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ABSTRACT: Molecular structures are characterized by a large degree of additivity and
transferability of various intramolecular interactions determining the shape and energetics
of molecules. This property is constantly utilized by the different “molecular mechanics”
(MM) schemes which allow one to obtain quite reliable molecular geometries and relative
energy values for a wide range of molecular systems, which is especially remarkabke in
the light of the simplicity of the assumptions made. Numerous MM schemes presented in
the literature use different sets of parameters (force fields, etc.), which are adjusted
empirically. The known success of MM models poses two important questions: first, one
wishes to understand why do they work at all, and, second, one would like to develop
schemes, in which the parameters of MM can be determined theoretically. Such an analysis
could also give some deeper insight permitting to predict whether the given MM scheme is
expected to be successful if applied to the class of problems actually at hand. From a more
pragmatic point of view, having a bridge connecting a quantum mechanical (QM)
description of molecular structure with a classical moldel (MM) can help to improve
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hybrid QM/MM methods by providing a systematic derivation of the form of the junction
between the subsystems treated by MM and QM, respectively and by giving a priori
estimates of the junction parameters. Our previous studies based on the semiempirical
quantum chemical Hamiltonians of MINDO and MNDO types permitted us to draw the
conclusion that the success of MM can indeed be understood on the basis of quantum
mechanics. The analysis of the geminal-type wave functions constructed by making use of
oriented hybrid orbitals showed that the parameters of the wave function and the energy
contributions of the individual bonds are indeed well transferable, in good agreement with
the simple chemical picture of the systems studied. It seems to be desirable to develop a
similar analysis also at the ab initio level of the theory, because that would connect together
the chemical and physical description of molecules and explain the observed
transferability of molecular interactions more rigorously than semiempirical theories can
do it. On the other hand this treatment might be also useful for developing QM/MM
junctions in the cases when the QM part of the systems are described at the ab initio level.
We report here results of the first step of this analysis: the geminal parameters expressed in
a symmetrically orthogonalized optimized minimal basis set exhibit a degree of stability
similar to that observed in the semiempirical case. © 2007 Wiley Periodicals, Inc. Int J
Quantum Chem 107: 2539–2555, 2007
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1. Introduction

C hemistry is dominated by the idea of transfer-
ability either explicitly formulated or implic-

itly assumed. The concept of isolated chemical
bonds—which are to a great extent independent
of their surrounding—allowed chemists of the 19th
century to formulate a consistent approach which
was remarkably successful in interpreting and pre-
dicting different structural and reactivity features of
various compounds, especially of organic ones. All
these achievements were reached not only without
any relation to the quantum mechanical basics of
the molecular electronic structure, but even with-
out the awareness of the electrons themselves, not
to speak about any detailed understanding of the
laws governing their motion. Modern incarnations
of that more than a century old approach are the
various “molecular mechanics” (MM) methods pro-
viding direct parameterization schemes for molecu-
lar potential energy as function of the coordinates of
nuclei of the atoms composing the molecule [1, 2].
Although the standard paradigm in the MM area is
that there is no direct relationship between the quan-
tum theory of molecular structure and the MM force
fields, the entire MM theory is tacitly based upon the
concept of the isolated two-center chemical bonds,
which is of course only a crude representation of a
basically quantum mechanical nature of the ground
state many-electron wave function of the molecule
(see later).

Meanwhile, modern quantum chemistry gives us
very little for understanding of the fundamental
transferability properties aforementioned. At best,
they are reproduced in the calculations (numerical
experiments) perfomed at different levels of sophis-
tication, so that these important features remain
experimental facts still missing whatever theoretical
explanation. However, as stressed by Coulson, “any
explanation why must be given in terms of concepts
which are regarded as adequate or suitable. So the
explanation must not be that the electronic computer
shows that D(H − F) � D(H − H), since this is not
an explanation at all, but merely a confirmation of
experiment” [3]. Also, a theoretical understanding
of the origin of transferability observed in experi-
ments of both real and numerical types could be of a
siginificant practical use in the context of the hybrid
QM/MM methods, since it would potentially pro-
vide the form of the junction between the parts of
a complex molecular system treated on the ab initio
QM and the classical MM levels, respectively.

In the recent series of articles [4–6] an attempt has
been undertaken to reconcile the quantum mechan-
ical description with the idea of transferable bonds.
That was done in the framework of a semiempiri-
cal quantum chemical model of molecular structure,
in which one uses implicitly orthogonalized valence
AOs and the Hamitonian is parametrized against
experimental data. Technical details of these articles
will be referred to throughout the present article.
But here we just want to give some very general
notes concerning the overall structure of the theory
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which may provide an explanation for the bonds’
transferability and represent a basis for a further
development of a classical picture of the molecular
structure, compatible with its quantum mechanical
description.

First of all we notice that the transferability of
bonds must be a feature pertinent to the wave func-
tion, which is built up as an (antisymmetrized)
product of well-distinguishable two-electron com-
ponents. This can be the only basis of the semi-
observability of the chemical bonds, as defined by
Ruedenberg [7], which is tacitly assumed within the
entire MM picture and more generally—in chem-
istry itself, where applies. It is important to mention
here that for the molecular systems whose electronic
structure does not fit into the picture of two-center
two-electron bonds, the models of the MM force field
type cannot be easily developed either. It is note-
worthy that the molecular Hamiltonian is a rather
nontransferable entity: those corresponding to dif-
ferent molecules differ by singular terms of electron-
nuclear attraction in the direct physical space; in this
respect they are not close in any reasonable mathe-
matical sense. Similar consideration can be applied
to the matrix form of the electronic Hamiltonian:
those for different molecules act in spaces of different
dimensionality and their matrix elements are geom-
etry dependent. Thus there are no a priori signs of
the transferabilty of the Hamiltonian as far as the
description in the direct physical space is concerned.
(By using a refined analysis, some transferable ele-
ments of the Hamiltonian could be identified in the
framework of a special “mixed” second quantization
formalism [8].) By contrast, formal characteristics
of the transferability, which are pertinent to the
wave functions, have been established in the frame-
work of the semiempirical theory (see Refs. 4–6 and
below).

The minimal requirement to a subsystem within
a molecular system to be distinguishable or observ-
able is that it has a stable composition. In this respect
we may ask that to what extent the numbers of par-
ticles residing in different parts of molecular system
are well defined, and are, therefore, good quantum
numbers. To find this out we have to consider the dis-
persion (or mean-square deviation) of the numbers
of particles in the individual parts.

Let us introduce operators N̂M of the numbers of
electrons in some parts M of the molecular system
such that:

∑
M

N̂M = N̂, (1)

where N̂ is the operator of the number of electrons
in the entire molecular system under consideration.
For the normalized wave function � we get:

〈�|N̂M|�〉 = nM, ∀M. (2)

As we aforementioned, the physical distinguishabil-
ity or observability of a part of the system is formally
expressed as the vanishing fluctuation (dispersion)
of the number of electrons in it. The dispersion of the
number of electrons in the M-th part:

〈�|(N̂M − nM)2|�〉 (3)

must be as small as possible.
The minimum condition for the overall dispersion

min
∑

M

〈�|(N̂M − nM)2|�〉 (4)

can be trivially satisfied by the function � taken
as the antisymmetrized product of group functions
(GF):

� =
(∏

M

g+
M

)
|0〉, (5)

where each of the group functions g+
M is an eigenfunc-

tion of the corresponding electron number operator
N̂M:

N̂Mg+
M|0〉 = nMg+

M|0〉. (6)

This implies that nM is an integer number. The above
condition can be satisfied if one assumes that the
entire space L of one-electron states of the molecular
system is divided into disjunct subspaces LM:

L =
⊕

M

LM;

LM ∩ LN = {0}, M �= N
(7)

which are also assumed mutually orthogonal. Each
of the subspaces LM serves as a carrier space for the
M-th electron group. To build up the operators g+

M,
an orthogonal basis set {χm} of vectors (functions)
is introduced in each of the subspaces LM. If we
define the operator m+ as one creating an electron
in the one-electron state χm, then the operators g+

M
are constructed as expansions:

g+
M =

∑
{mi}

C{mi}
NM∏
i=1

mi∈{M}

m+
i (8)
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with the amplitudes C{mi} to be determined vari-
ationally. (Each {mi} represents a selection of nM

elements of the local basis {χm}.) Within this construct
the hitherto vaguely defined “parts of the system”
become the carrier subspaces. The number of parti-
cles operator for each group or carrier subspace can
be defined as:

N̂M =
∑

m∈{M}
m+m−, (9)

the average occupancies of the parts nM become the
integer numbers of electrons residing in each of the
carrier subspaces, and the dispersions Eq. (3) vanish
as each group fuction g+

M is an eigenfunction of the
respective operator N̂M with the eigenvalue nM.

While the overall dispersion Eq. (4) vanishes for
a wave function represented by a single GF product
Eq. (5), this is not the case for the exact molecular
wave function, which may be always represented as
a linear combination of several functions with a GF
structure, but with an arbitrary distribution of elec-
trons between the groups. From the physical point
of view this corresponds to accounting the charge
transfer between the subsystems. If the selection of
the groups (break up of the entire orbital space into
carrier subspaces and assigning integer numbers of
electrons to them) was appropriate, then the disper-
sion Eq. (4) for the exact wave function will be small.
This concept can be viewed alternatively as a sep-
aration of the Hamiltonian Ĥ into its “significant”
part Ĥ0:

Ĥ = Ĥ0 + Ŵ, (10)

which commutes with all the number of particles
operators introduced above:

[N̂M, Ĥ0] = 0, ∀M (11)

and its noncommuting part Ŵ playing the rôle of an
“interaction” or “perturbation” defined with respect
to Ĥ0. This perturbation Ŵ must be weak. Provided
the set of the operators N̂M is optimized with respect
to this criterion, the entire molecular system natu-
rally falls out into subsystems. Under this condition
the magnitude of the dispersions Eq. (4) for the exact
wave function is controlled by the same smallness
parameters as the convergence of the perturbation
series with the perturbation Ŵ. The matrix elements
of Ŵ are nonvanishing only betwen the approximate
ground state � (or other eigenvectors of Ĥ0) and

those other states � ′ which differ from � by the the
numbers of electrons in some subsystems. Then the
distinguishability means that

〈�|Ŵ|� ′〉
�ECT

	 1, (12)

where �ECT stands for the characteristic energy of a
charge transfer state.

Our following considerations are based on the
trial wave function in the GF form. This form of the
wave function assures a simplified structure of the
one- and two-electron density matrices and, as a con-
sequence, a simplified expression for the molecular
energy, which can be written as a sum of intra-
group contributions and Coulomb and exchange
interactions between the electron groups. Selecting
an appropriate form of the electronic wave function
for each of the groups allows to formalize the chemi-
cal observations on the transferability of certain parts
of molecules and to establish transferability of cer-
tain types of electronic structure variables (ESVs) as
well. The simplest form of the wave function rel-
evant to our purpose of reconstructing a classical
bonding picture in organic compounds is based on
the antisymmetrized product of two-electron func-
tions (geminals) [9, 10]. This is particularly relevant
in the case of usual saturated organic molecules, the
electronic structure of which can be described by
two-center, two-electron bonds, and lone electron
pairs — basically following Lewis. In the semiempir-
ical context each carrier space could be specified by
a pair of strictly local hybrid orbitals (HOs) centered
on the atoms connected by the bond at hand. (One
hybrid orbital is sufficient for lone pairs.) This form
of the trial wave function in combination with the
semiempirical Hamiltonians allowed us to derive a
mechanistic picture for the molecular energy [4–6]
and to show a path to the junction between QM and
MM parts in the hybrid QM/MM methods. It has
been demonstrated [6] that the matrix elements of
one- and two-electron density matrices are stable—
and thus transferable for analogous bonds—up to
certain degree in two small parameters representing
intrabond electron correlation and polarity. Remark-
ably, the off-diagonal matrix element of the one-
electron density matrix—the Coulson bond order—
is stable (transferable) within the second order in
both these small parameters. It is noteworthy that the
transferability of the density matrix elements takes
place namely in the basis of the strictly local HOs.
Although it is possible that a transferability of the
density matrix elements would occur in some other
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bases as well, this is definitely not the case for an
arbitrary basis (e.g., for the original AO basis).

The HOs used for constructing the geminals turn
out to be very sensitive to the variations of the
molecular Hamiltonian irrespective to the origin of
these variations: either the geometry changes or the
changes of the chemical composition of the molec-
ular system. The actual form and orientation of the
HOs spanning the carrier space for the respective
bond geminal takes upon itself a major part of the
variations in the Hamiltonian, whereas the density
matrix elements in the basis of HOs remain relatively
stable as noted above.

In the present article we start the long way
towards an ab initio MM theory. The semiempirical
approach to deductive MM serves us as an exam-
ple and we try to extend it taking into account the
complications arising in the ab initio domain. Our
first objective is to study the stability (transferability)
properties of the density matrix elements. The rest of
the article addresses this issue: we devise a quantum
chemical theory underlying the tentative ab initio
MM and use it to establish the transferability of the
density matrix elements on the solid theoretical basis
supported by numerical experiments.

2. Strictly Local Geminals Formalism
for the Electronic Wave Function

The general and formal construction of the classi-
cal picture of chemical bonding starts from selecting
an adequate form of the trial wave function to be
used in the derivations and numerical experiments.
Similarly to the deductive MM method based on
the semiempirical Hamiltonians, we shall employ
geminal-based wave functions.An important restric-
tion on the structure of the bonding geminals is
that each of them is constructed in a carrier space
spanned by two strictly local orthogonalized HOs
|rm〉 and |lm〉 (four spin-orbitals):

g+
m = umr+

mαr+
mβ + vml+mα l+mβ

+ wm
(
r+

mα l+mβ + l+mαr+
mβ

)
, (13)

where the amplitudes of configurations um, vm, and
wm are subject to the normalization condition:

u2
m + v2

m + 2w2
m = 1 (14)

and should be determined variationally. In the case
of a lone electron pair the corresponding carrier

space is spanned by one HO and the geminal is
trivial:

g+
m = r+

mαr+
mβ . (15)

This type of geminals based on the HOs can be con-
sidered as strictly local geminals (SLG) [11, 12]. The
overall wave function of electrons in the molecule
is then taken as the antisymmetrized product of the
geminals, in accordance with Eq. (5).

The operators r+
mσ and l+mσ create an electron with

the spin projection σ in the one-electron states cen-
tered on the “right” and on the “left” ends of the
bond, respectively. These operators are special cases
of the general operators m+

i of Eq. (8) for the case
of two-electron two-orbital groups (geminals). The
structure of these operators should reflect the strictly
local character of the geminals. These orbitals are
obtained by transformations involving only orbitals
of the same atom:

t+mσ =
∑
a∈A

htma(A)a+
σ ; t = r, l. (16)

In this formula a+
σ stand for the operators creating

electrons in the (orthogonal) basis AOs centered on
the atom A; the matrices h(A) have the SO(4) struc-
ture and transform valence s- and p-orbitals into a set
of four orthogonal HOs. The independent parame-
ters of these matrices produce another subset of the
ESVs, which describe the actual hybridization and
should also be determined variationally.

This picture is natural for semiempirical settings,
but it cannot be directly transferred to the ab ini-
tio context where a series of complications arises.
First of all, the dimensionality of the atomic sub-
space is larger than four due to explicit presence of
the core shells for the heavy atoms (second row and
higher), even if a minimal basis set is used. Another
complication comes from the fact that the standard
ab initio methods employ nonorthogonal AO basis
sets and one cannot form orthogonal HOs simply by
performing intraatomic orthogonal transformations
of them. Nevertheless, we can propose a procedure
for obtaining approprate one-electron states, which
can be naturally assigned to the geminals. We per-
form this procedure in two steps. The first step is an
orthogonalization of the initial set of AOs (includ-
ing orbitals assigned to different atoms). Obviously
there is some arbitrariness in this step. We employ
the symmetric (Löwdin) orthogonalization to obtain
the orthonormal set of orbitals, which is as close to
the initial one as only possible. (It also conserves the
assignment of the orbitals to atoms.) The second step
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is an intraatomic unitary transformation of orbitals.
It is performed for each atom separately:

t+mσ =
∑
a∈A

Htma(A)a+
σ , (17)

where the operators a+
σ correspond to the orthonor-

malized set of AOs and the transformations H(A)

is not limited to four orbitals. The whole transfor-
mation is a product of the (atomic-)block-diagonal
transformation matrix with blocks given by the
matrices H(A) and the symmetrical orthonormaliza-
tion matrix S−1/2. It is noteworthy that the order of the
two steps can be interchanged, i.e. the whole proce-
dure can be viewed as a formation of non-orthogonal
HOs by the transformations H(A) with subsequent
orthogonalization of all HOs.

The assignment of HOs obtained by the transfor-
mation Eq. (17) to the two-electron groups is not yet
specified. It is possible to distribute all the orbitals
between geminals or to use one orbital as a core and
a subset of four orbitals as valence HOs assigned
to geminals. At the same time, our ultimate goal of
deriving a classical (MM) picture makes preferable
to recover the hybridization structure Eq. (16) from
the general transformation H(A) because it allows
to construct the most important valence bond con-
figurations and to relate the structure of one-electron
states to the stereochemistry of an atom. We impose a
set of restrictions on the structure of the matrix H(A)

and consider it as a product of transformations. First
we form new shells (sets of basis AOs; an s-shell is
given by one function while a p-shell is given by three
functions with the same radial part). The optimal sets
of s- and p-functions are obtained by two indepen-
dent orthogonal transformations of the basis s- and
p-shells, respectively. Among these shells one s-shell
(AO) corresponds to the core, while the remaining
s- and p-shells can be combined to produce some
sp-shells (basis subsets containing one s-AO and
three p-AOs with correct transformation properties).
In our subsequent calculations we use only one of
these sp-shells. At the second step we apply some
hybridization SO(4) transformation mixing one s-
and three p-orbitals for each sp-shell. Therefore, we
produce the same setting for studying the transfer-
ability of the density matrix elements as we had in the
semiempirical case. The structure of the HOs and the
algorithms for determination of the hybridization-
related ESVs are important for the construction of ab
initio MM and these questions will be addressed else-
where. Here we concentrate on the density matrix
elements in the basis of these HOs.

The use of only the minimal number of basis
orbitals at this stage of development may be justi-
fied by the known fact that even the use of STO-NG
type minimal basis sets at the RHF level of theory
represents an often surprisingly good “model chem-
istry.” Furthermore, the a posteriori analyses of large
scale calculations usually also lead to as many signif-
icantly populated effective core and valence orbitals
as is the number of functions in the minimal basis
sets [13, 14].

3. Biorthogonal Treatment for the
Geminals with Overlap

3.1. GENERAL BIORTHOGONAL
QUASI-ENERGY FORMULA FOR GEMINALS

Overlap of the orbitals assigned to the differ-
ent bonds makes it difficult to calculate expectation
values—in particular the total energy—already at
the single determinant level of theory. However, the
situation there is much simpler because any single
determinant wave function can be expressed (up
to an insignificant normalization constant) by using
orthonormalized one-electron orbitals, which is not
the case for geminals.

In the single determinant case one usually calcu-
lates the energy after performing an orthogonaliza-
tion of the orbitals. However, it is easy to show that
the energy of a single determinant wave function
|�SD〉 can be given also as

E = 〈�SD|Ĥ|�SD〉
〈�SD|�SD〉 = 〈�̃SD|Ĥ|�SD〉 (18)

where |�̃SD〉 is the single determinant built up of
the orbitals {ϕ̃i} representing the biorthogonal coun-
terparts of the nonorthogonal orbitals {ϕi} contained
in the determinant |�SD〉:

ϕ̃i =
∑

j

(σ−1)jiϕj. (19)

Here σ is the overlap matrix of the occupied orbitals
having the elements σij = 〈ϕi|ϕj〉. (When writing
Eq. (18), we have taken into account that 〈�̃SD|�SD〉 =
1, owing to the biorthogonality of the two sets of
orbitals).

No such strict relationship holds for the geminal
wave functions. However, at least at the equilibrium
geometries, each geminal is expected to be not too
far from its respective Hartree–Fock approximation.
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Therefore, for qualitative considerations it may be of
meaning to consider the biorthogonal quasi-energy
of the geminal wave function |�G〉:

Ẽ = 〈�̃G|Ĥ|�G〉
〈�̃G|�G〉 . (20)

We note that the equality Ẽ = E would hold also if
|�G〉 were the exact (full CI) wave function.

The idea of using the biorthogonal quasi-energy
for qualitative considerations of geminals, describ-
ing different chemical bonds is not new; for instance
it has been proposed in the book of Surján [15].
However, there one cannot find all the necessary
quantities, and the expressions are in a form not very

suitable to be used in our case. Therefore we have
decided to present here the result explicitly.

It is easy to see, that if one introduces the
biorthogonal transformation of the basis orbitals
|lm〉, |rm〉 then the geminals, |g̃m〉 formed with the
same coefficients u, v, and w of the latter will be
“strongly biorthogonal” to the original ones (pro-
vided that the orbitals within same geminal have
been orthogonalized). As a conseqence, the equal-
ity 〈�̃G|�G〉 = 1 holds, one-electron matrix ele-
ments appear only between orbitals assigned to
the same geminal and two-electron ones involve
at most two geminals. A somewhat lengthy but
essentially straightforward derivation gave the
result:

Ẽ = 〈�̃G|Ĥ|�G〉
〈�̃G|�G〉 = 〈�̃G|Ĥ|�G〉 =

n∑
i=1

{
2
(
u2

i + w2
i

)〈r̃i|ĥ|ri〉 + 2wi(ui + vi)(〈r̃i|ĥ|li〉 + 〈l̃i|ĥ|ri〉)

+ 2
(
v2

i + w2
i

)〈l̃i|ĥ|li〉 + u2
i [r̃i r̃i|riri] + 2uiwi[r̃i r̃i|liri] + uivi[r̃i r̃i|lili] + 2uiwi[r̃i r̃i|riri] + 2w2

i [r̃i l̃i|liri]
+ 2w2

i [r̃i l̃i|rili] + 2uiwi[r̃i l̃i|lili] + uivi[l̃i l̃i|riri] + 2viwi[l̃i l̃i|liri] + v2
i [l̃i l̃i|lili]

} + 2
∑
i<j

ẼCx
ij . (21)

Here ẼCx
ij describes the Coulomb and exchange

interactions between the i-th and j-th geminals in the
biorthogonal framework; it is given by the following
expression

ẼCx
ij = (

u2
i + w2

i

)(
u2

j + w2
j

)
(2[r̃i r̃j|rirj] − [r̃i r̃j|rjri]) + wi(ui + vi)

(
u2

j + w2
j

)
(2[r̃i r̃j|lirj] − [r̃i r̃j|rjli])

+ (
u2

i + w2
i

)
wj(uj + vj)(2[r̃i r̃j|rilj] − [r̃i r̃j|ljri]) + wi(ui + vi)wj(uj + vj)(2[r̃i r̃j|lilj] − [r̃i r̃j|ljli])

+ (
u2

i + w2
i

)
wj(uj + vj)(2[r̃i l̃j|rirj] − [r̃i l̃j|rjri]) + wi(ui + vi)wj(uj + vj)(2[r̃i l̃j|lirj] − [r̃i l̃j|rjli])

+ (
u2

i + w2
i

)(
u2

j + w2
j

)
(2[r̃i l̃j|rilj] − [r̃i l̃j|ljri]) + wi(ui + vi)

(
v2

j + w2
j

)
(2[r̃i l̃j|lilj] − [r̃i l̃j|ljli])

+ wi(ui + vi)
(
u2

j + w2
j

)
(2[l̃i r̃j|rirj] − [l̃i r̃j|rjri]) + (

v2
i + w2

i

)(
u2

j + w2
j

)
(2[l̃i r̃j|lirj] − [l̃i r̃j|rjli])

+ wi(ui + vi)wj(uj + vj)(2[l̃i r̃j|rilj] − [l̃i r̃j|ljri]) + (
v2

i + w2
i

)
wj(uj + vj)(2[l̃i r̃j|lilj] − [l̃i r̃j|ljli])

+ wi(ui + vi)wj(uj + vj)(2[l̃i l̃j|rirj] − [l̃i l̃j|rjri]) + (
v2

i + w2
i

)
wj(uj + vj)(2[l̃i l̃j|lirj] − [l̃i l̃j|rjli])

+ wi
(
ui + vi

)(
u2

j + v2
j

)
(2[l̃i l̃j|rilj] − [l̃i l̃j|ljri]) + (

v2
i + w2

i

)(
v2

j + w2
j

)
(2[l̃i l̃j|lilj] − [l̃i l̃j|ljli]). (22)

One may introduce the biorthogonal Coulomb
and exchange-type operators by the definitions of
their action on an arbitrary orbital ϕ as

ˆ̃Jajbjϕ(1) =
∫ ã∗

j (2)bj(2)

r12
dv2ϕ(1)

ˆ̃Kajbjϕ(1) =
∫ ã∗

j (2)ϕ(2)

r12
dv2bj(1). (23)

Using them, one may define the effective (biorthog-
onal) potential due to the electrons in the j-th
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geminal as

ˆ̃Ueff
j = (

u2
j + w2

j

)
(2ˆ̃Jrjrj − ˆ̃Krjrj) + (

v2
j + w2

j

)
(2ˆ̃Jlj lj − ˆ̃Kljlj)

+ wj(uj + vj)(2
ˆ̃Jrjlj − ˆ̃Krjlj + 2ˆ̃Jljrj − ˆ̃Kljrj) (24)

and then the effective (biorthogonal) core for the i-th
geminal will be

ˆ̃heff
i = ĥ +

n∑
j=1
j �=i

ˆ̃Ueff
j

= −1
2
� −

∑
α

Zα

rα

+
n∑

j=1
j �=i

ˆ̃Ueff
j . (25)

Then the biorthogonal quasi-energy of the whole
system becomes

Ẽ =
n∑

i=1

{
2
(
u2

i + w2
i

)〈
r̃i

∣∣ ˆ̃heff
i

∣∣ri
〉 + 2wi(ui + vi)

(〈
r̃i

∣∣ ˆ̃heff
i

∣∣li
〉 + 〈

l̃i

∣∣ ˆ̃heff
i

∣∣ri
〉) + 2

(
v2

i + w2
i

)〈
l̃i

∣∣ ˆ̃heff
i

∣∣li
〉 + u2

i [r̃i r̃i|riri]

+ 2uiwi[r̃i r̃i|liri] + uivi[r̃i r̃i|lili] + 2uiwi[r̃i r̃i|riri] + 2w2
i [r̃i l̃i|liri] + 2w2

i [r̃i l̃i|rili] + 2uiwi[r̃i l̃i|lili]
+ uivi[l̃i l̃i|riri] + 2viwi[l̃i l̃i|liri] + v2

i [l̃i l̃i|lili]
}
. (26)

3.2. CONSIDERATIONS BASED ON
EXCLUDING EFFECTS OF BSSE-TYPE

In the present study we are interested in the fac-
tors influencing the geminal coefficients and the
resulting density matrix elements, rather than in
the actual value of the total energy. Assuming that
the orbitals ri, li belonging to the same geminal are
orthogonalized and that they are optimized by using
a sufficiently large local basis, then one may use
the conventional (not biorthogonal) integrals when
determining the geminal coefficients. (According to
our experience gained in the field of intermolecu-
lar interactions [16], the energy should preferably
be calculated without such a substitution.) That is
the case because the difference between an integral
containing the biorthogonal orbital in the “bra” and
that containing there the original one can be con-
nected with the finiteness of the basis — these effects
cause the known “basis set superposition error”
(BSSE) in the calculation of intermolecular interac-
tions. They are known to diminish as the basis set
improves.

For that reason we are going here to show
that the difference between integrals containing the
biorthogonal and original orbitals is a basis finiteness
effect. As the derivation is not particularly related
to the geminal structure of wave functions, we shall
use simplified notations µ, ν, ν̃ to denote the individ-
ual orbitals encountered. Also, the derivation will be
pertinent to some “units” A–which in our case can
be a geminal.

Let us consider the difference of “intra-unit”
(µ, ν ∈ A) integrals

〈ν̃|ĥ|µ〉 − 〈ν|ĥ|µ〉 (27)

and introduce the projector P̂A on the subspace of
the basis orbitals assigned to the given unit. If the
orbitals within each unit are orthonormalized, then

P̂A =
∑
ρ∈A

|ρ〉〈ρ| (28)

and we may write

〈ν̃|ĥ|µ〉 − 〈ν|ĥ|µ〉
= 〈ν̃|(P̂A + 1 − P̂A)ĥ|µ〉 − 〈ν|ĥ|µ〉
= 〈

ν̃
∣∣P̂Aĥ

∣∣µ〉 − 〈ν|ĥ|µ〉 + 〈ν̃|(1 − P̂A)ĥ|µ〉

=
〈
ν̃

∣∣∣∣ ∑
ρ∈A

∣∣∣∣ρ
〉
〈ρ|ĥ|µ〉 − 〈ν|ĥ|µ〉 + 〈ν̃|(1 − P̂A)ĥ|µ〉

=
∑
ρ∈A

δνρ〈ρ|ĥ|µ〉 − 〈ν|ĥ|µ〉 + 〈ν̃|(1 − P̂A)ĥ|µ〉

= 〈ν̃|(1 − P̂A)ĥ|µ〉 (29)

which would vanish if the function ĥ|µ〉 could
exactly be expanded with the aim of the basis orbitals
assigned to group A – thus it is connected with the
BSSE effects. Analogous considerations apply for the
two-electron integrals, too.
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4. Stability of the Density Matrix
Elements

In the present section we prove that under nonre-
strictive conditions the matrix elements of the one-
and two-electron density matrices satisfy the sta-
bility (transferability) conditions also for the ab ini-
tio effective bond Hamiltonians, which are defined
by the chemical composition and geometry of the
molecular system. We show that for a broad class of
molecules the latter two characteristics do not affect
to a significant degree the values of the density matri-
ces in the basis of the symmetrically orthogonalized
HOs.

4.1. EFFECTIVE BOND HAMILTONIANS

Within the original SLG approach [11,12] the gem-
inals are characterized by the amplitudes um, vm,
and wm [see Eq. (13)]. We introduce a new notation
zm = √

2wm simplifying the normalization condition
for the amplitudes to: u2

m +v2
m + z2

m = 1. The effective
Hamiltonians for the geminals representing chem-
ical bonds are expressed in terms of the molecular
integrals in the HO basis. Each geminal is expanded
over three singlet two-electron basis configurations
and the optimal values of their amplitudes are given
by the solutions of the eigenvector problems (see also
Ref. 17):


 Rm Dm Fm

Dm Cm Gm

Fm Gm Lm





 um

zm

vm


 = εm


 um

zm

vm


 , (30)

corresponding to their lowest eigenvalues. The
actual expressions for the matrix elements of the
effective bond Hamiltonians defined in the basis of
orthogonal (and real) HOs are (subscript m is omitted
for brevity):

R = 2hrr + [rr|rr],
L = 2hll + [ll|ll],
C = (hrr + hll) + [rl|rl] + [ll|rr],
F = [ll|rr],
D = √

2(hlr + [rl|rr]),
G = √

2(hlr + [rl|ll]), (31)

where htt′ stands for the matrix element of the
one-electron part of the effective Hamiltonian for

the bond under consideration and [tt′|t′′t′′′] are the
two-electron Coulomb repulsion integrals written
according to the [12|12] convention. The difference
with the semiempirical case is that F �= 0 and D �= G,
in general.

It is constructive to perform the transformation
to the basis of normalized symmetric and anti-
symmetric combinations of the ionic configurations

1√
2
(r+

mαr+
mβ ± l+mα l+mβ). Then the effective Hamiltonian

can be written as:

Ĥ = 1
2


R + 2F + L √

2 (D + G) R − L√
2 (D + G) 2C √

2 (D − G)

R − L √
2 (D − G) R − 2F + L


 ,

(32)

where the first state in the list is the symmetric com-
bination of the ionic configurations, the second state
is the covalent configuration, and the last one is the
antisymmetric combination of the ionic configura-
tions. This form of the effective Hamiltonian allows
to extract the most important composite parameters
determining the structure of the bond. A key param-
eter is the difference of the energies of the symmetric
ionic and covalent states:

�γ = 1
2

(R + L) + F − C

= 1
2

([rr|rr] + [ll|ll]) − [rl|rl] > 0. (33)

This parameter equals to the difference between the
average of the intrahybrid Coulomb repulsions and
their interhybrid counterpart. In the simple symmet-
ric case it would correspond to the difference of the
one-and two-center Coulomb integrals γ11 and γ12.
Another important parameter is β:

β = − 1

2
√

2
(D + G) = −hlr − 1

2
([rl|rr] + [rl|ll]) > 0,

describing electron hopping between the ends of the
bond. The other two characteristics represent the
bond’s asymmetry:

R − L = 2(hrr − hll) + [rr|rr] − [ll|ll],
√

2 (D − G) = 2([rl|rr] − [rl|ll]). (34)

The sign of these matrix elements in the case of
polar bonds depends on the arbitrary assignment of
the “right” and “left” labels to atoms. If the “right”
atom is more electronegative than the “left” one then
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R − L < 0 and, typically, D − G > 0. We use this
convention in the following.

It is convenient to use some dimensionless param-
eters instead of the matrix elements. We use �γ as a
measure of all the interactions and introduce a set of
dimensionless parameters:

ζ = 4β

�γ
,

λ = L − R
�γ

,

χ =
√

2 (D − G)

�γ
,

ω = 4F
�γ

. (35)

All the parameters introduced are non-negative and
the last two parameters do not appear in the semiem-
pirical case. They allow to rewrite the effective
Hamiltonian Eq. (32) in a more convenient form:

Ĥ = C Î + �γ


 1 −ζ/2 −λ/2

−ζ/2 0 χ/2
−λ/2 χ/2 1 − ω/2


 . (36)

It is remarkable that the matrix in the parentheses
determines the structure of the geminal irrespec-
tive to the average value of energy. In the important
case of symmetric bonds (or symmetrized effective
Hamiltonians) all the variety of possible solutions
(ground state wave functions) is parameterized by a
single parameter ζ depending on the given chemical
composition of the bond, the shape and orienta-
tion of the HOs and the bond length. Already this
observation brings one to the conclusion that some
degree of the transferability of geminal amplitudes
is can be expected, because the multidimensional
manifold of the matrix elements of the molecu-
lar electronic Hamiltonians boils down to a single
parameter ζ , which by only this reason can be the
same for different molecules. Below we, however,
shall show even more: namely, that the significant
components of the electronic structure description
in the SLG approximation—the elements of the one-
and two-electron density matrices in the HOs basis
are described by the formulae which further reduce
the possible variance of the the quantities of inter-
est. This result may look trivial because the structure
of the symmetric geminal actually depends on only
one parameter but the point is that the parameter
ζ has a simple and explicit expression through the
parameters of the problem.

4.2. GROUND STATE OF THE EFFECTIVE
SYMMETRIZED BOND HAMILTONIAN AND THE
STABILITY OF THE DENSITY

The actual solution of the eigenvector problem
for the effective symmetrized Hamiltonian (with
the antisymmetric ionic state excluded) reduces to
diagonalizing 2 × 2 matrix

(
1 −ζ/2

−ζ/2 0

)

depending on the parameter ζ [see. Eq. (36)]. We
denote the amplitudes of the symmetric ionic and
covalent configurations in the ground state as sin ϕ

and cos ϕ, respectively. Diagonalizing the Hamil-
tonian Eq. (36) yields (in the symmetric case) the
following solution for the ground state:

tan 2ϕ = ζ (37)

or in a detailed form,

u = v = sin ϕ√
2

= 1
2

√
1 − 1

�(ζ )
,

w = cos ϕ√
2

= 1
2

√
1 + 1

�(ζ )
, (38)

where the notation

�(ζ ) =
√

1 + ζ 2 (39)

is introduced for the hereinafter ubiquitous square
root.

The amplitudes of configurations enter the
expressions for any observables (including the
energy) not by themselves, but only in some com-
binations: namely, the elements of the one- and
two-electron density matrices written in the basis of
the HOs spanning the carrier space for the bond gem-
inal under consideration. Those for the m-th bond
(geminal) are by definition:

Pt′t
m =

∑
σ

〈
0
∣∣gmt+mσ t′mσ g+

m

∣∣0〉
,

�t′′′t′′tt′
m =

∑
σ

〈
0
∣∣gmt+mσ t′+m−σ t′′m−σ t′′′mσ g+

m

∣∣0〉
. (40)

All the necessary matrix elements can be readily
determined as simple functions of geminal ampli-
tudes um, vm, and wm taking into account the actual
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definition of the geminals Eq. (13). This results in the
following:

Prr
m = 2

(
u2

m + w2
m

)
, Pll

m = 2
(
v2

m + w2
m

)
,

Prl
m = Plr

m = 2(um + vm)wm, �rrrr
m = 2u2

m,

�llll
m = 2v2

m, �rrll
m = �lrrl

m = 2w2
m, �lrlr

m = �rlrl
m = 2umvm,

�rrlr
m = �rlrr

m = 2umwm, �rlll
m = �lrll

m = 2wmvm (41)

where we took into account that some of the integrals
appear twice in the expression for the energy for
different spin projection indices on which the den-
sity matrix elements are themselves independent.
Only the above quantities each of which is not more
complicated than involving one square root irra-
tionality (for the symmetric or symmetrized bond)
enter the expression for the energy in terms of the
Hamiltonian matrix elements in the HOs basis. In
the following we shall consider only three density
matrix elements Prl

m = 2wm(um + vm), Prr
m − Pll

m =
2(u2

m − v2
m), �rrll

m = 2w2
m, which naturally reproduce

three important characteristics: Coulson-type bond
order (off-diagonal element of the first order density
matrix), bond polarity and bond covalency.

The solution of the symmetric problem results
in the following values of the density matrix
elements:

Prl = ζ

�(ζ )
, Prr − Pll = 0, �rrll = 1

2

(
1 + 1

�(ζ )

)
.

(42)

As we aforementioned, the very possibility to char-
acterize any symmetrical bond by a single parameter
explains a lot of the observed transferability: the
entire diversity of semiempirical parameters and
ab initio basis sets boils down to a single num-
ber (Anderson’s parameter ζ ). The definition of ζ

[Eq. (35)] shows that ζ → 0 in the limit of infi-
nite separation, corresponding to the homolitic bond
cleavage. However, the analysis performed in a
semiempirical setting Ref. 6 indicated that the inter-
atomic separations characteristic for the real bonds
correspond to values ζ � 1. It means that the den-
sity matrix elements have the asymptotic behavior
described by:

Prl  1 − 1
2ζ 2

, �rrll  1
2

(
1 + 1

ζ

)
, (43)

where ζ−1 serves as a small parameter. The most
important feature of the earlier expression is that

the variations of the off-diagonal matrix element of
the one-electron density matrix (Coulson-type bond
order) with respect to the limiting value of unity are
of the second order with respect to the small param-
eter ζ−1. This explains the results of the numerical
experiments of Refs. 11, 12 performed on organic
compounds of different classes (alkanes, alcohols,
amines, etc.) at the semiempirical level, where the
Coulson bond orders Prl

m all acquired values between
0.92 and 1.0. (Of course, the asymmetry of bonds had
also been properly taken into account.)

The same behavior is observed in the ab initio case,
too. We are going to support the present theoretical
conclusions by the numerical results performed in
the framework of the fully variational SLG model
described in the previous section employing the
6-31G basis set. We repeated some calculations in
larger basis sets 6-311G and 6-311++G and those cal-
culations demonstrated that although the numerical
values were affected, all the qualitative conclusions
remain valid. Table I presents the results of our cal-
culations for a set of simple test molecules with char-
acteristic chemical bonds in different environment.
First, the table presents the numerical values of the
parameters determining the structure of the Hamil-
tonian Eq. (36). We can see that for all molecules at
their equilibrium geometry structures the values of
ζ are considerably larger than unity and that the sec-
ond important is the asymmetry parameter λ (see
later). The Table also presents the estimates of the
density matrix elements Eq. (42), which are com-
pared with their actual values obtained in the ab initio
SLG computations. As expected, the two schemes
give exactly the same values for nonpolar chemical
bonds. The agreement is reasonable even for highly
polar bonds.At the same time the difference between
the two schemes quickly increases when the polar-
ity of the bond becomes larger. It means that further
corrections taking into account the bond asymmetry
are necessary. But before we perform a more refined
analysis of the density matrix elements, we consider
another model based on the symmetric structure of
the geminal.

4.3. ESTIMATES OF THE DENSITY MATRIX
ELEMENTS FROM THE HEITLER–LONDON
SOLUTION

The nonorthogonality of the one-electron basis
functions represents one of the most important
differences between the ab initio and semiempiri-
cal settings compared in the present paper. In the
semiempirical setting as a rule — though nowadays
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TABLE I
Dimensionless parameters of the bond effective Hamiltonians Eq. (36) and the estimates of the density matrix
elements Eq. (42) as derived from the geminal-based calculations with 6-31G basis set and spatial structures
optimized by HF/6-311++G** method.

Molecule Bond ζ λ χ ω Prl (SLG) Prl (ζ ) �rrll (SLG) �rrll (ζ )

H2 H H 4.3609 0.0000 0.0000 0.2841 0.9747 0.9747 0.6117 0.6117
CH4 C H 6.4648 1.0072 0.0333 0.3691 0.9822 0.9882 0.5669 0.5764
NH3 N H 6.7235 1.9218 0.1159 0.3148 0.9701 0.9891 0.5432 0.5736
H2O O H 6.5442 2.6164 0.1572 0.2712 0.9523 0.9885 0.5187 0.5755
HF F H 6.1613 3.2140 0.2144 0.2351 0.9293 0.9871 0.4896 0.5801
LiH H Li 4.4647 1.5786 0.6056 0.3559 0.9727 0.9758 0.5854 0.6093
CH3F C H 6.6071 1.1919 0.0854 0.3549 0.9814 0.9887 0.5626 0.5748

F C 6.2957 3.4383 0.3229 0.2547 0.9265 0.9876 0.4814 0.5784
CH3OH O C 7.5618 2.6840 0.3101 0.3662 0.9634 0.9914 0.5209 0.5656

O H 6.3887 2.5647 0.1463 0.2613 0.9519 0.9880 0.5203 0.5773
C H 6.4450 1.1948 0.0611 0.3482 0.9802 0.9882 0.5635 0.5767
C H 6.5107 1.0941 0.0797 0.3507 0.9822 0.9884 0.5654 0.5759

C2H6 C C 9.1266 0.0000 0.0000 0.5886 0.9941 0.9941 0.5545 0.5545
C H 6.4181 1.0056 0.0382 0.3492 0.9822 0.9881 0.5674 0.5770

F2 F F 2.9903 0.0000 0.0000 0.1139 0.9484 0.9484 0.6586 0.6586
H2O2 O O 4.7984 0.0000 0.0000 0.2297 0.9790 0.9790 0.6020 0.6020

O H 6.4239 2.7791 0.1510 0.2650 0.9457 0.9881 0.5111 0.5111
N2H4 N N 7.9519 0.0000 0.0000 0.4477 0.9922 0.9922 0.5624 0.5624

N H 6.6531 2.0949 0.1213 0.2995 0.9659 0.9889 0.5378 0.5743
N H 6.7421 1.9392 0.1375 0.3011 0.9705 0.9892 0.5431 0.5734

it is not mandatory — the AOs centered on different
atoms are assumed orthogonal with all effects of
nonorthogonality reloaded to the parameters of the
method. On the contrary, in the ab initio setting
the overlap of the different one-electron functions
is treated explicitly. We have considered above the
model based on the single parameter ζm, reflect-
ing the electron correlation within a symmetrized
geminal built up of Löwdin-orthogonalized orbitals.
It led to establishing the transferability properties
and the numerical results similar to those obtained
in the semiempircal case [6]. However, in the ab
initio setting the overlap integral S of the nonortho-
gonalized HOs ascribed to bond geminal can be
considered as an alternative parameter, the effect of
which on the result may be important. These quan-
tities were not explicitly used in the above estimates
since those were performed in the basis of orthogo-
nal two-electron configurations constructed from the
orthogonalized HOs. By virtue of this, the overlap
integral affected the matrix elements of the effective
bond Hamiltonian and the parameter ζ only indi-
rectly. Nevertheless, we can determine the overlap
between the HOs with the knowledge of the trans-
formation matrices H(A) Eq. (17) and use it explicitly
for constructing geminal structure models.

It is known that the Heitler–London (HL) wave
function gives a good estimate for the bond-length
and for the energy of the H2 molecule. It has the
form of the covalent (homopolar) contribution to
the bond geminal, but it is built up from the orig-
inal, i.e. nonorthogonal HOs. Transforming the HL
function to the basis of orthogonal HOs results
in the appearance of the ionic terms relative to
the orthogonal basis. Let us assume that the states
|rm〉 and |lm〉 employed above are the symmetrically
orthonormalized original states |r0

m〉 and |l0m〉 so that:

(
r
l

)
= S−1/2

(
r0

l0

)
, (44)

where the 2×2 overlap matrix S contains 1 as diago-
nal elements and the overlap S as off-diagonal ones.
The original nonorthonormal states are restored
form the orthonormal ones by applying matrix S1/2.
The normalized HL state:

1√
2(1 + S2)

∣∣r0+
mα l0+

mβ + l0+
mαr0+

mβ

〉
(45)

can be readily transformed to the form Eq. (13) tak-
ing into account that this transformation is a direct
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TABLE II
Intrabond overlap and the Heitler-London estimates of the density matrix elements as derived from the
geminal-based calculations with 6-31G basis set and spatial structures optimized by HF/6-311++G** method.

Molecule Bond S ζ (HL) ζ Prl (SLG) Prl (HL) �rrll (SLG) �rrll (HL)

H2 H H 0.7035 2.7861 4.3609 0.9747 0.9412 0.6118 0.6689
CH4 C H 0.7202 2.9931 6.4648 0.9822 0.9485 0.5669 0.6584
NH3 N H 0.6922 2.6575 6.7235 0.9701 0.9359 0.5432 0.6761
H2O O H 0.6465 2.2213 6.5442 0.9523 0.9119 0.5187 0.7052
HF F H 0.5934 1.8317 6.1613 0.9293 0.8777 0.4896 0.7396
LiH H Li 0.6691 2.4227 4.4647 0.9727 0.9244 0.5854 0.6908
CH3F C H 0.7154 2.9312 6.6071 0.9815 0.9464 0.5626 0.6614

F C 0.5533 1.5951 6.2957 0.9265 0.8473 0.4814 0.7656
CH3OH O C 0.6142 1.9723 7.5618 0.9634 0.8919 0.5209 0.7261

O H 0.6415 2.1803 6.3887 0.9519 0.9090 0.5203 0.7084
C H 0.7128 2.8975 6.4450 0.9802 0.9453 0.5635 0.6631
C H 0.7118 2.8857 6.5107 0.9822 0.9449 0.5654 0.6637

C2H6 C C 0.6975 2.7169 9.1266 0.9941 0.9385 0.5545 0.6727
C H 0.7128 2.8982 6.4181 0.9822 0.9453 0.5674 0.6631

F2 F F 0.3728 0.8661 2.9903 0.9484 0.6547 0.6586 0.8780
H2O2 O O 0.4795 1.2454 4.7984 0.9790 0.7797 0.6020 0.8130

O H 0.6401 2.1690 6.4239 0.9457 0.9081 0.5111 0.7093
N2H4 N N 0.6277 2.0719 7.9519 0.9922 0.9006 0.5624 0.7173

N H 0.6897 2.6304 6.6531 0.9659 0.9347 0.5378 0.6777
N H 0.6877 2.6092 6.7421 0.9705 0.9338 0.5431 0.6789

product of two S1/2 transformations for the orbitals.
It means that the amplitudes are determned by the
elements of the matrix S:

∣∣r0+
mα l0+

mβ + l0+
mαr0+

mβ

〉 = Sr+
mαr+

mβ + r+
mα l+mβ + l+mαr+

mβ + Sl+mα l+mβ ,
(46)

where both sides have the norm-square 2(1 + S2).
The symmetric form of the geminal representa-

tion allows to extract the effective value ζS of the
Anderson’s parameter ζ parameter as a function of
the intrabond overlap, which is equal to:

ζS = 2S
1 − S2

. (47)

This parameter determines all the geminal ampli-
tudes and the density matrices according to the for-
mulae given above. To test this model we performed
a series of calculations similar to those described
in the previous subsection. The numerical results
are presented in Table II. This Table demonstrates
that the values of ζ determined on the basis of
the overlap are significantly smaller than the val-
ues arising from the effective bond Hamiltonian,
although they often have similar trend when going

from one bond to another. At the same time, the
numerical results within the HL model are relatively
poor and this model can be used for the construc-
tion of the mechanistic picture for the potential
energy surfaces only if some (uniform) scaling of
the HL based estimates of density matrix elements is
performed.

4.4. BOND ASYMMETRY

So far our considerations were limited to the prop-
erties of either symmetric or symmetrized effective
bond Hamiltonians. At the same time, the difference
between the estimates obtained in this manner and
the actual values of the density matrices can be sig-
nificant (although not exceedeing 5% for the Coulson
bond orders and 20% for the two-electron density
matrix elements) in the case of polar bonds. Quali-
tatively the symmetrized model obviously does not
reproduce at all the difference between the diago-
nal one-electron density matrix elements Prr − Pll. In
the semiempirical context [6] the bond asymmetry
had been taken into account perturbatively. It was
natural, since a single unaccounted parameterλmea-
sured the interaction between the symmetric and
antisymmetric states and the entire effect of the bond
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antisymmetry could be loaded upon it. Actually,
instead of the parameter λ another dimensionless
parameter µ had been introduced [6]:

µ = λ

�(ζ )
. (48)

This parameter is small and it naturally arises from
the formula for the first-order correction to the bond
polarity:

Prr − Pll = 2µ
�(ζ ) − 1
�(ζ ) + 1

, (49)

where the factor 2 is due to the spin summation in Eq.
(40) and the rest of the multiplier at µ is smaller than
1 and tends to 1 for large ζ . It was possible to single
out two types of contributions to the parameter µ.
It can be broken down into a sum of hybridization
dependent component µ0 corresponding to the bond
itself and the rest µ1 describing the environment of
the bond:

µ = µ0 + µ1, (50)

where the first part prevails by orders of magnitude.
In the ab initio context the situation is somewhat

more complex. First of all, the interaction of the sym-
metric ground state with the excited antisymmetric
one leading to the asymmetry of the bond does not
reduce to the difference of the diagonal matrix ele-
ments of the original effective Hamiltonian (reflected
by λ), but contains also a contribution coming from
the asymmetry of the off-diagonal Coulomb inter-
action matrix elements (expressed by χ ). Next, the
energy denominators entering the perturbation the-
ory expansions are modified through the exchange
matrix element. Nevertheless, it is possible to gener-
alize the principal stability (transferability) results
obtained previously in the semiempirical context
also to the ab initio setting. If we number the ground,
symmetric excited and antisymmetric ionic states of
the symmetrized bond hamiltonian as states 0, 1,
and 2, respectively, then the energies and the matrix
elements of the perturbation can be written (omit-
ting the constant C in the Hamiltonian Eq. (36) and
expressing everything in units of �γ ):

ε0 = 1 − �(ζ )

2
, ε1 = 1 + �(ζ )

2
, ε2 = 1 − ω

2
,

V02 = χ cos ϕ − λ sin ϕ

2
, V12 = −λ cos ϕ + χ sin ϕ

2
.

(51)

Using these notations it is easy to write the perturba-
tion theory corrections to the wave function and the
density matrix elements. The first-order correction
to the bond polarity becomes:

Prr − Pll = 2(µ − µ′)
�(ζ ) − 1

�(ζ ) + 1 − ω
, (52)

where the contribution µ′ comes from χ and is
defined as:

µ′ = χζ

�(ζ )(�(ζ ) − 1)
. (53)

The actual values of the parameters µ and µ′ are
given in Table III. The parameter µ′ is usually much
smaller than µ (the only exception is the molecule
LiH) where they are of the same order.

The analysis in the semiempirical case [6] demon-
strated that the off-diagonal density matrix elements
Prl and �rrll deviate from their “ideal” values 1 and
1
2 , respectively, in the second order with respect to
the bond asymmetry perturbation. A similar result
can be obtained in the ab initio casei, too. How-
ever, it is not possible to consider (µ − µ′) as a
single parameter of the bond asymmetry because λ

and χ enter the matrix elements V02 and V12 in dif-
ferent combinations. Nevertheless, the corrections
remain quadratic functions with respect to them (or,
equivalently, with respect to µ and µ′), although the
expressions become somewhat cumbersome. This
result is important because it shows the degree of the
transferability for different density matrix elements.
Moreover, taking into account that the corrections
due to χ and ω are typically small (and of opposite
signs), the equations derived in the semiempirical
domain can be good approximations to the prob-
lem. We performed the calculations of the density
matrix elements employing the second-order correc-
tions with respect to µ and µ′ (In fact, it actually
represented the first-order correction as far as bond
polarity is concerned.) Our calculations (Table III)
show that this approach produces surprizingly accu-
rate results even for strongly polar bonds, where the
asymmetrical perturbation is not small.

4.5. NONPERTURBATIONAL ESTIMATE OF
STABILITY (TRANSFERABILITY)

The previous analysis of stability (transferability)
with respect to the bond polarity is based on the per-
turbation estimates. At the same time it is possible
to propose an alternative approach to the problem
of establishing transferability for the density matrix
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TABLE III
The bond asymmetry parameters µ and the estimates of the density matrix elements based on them as derived
from the geminal-based calculations with 6-31G basis set and spatial structures optimized by HF/6-311++G**
method.

Molecule Bond µ µ′ (Prr -Pll )(SLG) (Prr -Pll )(µ) Prl (SLG) Prl (µ) �rrll (SLG) �rrll (µ)

H2 H H 0.0000 0.0000 0.0000 0.0000 0.9747 0.9747 0.6118 0.6118
CH4 C H 0.1540 0.0059 0.2281 0.2287 0.9822 0.9822 0.5669 0.5667
NH3 N H 0.2827 0.0198 0.4051 0.4075 0.9701 0.9702 0.5432 0.5422
H2O O H 0.3952 0.0277 0.5559 0.5622 0.9523 0.9528 0.5187 0.5151
HF F H 0.5149 0.0404 0.6998 0.7100 0.9293 0.9312 0.4896 0.4805
LiH H Li 0.3450 0.1653 0.2605 0.2463 0.9727 0.9739 0.5854 0.5865
CH3F C H 0.1784 0.0149 0.2532 0.2536 0.9815 0.9815 0.5626 0.5625

F C 0.5394 0.0593 0.7206 0.7247 0.9265 0.9301 0.4814 0.4723
CH3OH O C 0.3519 0.0464 0.4896 0.4902 0.9634 0.9642 0.5209 0.5191

O H 0.3966 0.0265 0.5554 0.5617 0.9519 0.9524 0.5203 0.5167
C H 0.1832 0.0109 0.2645 0.2652 0.9802 0.9802 0.5635 0.5633
C H 0.1661 0.0141 0.2344 0.2347 0.9822 0.9822 0.5654 0.5653

C2H6 C C 0.0000 0.0000 0.0000 0.0000 0.9941 0.9941 0.5545 0.5545
C H 0.1548 0.0069 0.2269 0.2275 0.9822 0.9822 0.5674 0.5673

F2 F F 0.0000 0.0000 0.0000 0.0000 0.9484 0.9484 0.6586 0.6586
H2O2 O O 0.0000 0.0000 0.0000 0.0000 0.9790 0.9790 0.6020 0.6020

O H 0.4275 0.0271 0.5999 0.6087 0.9457 0.9462 0.5111 0.5061
N2H4 N N 0.0000 0.0000 0.0000 0.0000 0.9922 0.9922 0.5624 0.5624

N H 0.3114 0.0209 0.4446 0.4479 0.9659 0.9661 0.5378 0.5364
N H 0.2845 0.0234 0.4024 0.4042 0.9705 0.9707 0.5431 0.5421

elements. Let us consider the following parametric
form for the geminal amplitudes:

u = cos φ sin ρ, v = cos φ cos ρ, z = sin φ. (54)

Our previous computations [18] show that the values
of φ and ρ should be close to π/4 for weakly polar
and slightly correlated chemical bonds. Therefore,
we use a natural transformation:

φ = π

4
+ θ ,

ρ = π

4
+ η, (55)

which leads to a new definition of the geminal
amplitudes:

u = 1
2

(cos θ − sin θ)(cos η + sin η),

v = 1
2

(cos θ − sin θ)(cos η − sin η),

w = 1
2

(cos θ + sin θ), (56)

where the parameters θ and η are expected to be
small. These parameters allow to look on the trans-
ferability at a different angle. Namely, the density
matrix elements can be written as:

Prl = cos 2θ cos η  1 − 2θ 2 − 1
2
η2,

Prr − Pll = (1 − sin 2θ) sin 2η  2η − 4θη

= 2η(1 − 4θ),

�rrll = 1
2
(1 + sin 2θ)  1

2
+ θ . (57)

These equations show the orders of the transferabil-
ity of the density matrix elements with respect to the
presumably small parameters θ and η. These rela-
tions remind the previously established ones using
the parameters ζ−1 and µ (for example, the bond
order is transferable up to second order with respect
to both parameters).

The transferability properties of the density
matrix elements are demonstrated by the above
expressions provided the actual values of the param-
eters θ and η are indeed small. Thus, it is necessary to
have some reasonable estimates of these characteris-
tics through the parameters of the problem (effective
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TABLE IV
Bond electronic structure parameters θ and η and the corresponding estimates of the density matrix elements as
derived from the geminal-based calculations with 6-31G basis set and spatial structures optimized by
HF/6-311++G** method.

Molecule Bond θ η (Prr -Pll )(SLG) (Prr -Pll )(θη) Prl (SLG) Prl (θη) �rrll (SLG) �rrll (θη)

H2 H H 0.1147 0.0000 0.0000 0.0000 0.9747 0.9738 0.6118 0.6137
CH4 C H 0.0666 0.1378 0.2281 0.2359 0.9822 0.9817 0.5669 0.5664
NH3 N H 0.0373 0.2594 0.4051 0.4589 0.9701 0.9639 0.5432 0.5373
H2O O H −0.0024 0.3940 0.5559 0.7122 0.9523 0.9234 0.5187 0.4976
HF F H −0.0709 0.5831 0.6998 1.0492 0.9293 0.8264 0.4896 0.4293
LiH H Li 0.0811 0.1745 0.2605 0.2867 0.9727 0.9719 0.5854 0.5808
CH3F C H 0.0618 0.1534 0.2532 0.2647 0.9815 0.9807 0.5626 0.5617

F C −0.0891 0.6171 0.7206 1.1112 0.9265 0.8026 0.4814 0.4114
CH3OH O C 0.0087 0.3234 0.4896 0.5921 0.9634 0.9480 0.5209 0.5087

O H −0.0012 0.3956 0.5554 0.7129 0.9519 0.9227 0.5203 0.4989
C H 0.0626 0.1614 0.2645 0.2776 0.9802 0.9793 0.5635 0.5625
C H 0.0649 0.1416 0.2344 0.2433 0.9822 0.9817 0.5654 0.5647

C2H6 C C 0.0548 0.0000 0.0000 0.0000 0.9941 0.9940 0.5545 0.5547
C H 0.0672 0.1371 0.2269 0.2346 0.9822 0.9817 0.5674 0.5670

F2 F F 0.1672 0.0000 0.0000 0.0000 0.9484 0.9446 0.6586 0.6641
H2O2 O O 0.1042 0.0000 0.0000 0.0000 0.9790 0.9784 0.6020 0.6034

O H −0.0180 0.4429 0.5999 0.8023 0.9457 0.9029 0.5111 0.4820
N2H4 N N 0.0629 0.0000 0.0000 0.0000 0.9922 0.9921 0.5624 0.5627

N H 0.0293 0.2913 0.4446 0.5180 0.9659 0.9562 0.5378 0.5293
N H 0.0371 0.2574 0.4024 0.4557 0.9705 0.9644 0.5431 0.5371

Hamiltonian). To this end we write the energy as
an approximate function of θ and η omitting all the
contributions of the order higher than second with
respect to these parameters. This energy function
can be explicitly minimized with respect to its vari-
ables. As a result of a somewhat lengthy derivation,
we obtain the following expressions of the sought
parameters:

θ = ζ − λ2 + λχ − ω

2(ζ 2 − ωζ − λ2)
,

η = ζλ − ζχ − λ

ζ 2 − ωζ − λ2
. (58)

We performed the actual calculations of the den-
sity matrix elements based on these estimates. The
results are presented in Table IV. The estimates are
good in the case of bonds with small polarity (like
C H) but the quality of the estimates deteriorates
in the case of polar bonds. It means that the esti-
mates made by making use the perturbation theory
are better for the practical calculations. Of course, the
somewhat worse results obtained in this case charac-
terize rather the quality of the estimates Eq. (58) than
the transferability properties of the density matrix
elements.

5. Discussion

In the present article we attempted to extend the
transferability of density matrix elements on organic
compounds of different classes (alkanes, alcohols,
amines etc.) established in Refs. 11,12 in the semiem-
pirical context to the ab initio Hamiltonian. This can
be considered as a prerequisite for developing a
mechanistric model of molecular potential energy
surface which in its turn is consistent with ab ini-
tio model of molecular electronic structure. It turns
out to be possible provided that the wave function
of the molecular system is presented as an antisym-
metrized product of strictly local geminals. Under
this condition we have demonstrated a remarkable
stability of all the geminal-related ESVs. The values
of the polarity Prr

m −Pll
m do not exceed 0.07 by absolute

value for the compounds containing carbon, nitro-
gen, and hydrogen atoms. Also the ionicity u2

m + v2
m

had a stable value about 0.4 for a rich variety of
bonds. These features, although were not completely
unexpected since the transferability of the parame-
ters of the single bonds in organic compounds is well
known experimentally, required a theoretical expla-
nation. In the semiempirical case this explanation
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had been given by the observation that the values of
the density matrix elements have been rather close
to their reference values:

�0 = 1
2

, P0 = 1 (59)

which depend neither on molecular geometry nor
on the nature nor on the hybridization of the atoms
bonded with each other. We have seen in the present
study that the same applies to the estimates of
the similar quantities in the ab initio context. The
small corrections to the reference values of the den-
sity matrix elements can be expressed in terms of
the dimensionless parameters of the effective bond
Hamiltonians characterizing the amount of devia-
tion of correlation and of asymmetry of the con-
sidered bond from their transferable values. These
deviations are of the first and second order in the
bond specific parameters which are numerically
shown to be small. Of particular importance is the
transferability of the Coulson bond order – the off-
diagonal matrix element of the one-electron density
in the basis of HOs. Its deviations from the trans-
ferable value P0 = 1 are of the second order in the
small bond specific parameter ζ−1. In the semiem-
pirical context the above observations allowed to
develop a series of approximate expressions for the
molecular energy functional written for the SLG trial
wave function. The approximate formulae for the
density matrix elements suggest several options: one
may neglect all the bond specific corrections and by
this to arrive to the picture where all the density
matrix elements in the basis of orthogonal HOs are
fixed at their transferable values. This is termed as
the FA (fixed amplitudes, where the geminal ampli-
tudes u, v, and w are meant). In this case the energy
becomes the function only of molecular geometry
and of the ESVs of the molecular system which
describe the shape and the orientation of the HOs
spanning carrier subspaces for the different geminals
(bonds).Alternatives to the the FApicture are numer-
ous. All of them can be uniformly termed as TA
(tuned amplitudes) approximations. Only the sim-
plest ones were explored in Refs. 4–6, 19. They can
be characterized as those neglecting any nontransfer-
able corrections of the order higher than one in any
of the small parameters. It is reasonable to assume
that similar moves can be applied in the ab initio
context thus paving the route of a sequential tran-
sition from a strict quantum chemical description of

molecular electronic structure at the ab initio level
to its classical description in terms of bonding and
nonbonding force fields.

6. Conclusion

In the present article we explored the transferabil-
ity features of the approximate SLG wave function in
the ab initio context and showed that the important
elements of molecular electronic structure: elements
of the one- and two-electron density matrices are
transferable from one molecule to another to the
degree controlled by small composition and envi-
ronment specific parameters. If the corrections men-
tioned are taken into account, the corresponding
matrix elements can be calculated as transferable
functions of the molecular integrals pertinent to each
of the bonds.
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