This group is to be treated by the SCF
method. Other groups (pertaining to ligands) are
treated either in the SCF approximation if they are
�-electron systems as in benzene or pyridine rings,
or in the SLG approximation if they are local
�-bonds. With these notions, the overall wave func-
tion acquires the form:

	 � �MLP ∧ �SLG/SCF. (8)

In the case of ligands with oxygen donor atoms,
both LPs of oxygen are included in the MLP group.
In molecules with the ligands bearing �-systems
(e.g., imidazole, pyridine), the latter are treated as
separate SCF groups without electron transfers be-
tween them.

TEST CALCULATIONS

Our main purpose was to test the effect of intro-
ducing trial wave function given by Eqs. (7) and (8)
upon the structural and energy characteristics of
coordination polyhedra. Thus, the re-parameteriza-
tion of the MNDO Hamiltonian for the Zn atom
with AOs included in the SCF-based group �MLP is
needed to take into account the influence of the
SLG-based groups. We expect the change of param-
eters of the SLG-based groups to be small, as for
aromatic molecules bearing conjugated �-systems
[6]. In the original MNDO parameterization [43] for
the Zn atom, the parameters were fitted on a small
set of di- and triatomic molecules containing zinc. A
modified MNDO parameterization of zinc atom
was proposed in Ref. [44], where values of two-
electron one-center parameters fitted in Ref. [43] are
kept fixed; parameter Uss is shifted to �17.989 eV to
obtain the heat of formation for the Zn2� ion to be
close to the experimental value of 665.1 kcal/mol.
(It estimates formally as �2Uss � gss � HZn, where
the parameter HZn is the atomization energy of Zn
and its value accepted in MNDO is �31.7 kcal/mol;
we keep it fixed.) Remaining parameters Upp, �s, �p,
and � and orbital exponents �s and �p, were ad-
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justed. About a decade later, in Ref. [36], the
MNDO/d method was introduced specifically for
the Zn(II) compounds with another parameteriza-
tion, where Uss as other one-electron parameters
differ from those previously mentioned. Atomic
parameters for zinc were modified on the basis of
parameterization procedure, making use of the ex-
tended data set on compounds of Zn(II), like
Zn(CH3)2, Zn(Acac)2, and Zn(H2O)2�, not consid-
ered in earlier parameterizations. The MNDO/d
method gives rather accurate results for these spe-
cies.

In general we accept the strategy of parameter-
ization proprosed in Ref. [44] (see also above), but
restrict ourselves to making only minimal adjust-
ment of the parameters for the Zn atom to repro-
duce some practically interesting values, such as
geometry characteristics (mainly bond lengths be-
tween Zn and donor atoms). It is of primary impor-
tance because there is a lot of structural information
for many zinc coordination complexes; however,
the experimental gas phase heats of formation for
these complexes are very scarce. For that reason,
some investigators [27, 35] use ab initio estimates
for the heats of formation of other zinc complexes
instead of its unknown experimental values. We try
to avoid this practice, so our approach is not a
parameter fitting in the strict sense.

Taking this into account and analyzing the re-
sults of Ref. [34], we started from the MNDO/d
parameterization, keeping fixed the value of Uss as
one giving the correct value for the heat of forma-
tion of the Zn2� ion. The resonance parameters �p

SCF

of the organogenic atoms (C, N, O, H) in the SLG/
SCF (MNDO) method that has already been fitted
for the SCF-treated �-electron groups in Ref. [6]
also retain their values. The modified MNDO �p

SCF

parameter for the N atom’s HO involved in the
�-electron system was fitted in Ref. [6] to 21.97 eV.
For the oxygen atom, the value of the analogous
parameter �p

SCF (O) fitted in Ref. [6] is 39.0 eV. (The
resonance parameters were changed in the original
parameterization of MNDO for the SLG method
[11] itself.) These values are used in further calcu-
lations. The resonance parameter �s is tuned for the
N and O donor atoms in the SCF-treated MLP
group independently from other parameters men-
tioned above.

We then performed test calculations using the
MNDO [43] and MNDO/d [36] parameterizations
for the complexes Zn(NH3)4

2� (1) and Zn(Im)6
2� (2)

(where Im � imidazole), with tetrahedral and oc-
tahedral coordination, respectively, to obtain an

overall comparison of these two parameterizations
of the Zn atom within the SLG/SCF context. It
turned out that the geometry characteristics (metal–
donor atom bond lengths) are better described by
the MNDO/d, while the extent of charge transfer to
the metal ion obtained with the MNDO parameters
seems to conform better with the intuitive picture of
charge redistribution in complexes giving resultant
(Coulson) charge on the metal close to unity rather
than to zero, which is the case for the MNDO/d
parameters. The MNDO/d method appears to
overestimate the extent of charge transfer, which
may affect the resulting binding energy value. It is
important, since the major contributions to the
binding energy of zinc coordination compounds
are electrostatic and charge transfer energies [27].
However, calculation of these complexes by the
SLG/SCF method with the original MNDO/d pa-
rameters set for zinc gives good agreement between
the extent of the charge transfer to the metal ob-
tained by it and by the original MNDO. Thus, the
values of the MNDO/d orbital exponents for the
zinc atom �s and �p, mostly controlling the extent of
the charge transfer and the electron density distri-
bution over 4s- and 4p-AOs of Zn, are concluded
to be acceptable for the SLG/SCF context as well.
By contrast, the geometry characteristics (bond
lengths) obtained by the SLG/SCF with the
MNDO/d parameterization are in poor agreement
with the experimental ones. The molecular geome-
try is largely influenced by the resonance parame-
ters �s(Zn) and �p(Zn). The new values �s(Zn) �
1.30 eV and �p(Zn) � 1.75 eV permit reproduction
of the bond lengths in the considered complexes
with the use of the SLG/SCF method with better
accuracy than the MNDO/d method in its purely
SCF version.

To adjust the Upp and � parameters for the Zn
atom as well as the �s

SCF parameter for donor atoms,
we use information on geometry characteristics
(bond lengths). To this end, we selected 14 com-
plexes with ligands containing N and O donor at-
oms given in Table I, using the data both from Ref.
[45] and from the Cambridge Crystal Structure
Data Bank (CCSDB). Table I gives the ligand com-
position, abbreviations, and corresponding CCSDB
reference codes for the selected complexes. Some
less widely known ligands are depicted in Figure 1.
To obtain an integral characterization of the calcu-
lated Zn–donor atom bond lengths, we use the
empirical distribution functions of the differences
between the calculated and experimental bond
lengths.
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In general, the plot of the empirical distribution
function [error function, (EDF)] in the normal scale
together with its linear fit is a good statistical test of
the presence of systematic errors in the data set. It
characterizes both the range of errors’ magnitudes
and the probability for that or another value of the
error to appear in the test set. It is reasonable to
assume that random nonsystematic errors are nor-
mally distributed with the zero mean value. Signif-
icant deviation of the EDF mean value (	) from
zero is then indicative for certain biases in the mea-
surements or numerical experiments. The variance
(or the � value) of this normal law characterizes the
likelihood of facing an error that is too large by its
absolute value. Thus, the condition for parameter
�s

SCF fitting may be an almost zero value of 	 for
EDF of Zn–donor atom bond errors in selected
complexes (0.005 Å).

The results of SLG/SCF (MNDO) calculation
with the parameters Upp and � (see Table II; two-
electron one-center parameters for the zinc atom
are taken from Ref. [36] without reparameteriza-
tion) for the zinc atom and shifted �s

SCF parameters
for N and O donor atoms (24.0 and 36.5 eV, respec-
tively) reasonably fulfill the mentioned require-
ment concerning the 	 value of EDF for the zinc–
donor atom bond length errors. With this set of
parameters, the 	 values for the errors in the ZnON
and ZnOO bond lengths are �0.003 Å (� � 0.039
Å) and �0.001 Å (� � 0.032 Å), respectively. The
standard SCF (MNDO) calculations for the same
complexes result in 	 values of 0.030 Å (� � 0.029

Å) and 0.028 Å (� � 0.035 Å), respectively. Thus,
the systematic error for the SLG/SCF (MNDO)
scheme is almost zero, which can be considered an
advantage in comparison with the purely SCF-
based method yielding much larger systematic
error. The distance variance (�) for SLG/SCF
(MDNO) and SCF (MNDO/d) is comparable. Cor-
responding EDF and linear fit plots are given in
Figures 2 and 3.

Detailed results of the geometry optimization
performed by the SLG/SCF (MNDO) (with the
MNDO parameterization given in Table II) and the
SCF (MNDO/d) methods are presented in Table III.
Although the improvement of the bond length ac-
curacy in the case of the SLG/SCF (MNDO) method
is evident as compared with the SCF (MNDO/d),
the values of root-mean-square differences (RMSD)
between the calculated and experimental coordina-
tion (zinc–donor atom) bond lengths in some cases
are lower in the SLG/SCF (MNDO) approach. In
the case of complex 10, there are two possible ways
of estimating the energy: one formally using the
Zn(H2O)6

2� composition of the complex, and an-
other with the Zn(H2O)18

2� composition, reflecting
the specific solvation of the hydrated cation by
water molecules of the second hydration sphere, as
discussed in Ref. [23]. In the first case, the ZnOO
distance is obtained to be longer by 0.01 Å than in
the second one and closer to the experimental value
as cited in Ref. [23].

The partial atomic charges on zinc and donor
atoms calculated by the SLG/SCF (MNDO) are in

TABLE I ______________________________________________________________________________________________
Ligand names and Cambridge Crystal Structure DataBank (CCSDB) reference codes for the
calculated molecules.

N Ligand composition Ligand abbreviation CCSDB refcode Ref.

1 Tetraamine FUZCUY [47]
2 Hexa-imidazole Im HIMZZN [48]
3 Hexaamine RAJNOF [49]
4 Tris(ethylenediamine) en CIBKON [50]
5 Bis(cis-cyclohexane-1,3,5-triamine) chta JUNNAH [51]
6 Bis((2-pyridylmethyl)amine) pma KUTNES [52]
7 Bis(1,4,7-triazacyclononane) [9]aneN3 KIQPAB [53]
8 Bis(diethylenetriamine) dien CEJYEV [54]
9 Tris(3-aminopropyl)amine amp BIHQOY [55]

10 Hexa-hydrate CAXYUV [56]
11 Hexa-methanol MeOH CIRJIW [57]
12 Hexa-ethanol EtOH CIRNIA [57]
13 Tris(1,2-ethanediol) diol ZNETD001 [59]
14 Bis(12-crown-4) [12]aneO4 MEYLEH [58]
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most cases larger (by magnitude) than those ob-
tained by the SCF (MNDO/d) method. As a rule,
the Zn effective atomic charge is �0.6 � 0.9 for the
SLG/SCF and 0.2 � 0.4 for the SCF calculations.
(The valence 4s- and 4p-orbital populations of the
Zn atom are, correspondingly, lower for the SLG/

SCF calculations.) Thus, the overall charge on the
zinc atom obtained in the SLG/SCF (MNDO) cal-
culations is generally close to unity, whereas in the
MNDO/d one it is rather small (from our point of
view, unrealistically).

It is worthwhile to note that in the SLG/SCF
method the description of coordination bonds is
achieved by considering only the MLP region (elec-
tron group) around the metal atom within an SCF-
treated group, which considerably reduces the
overall computational costs. Comparison of calcu-
lation times for different methods can be ade-
quately performed by estimation of the overall scal-
ing of the applied method, i.e., dependence of
calculation time on the size of the molecular system.
The scaling dependence of N3 is characteristic for

FIGURE 1. Ligands used in the calculations. Atom
numbers correspond to Table III.

TABLE II ______________________________________
Fitted for SLG/SCF method and initial MNDO/d
Hamiltonian parameters for Zn atom.

Parameter SLG/SCF SCF

�s 1.732 1.732
�p 1.394 1.394
Uss �18.023 �18.023
Upp �10.800 �12.242
�s 1.300 5.017
�p 1.750 0.712
� 1.580 1.518

FIGURE 2. Empirical distribution function for differ-
ence in experimental bond lengths (Å) and those calcu-
lated by the SLG/SCF (MNDO) method of Zn(II) com-
plexes with nitrogen and oxygen donor atoms.
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pure SCF procedure in standard semi-empirical
methods, whereas for polarizable force fields such
as SIBFA it scales as N2. The current implementa-
tion of the SLG/SCF (MNDO) method scales as N2

similar to SIBFA, for both the energy and gradient
calculations. Unfortunately, due to transformation
of two-electron integrals from the AO to HO basis,
this dependence has large proportionality coeffi-
cient. The use of expansion over multipoles in the
two-electron two-center integrals permits apprecia-
ble reduction of this coefficient [21]. Furthermore,
use of strictly local orbitals allows us to cut off
interactions between distant atoms effectively,
which results in almost linear scaling of the SLG (as
well as SLG/SCF) procedure [21], provided all SCF
groups contain a small number of electrons, so the
number of the electron groups grows linearly with
that of the size of the system. This difference in
scaling should be mostly manifested for calcula-
tions of high-molecular zinc-containing enzymes.

EFFECTS OF LIGAND SUBSTITUTION:
NUMERICAL EXPERIMENT

The effects of substitution of the ligands in the
coordination sphere of the Zn2� complexes were
also of interest to us. The qualitative theory of metal
complex geometry is given in Ref. [46]. Model con-
siderations [46] of the substitution in octahedral
complexes are based on perturbative treatment of
variation of diagonal matrix element of a model

Fock operator describing the close ligand shell of a
complex. Within the SLG/SCF treatment for the
complexes introduced in the present work, the cor-
responding Fock operator for the MLP electron
group appears naturally, and its matrix elements
can be evaluated directly.

We consider substitution in six-coordinated 12-
electron (according to specification of [46]) com-
plexes of the form ZnL5X. In the case of the ZnL6
complex, the frontier MOs have the form:

HOMO: 
�eg� � �1/�12��2�1

� 2�2 � �3 � �4 � �5 � �6�

LUMO: 
�a1g� � las � �ca/�6���1

� �2 � �3 � �4 � �5 � �6�, (9)

where �i stands for the ith �-LPs included in the
MLP group. In this setting, the theory [46] predicts
that for symmetry reasons only the normal mode
corresponding to tetragonal distortion of the com-
plex is capable these frontier MOs (in the first order
of perturbation theory), so only this distortion can
take place as a result of the substitution. According
to the theory [46], in this case the amplitude Q of
the normal mode responding to the substitution is
the product of electronic and vibronic factors:

Q � �
1

3�2
cala�FXL

�FsL

�R �
R�R0

. (10)

In Eq. (10), coefficients ca and la are taken from Eq.
(9), �FXL is the difference of the diagonal matrix
elements of the group MLP effective Fock operator
for the LP of the substituent X and for that of the
predominant ligand L, �FXL � FXX � FLL (electronic
factor), and the last term contains the derivative of
the off-diagonal Fock operator matrix element FsL

between lone pair L and 4s-AO of the zinc atom
with respect to the metal–donor atom bond length
R at its value R0 in the initial complex ZnL6 (vi-
bronic factor). In the theory [46], the latter multi-
plier is assumed to be always positive. This is sup-
ported by our calculations. Thus, the sign of Q
depends only on that of �FXL, since the expansion
coefficients ca, la are chosen to be positive. Accord-
ing to Ref. [46], the effect of the substituent in
octahedral 12e� complexes manifests itself in short-
ening of the bond in the trans-position with respect
to the substituted position if the substituent X is a
stronger donor than the substituted ligand L. The

FIGURE 3. Empirical distribution function for differ-
ence in experimental bond lengths (Å) and those calcu-
lated by the SCF (MNDO/d) method of Zn(II) complexes
with nitrogen and oxygen donor atoms.
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TABLE III _____________________________________________________________________________________________
Lengths and RMSD of coordination bonds, calculated from structures of the investigated complexes
optimized by the SLG/SCF (MNDO) and SCF (MNDO/d) methods.*

Complex
no. Bond

Bond lengths (Å)
Complex

no. Bond

Bond lengths (Å)

SLG/SCF SCF exp. SLG/SCF SCF exp.

1 ZnON 2.042 2.085 2.052
ZnON 2.041 2.083 2.052
ZnON 2.041 2.084 2.052
ZnON 2.041 2.084 2.052
RMSD 0.011 0.032 —

2 ZnON 2.213 2.232 2.180
ZnON 2.216 2.263 2.200
ZnON 2.214 2.227 2.200
ZnON 2.213 2.236 2.180
ZnON 2.216 2.238 2.200
ZnON 2.214 2.242 2.200
RMSD 0.023 0.048 —

3 ZnON 2.169 2.215 2.207
ZnON 2.169 2.216 2.207
ZnON 2.170 2.217 2.207
ZnON 2.169 2.217 2.207
ZnON 2.169 2.216 2.207
ZnON 2.170 2.216 2.207
RMSD 0.035 0.009 —

4 ZnON 2.166 2.217 2.214
ZnON 2.168 2.215 2.213
ZnON 2.169 2.220 2.229
ZnON 2.165 2.220 2.241
ZnON 2.170 2.220 2.229
ZnON 2.165 2.220 2.233
RMSD 0.060 0.011 —

5a N1 2.179 2.228 2.187
N2 2.182 2.227 2.182
N3 2.183 2.228 2.191
N4 2.182 2.228 2.192
N5 2.180 2.227 2.194
N6 2.183 2.228 2.206
RMSD 0.013 0.036 —

6a N1 2.175 2.191 2.159
N2 2.225 2.193 2.151
N3 2.197 2.220 2.158
N4 2.175 2.191 2.159
N5 2.225 2.193 2.151
N6 2.197 2.220 2.158
RMSD 0.049 0.047 —

7a N1 2.167 2.211 2.182
N2 2.173 2.212 2.166
N3 2.177 2.212 2.173
N4 2.168 2.211 2.182
N5 2.173 2.212 2.166
N6 2.178 2.212 2.173
RMSD 0.010 0.039 —

* Experimental geometry references can be found in Table I.
a For atomic numbers, see Fig. 1.
b For atomic numbers, see Fig. 1.

8a N1 2.176 2.215 2.219
N2 2.188 2.226 2.163
N3 2.177 2.224 2.230
N4 2.170 2.224 2.245
N5 2.188 2.227 2.155
N6 2.165 2.215 2.204
RMSD 0.048 0.040 —

9a N1 2.037 2.080 1.992
N2 2.035 2.080 1.983
N3 2.094 2.110 2.097
N4 2.033 2.070 2.001
RMSD 0.038 0.074 —

10 ZnOO 2.057 2.066 2.052
ZnOO 2.067 2.086 2.049
ZnOO 2.067 2.087 2.049
ZnOO 2.067 2.086 2.049
ZnOO 2.066 2.086 2.049
ZnOO 2.066 2.087 2.049
RMSD 0.017 0.037 —

11 ZnOO 2.097 2.128 2.086
ZnOO 2.097 2.128 2.086
ZnOO 2.097 2.128 2.086
ZnOO 2.097 2.128 2.086
ZnOO 2.097 2.128 2.086
ZnOO 2.097 2.128 2.086
RMSD 0.000 0.042 —

12 ZnOO 2.077 2.131 2.079
ZnOO 2.077 2.130 2.079
ZnOO 2.078 2.130 2.079
ZnOO 2.077 2.131 2.079
ZnOO 2.077 2.130 2.079
ZnOO 2.078 2.130 2.079
RMSD 0.002 0.051 —

13 ZnOO 2.074 2.088 2.086
ZnOO 2.070 2.088 2.098
ZnOO 2.072 2.089 2.089
ZnOO 2.074 2.088 2.086
ZnOO 2.070 2.088 2.098
ZnOO 2.072 2.089 2.089
RMSD 0.020 0.006 —

14b ZnOO1 2.259 2.281 2.244
ZnOO2 2.258 2.278 2.220
ZnOO3 2.243 2.277 2.279
ZnOO4 2.268 2.280 2.214
ZnOO5 2.241 2.277 2.282
ZnOO6 2.256 2.281 2.249
ZnOO7 2.242 2.279 2.269
ZnOO8 2.252 2.277 2.349
RMSD 0.036 0.041 —
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donor strength in its turn can be identified with the
magnitude of the diagonal matrix element of the
Fock operator over its lone pair HO and a stronger
donor is that whose matrix element is less negative.

We performed calculations with use of the SLG/
SCF (MNDO) model on several characteristic exam-
ples. First, the hexa-imidazole zinc complex 2 is
considered, where one imidazole ligand is substi-
tuted for ammonia, resulting in the Zn(Im)5(NH3)2�

complex. So, L � Im, X � NH3, the value of FLL �
�23.95 eV, FXX � �23.02 eV, and the difference
�FXL is 0.93 eV, so ammonia is a stronger donor
than imidazole. The effect must be manifested by
the bond shortening for the N6 atom in the trans-
position to the incoming ammonia molecule. This is
perfectly reproduced in our calculations (see Table
IV). The extent of the observed substitution effect
on the bond lengths for N3 and N6 atoms is �0.06
Å, and the variation of the coordination bond
lengths under substitution is almost ideally sym-
metric.

Then, we consider hexa-amino–zinc complex 3,
where one ammonia ligand is substituted for the
pyridine ligand, resulting in the Zn(NH3)5(py)2�

complex. In this complex L � NH3, X � py, and in
the initial configuration corresponding to the un-

substituted complex the matrix element FLL �
�24.22 eV, and FXX � �24.76 eV, so the difference
between them is �FXL � �0.54 eV. Thus, the varia-
tion of this diagonal matrix element is negative, and
the pyridine is a weaker donor than ammonia. As
one can see from Table IV, the theoretically ex-
pected effect on geometry is reproduced, and the
trans-ammonia ligand and the substituent pyridine
both go away from the zinc atom. The magnitude of
elongation of the coordination bond lengths under
substitution is smaller than that in the complex 2
and nonsymmetrical, i.e., 0.044 Å and 0.020 Å for
the N3 and N6 atoms, respectively.

As the third example, one pyridine ligand in the
hypothetical hexapyridine zinc complex Zn(py)6

2�

is substituted for the linear ligand acetonitrile
CH3CN to obtain Zn(py)5(CH3CN)2�. Here L � py,
X � CH3CN, FLL � �23.95 eV, FXX � �26.61 eV,
�FXL � �2.7 eV, and the sign of the difference �FXL

is negative; thus, acetonitrile is a weaker donor
ligand. The variations of the coordination bond
lengths in Zn(py)5(CH3CN)2�, as compared with
Zn(py)6

2�, are �0.22 Å and �0.1 Å for acetonitrile
and trans-pyridine, respectively, and become
shorter, contradicting the simplest variant of the
theory [46]. We also see that the two distances

TABLE IV _____________________________________________________________________________________________
Substitution effects in bond lengths and dissociation energy D, �D � D(ZnL5X) � D(ZnL6), for selected
complexes calculated by the SLG/SCF (MNDO) method.

Complex �D (kcal/mol) Donor atom

Bond length (Å)

Substituted Initial

Zn(Im)5(NH3)2� �4.1 N1(X) 2.235 2.213
N2(Y) 2.222 2.216
N3(Amm)(Z) 2.156 2.214
N4(�X) 2.231 2.213
N5(�Y) 2.226 2.216
N6(�Z) 2.156 2.214

Zn(NH3)5(Py)2� 4.4 N1(X) 2.165 2.169
N2(Y) 2.165 2.169
N3(Py)(Z) 2.214 2.170
N4(�X) 2.165 2.169
N5(�Y) 2.166 2.169
N6(�Z) 2.190 2.170

Zn(Py)5(CH3CN)2� �16.4 N1(X) 2.282 2.288
N2(Y) 2.323 2.288
N3(CH3CN)(Z) 2.079 2.285
N4(�X) 2.286 2.288
N5(�Y) 2.321 2.288
N6(�Z) 2.181 2.285
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change to a different extent. The reasons for the
mentioned disagreement may be various. First, we
mention that the difference from the results of the
theory [46] occurs when somewhat bulkier ligands
are involved and can at least partially be attributed
to some steric effects. In contrast, predictions of the
simplest version of the theory [46] can be modified
when going to its more refined variant involving
other orbitals in addition to the frontier ones. For
example, another normal mode, involving antisym-
metric displacement of the trans-ligands can be
populated. Finally, we note that the nitrile substi-
tution results in a much stronger validation of the
diagonal Fock matrix element than in other cases,
so that the perturbative treatment of Ref. [46] may
become invalid.

Conclusion

In the present work, we performed parameteriza-
tion of a recently proposed hybrid SLG/SCF
method at the MNDO level to calculate heats of
formation and equilibrium geometries of Zn(II)
complexes with ligands containing nitrogen and
and oxygen donor atoms. It is shown that the pro-
posed method is capable of reproducing with re-
markable accuracy the geometry characteristics of
the complexes. The method takes into account the
influence of the metal ion upon electronic structure
of the ligands both by polarization and by charge
transfer. The latter is responsible for chemical
bonding and thus for the metal complex formation.
The standard ab initio and DFT techniques provide
no specialized approach to the description of the
so-called coordination bonds [5], characterized by
principal unsaturability and flexibility of geometry
orientations and placement of donor atoms around
metal cation. As compared with empirical ap-
proaches taking into account the charge redistribu-
tion throughout the complex formation (e.g., SIBFA
and COSMOS force fields), the proposed one uses a
sequential quantum chemical procedure to model
the electron redistribution. The results of the calcu-
lations on substituted complexes are in fair agree-
ment with the qualitative theory of the ligand in-
fluence in complexes. The usage of inherently local
description for one-electron states of the complex
may be helpful for developing, in the future, a
consistent form of the junctions to the surrounding
treated by molecular mechanics methods that may
be relevant for modeling metal-containing en-
zymes.
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J Mol Model 2001, 7, 54.

31. OKeefe, M.; Brese, N. E. J Am Chem Soc 1991, 113, 3226.
32. Pauling, L. The Nature of the Chemical Bond; Cornell Uni-

versity Press: Ithaca, NY, 1960.
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