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ABSTRACT: We readdress the well-known nephelauxetic effect in coordination
compounds of transition metal ions and analyze its possible origins presented in the
literature. The initial hypothesis was to ascribe the reduction of the effective Racah
parameters B and C of the electron–electron interaction in the complexes as compared
to their respective free ion values (which is the essence of the nephelauxetic effect) to
the expansion of d-orbitals in the complex because of their quantum mechanical mixing
with the orbitals of the ligands leading to delocalization. This picture necessarily leads
to a rigid positive correlation between the amount of the d-shell splitting controlled by
the same delocalization and the amount of the renormalization of the interaction
parameters. In fact, such a rigid relation does not exist and the so-called
spectrochemical and nephelauxetic series of the ligands composed according to the
aforementioned amounts do not coincide in many points. An alternative explanation
based not on the delocalization, but on polarization of the ligands had been proposed at
the same time as the delocalization based one. Realistic estimates had been obtained on
this basis, but the scheme had never been implemented on the atomic scale, which is
necessary to enable renormalization of the aforementioned interaction parameters as a
“built-in” function of quantum chemical software. The required atomic resolution
formulation of the polarization-based model of the nephelauxetic effect is constructed in
this work, in which a relation of such an approach to the general problematics of the
“next generation” of semiempirical methods of quantum chemistry is also discussed.
© 2009 Wiley Periodicals, Inc. Int J Quantum Chem 109: 2606–2621, 2009
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1. Introduction

A mong the words to be learned by heart by
first-year inorganic chemistry students fasci-

nated by the bright colors of the coordination com-
pounds of transition elements, the term “neph-
elauxetic” (effect) is one of the most intriguing, but
unfortunately being rarely readdressed during fur-
ther years of studies or even professional carriers.
This beautiful Greek word introduced into theoret-
ical inorganic chemistry by Jaurgensen [1] follow-
ing the advice of Kaj Barr—the prominent Danish
orientalist—refers to the mental picture according
to which the cloud (����́��) of d-electrons expands
(����	�) when a transition metal ion (TMI) becomes
a central one in a coordination compound, where it
is surrounded by various other inorganic or organic
ions or molecules, rather a free one. The conse-
quences of the coordination process for the d-shell
are in principle twofold: before the already men-
tioned expansion of the d-orbitals the splitting of
the d-levels degenerate in the free ions takes place,
being much more important both qualitatively and
energetically, namely, the splitting is ultimately re-
sponsible for the mentioned colors of the transition
metal complexes (TMCs). Its qualitative picture is
explained by the crystal filed theory (CFT) origi-
nally proposed by Bethe [2] and numerously rep-
resented in various other sources adjusted for the
chemical problem setting [3–6] (originally CFT had
been developed for the transition metal impurity
ions in the crystals). The CFT bases on the very
natural picture of what happens in TMCs—all in-
teresting events (low- energy excitations)—are lo-
calized in the d-shell of a central TMI, whereas
other atoms or groups provide some external, orig-
inally purely electrostatic, field responsible for the
splitting. In such a formulation of the CFT known
as its ionic model, and treating the splitting of the
d-shell as a pure electrostatic effect, the CFT faces a
serious problem: the splitting parameters cannot be
correctly estimated. Although the symmetry is per-
fectly reproduced even by this simplistic scheme, it
turns out that quantitatively the ionic model gives
at best 20% of the observed splitting even if unre-
alistically large effective charges are ascribed to the
ligands. This happens due to the oversimplified
description of the TMI’s environment (ligands). It is
not thus surprising that the heaviest strike upon the
CFT from the (semi)quantitative side was given by
TMC spectroscopy in 30s of the last century. Spec-
troscopic experiments allowed to range different

ligands according to the strengths of the crystal
fields induced by them (the 10Dq parameter) to the
so-called spectrochemical series [3–6] having (with
many omissions) the following form:

I� � Br� � S2� � N3� � F� �OH� � Cl�

�
1
2Ox2� � O2� � (1)

� H2O � SCN� � NH3,py �
1
2En

� SO3
2� � NO2

� � CN� � CO.

From this one can see that the crystal fields split-
tings are systematically weaker for charged ligands
than for the uncharged ones with the utter example
of CO inducing the strongest crystal field, but bear-
ing neither charge nor even noticeable dipole mo-
ment. Thus, the relative strengths of the crystal
fields observed in the experiment cannot be ex-
plained by the ionic model of the environment.
These observations clearly indicate that purely elec-
trostatic effects may be only of minor significance in
determining the strength of the effective crystal
field felt by the d-shell.

The unsatisfactory situation with the CFT esti-
mates called for the development of the ligand field
theory (LFT) [3, 4], trying to include the ligands on
a more realistic basis. In its simplest version, it
assumes that it is enough to consider the valence
shell of the TMI, containing 3d-, 4s-, and 4p-orbitals
and to include one lone pair orbital per donor atom
of the ligand thus giving the following picture of
one-electronic states of the closest ligand shell
(CLS) of a TMI in a TMC which the octahedral local
symmetry:


a�egc� � � xeg
�dz2� �
yeg

�12
�2�z � 2��z � �x � ��x

� �y � ��y�


b�egc� � yeg
�dz2� �
xeg

�12
�2�z � 2��z � �x � ��x

� �y � ��y�


a�egs� � � xeg
�dx2�y2� �
yeg

2 ��x � ��x � �y � ��y�


b�egs� � yeg
�dx2�y2� �
xeg

2 ��x � ��x � �y � ��y�
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a�a1g� � xa1g
�4s� �
ya1g

�6
��x � �y � �z � ��x � ��y

� ��z�


b�a1g� � ya1g
�4s� �
xa1g

�6
��x � �y � �z � ��x � ��y

� ��z�


a�t1u�� � � xt1u
�4p�� �
yt1u

�2
��� � ����


b�t1u�� � yt1u
�4p�� �
xt1u

�2
��� � ����. (2)

The Stevens’ coefficients x�, y� subject to the
normalization condition:

x�
2 � y�

2 � 1 (3)

give the amount of the delocalization of the TMI-
centered states and have to be determined (ideally)
from a self-consistent field procedure applied to the
effective Fock operator describing the CLS of the
TMI. By this, the one-electron states of both the TMI
and of the surrounding ligand atoms are explicitly
included into consideration. In a symmetric envi-
ronment assumed in Eq. (2), the d-orbitals of the
t2g-symmetry neither get any admixture nor expe-
rience any change of their energy (�-orbitals on the
ligands are not taken into account at this point). The
antibonding orbitals of the eg-symmetry (
a(eg)) are
shifted upwards in energy:

E*eg � Hdd �
Hd�

2

Hdd � H��

, (4)

where Hdd, H��, Hd� are matrix elements of the
one-electron Hamiltonian of the CLS, thus giving
the following estimate for the splitting parameter:

10Dq �
Hd�

2

Hdd � H��

. (5)

Within the LFT also only qualitative explana-
tions could be obtained. It remained unclear where
to get the values of H�� and Hd� on which all the
details of composition and structure of the ligands
and their interaction are loaded in this model. Nev-
ertheless, the expression Eq. (5) allows for impor-
tant conclusions different from the ionic model of
the CFT. Within the LFT, the splitting comes not

from the (effective) charges localized on the li-
gands, but is a consequence of covalent interac-
tions—ultimately of the interplay between the de-
localization of the d-electronic states to the ligands
and of the ligand electronic states to the d-shell.
Spectrochemical series Eq. (1) then can be thought
to be arranged in the order of increase of not only
10Dq but also of the characteristic delocalization
parameters xeg

2 yeg

2 , describing the strength of the co-
valent metal–ligand interaction and determined by
the same Hamiltonian matrix elements as the split-
ting through the relations:

xeg

2 yeg

2 �
1
4�1 �

1
1 � �eg

2 � , (6)

�eg �
Hd�

Hdd � H��

. (7)

Getting very large �eg yields the highest possible
value of xeg

2 yeg

2 � 1/4 referring to the maximal pos-
sible delocalization of the d-orbital.

These considerations dating back to 30s qualita-
tively explain pretty much of the spectroscopy of
TMCs in terms of the 10Dq splitting parameter for
the one-electron d-levels (although the consistent
estimation of these and similar quantities through a
kind of quantum chemical procedure—from the
information on chemical composition and geome-
try of the TMC—was not possible).

At this point, one must say that the electronic
structure of TMCs is much more sophisticated and
does not reduce to the one-electronic states as pre-
sented by Eq. (2). The d-shells of the TMIs within the
TMCs may to a large extent retain the multiplet struc-
ture they possess in the free state. In the free state,
however, the excitation spectra of the d-shells, obvi-
ously, cannot have anything to do with the splitting
and are controlled by the electron–electron interac-
tions only. The characteristic parameters of that latter
are known as the Slater-Condon parameters Fk, k � 0,
2, 4, or the Racah parameters A, B, and C. It is remark-
able that even in the simplest version of the CFT these
quantities had to be taken into account (although
considered as empirical parameters) to reproduce cor-
rect sequence of the many-electronic states of different
total spin and spatial symmetries. Even more, in some
situations it is possible exactly, although in others to a
good approximation, to express the excitation ener-
gies in the d-shells of TMCs in terms of the electron–
electron interaction (Slater-Condon or Racah) param-
eters only. In the course of attempts to fit the
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(appropriate) excitation energies to the models ex-
pressing them linearly through the Racah parameters,
Jaurgensen (as well as other students of that time)
noticed that the interaction parameters for the TMIs’
d-shells in TMCs coming from such fits are systemat-
ically smaller than the same parameters derived from
the spectra of the free ions. This phenomenon re-
ceived the aforementioned beautiful Greek name (al-
though well before similar, but much less pronounced
behavior had been observed in lanthanide complexes
and had the name of the Ephraim’s effect) since it had
been interpreted as a consequence of certain increase
of the average electron–electron separation in the d-
shell taking place due to the expansion of the latter in
the course of the complex formation. Two mecha-
nisms tentatively leading to the mentioned expansion
had been discussed in Ref. [1].

First was the central field covalency (CFC) mech-
anism, which is based on the idea that the sur-
rounding charges may contribute to the screening
of the d-electrons they surround and by this may
affect the rate of the radial decay of the d-states of a
TMI in a TMC. It could, however, only happen if
the spherical component of the external (ligand)
Coulomb potential significantly depends on the dis-
tance in the d-shell region. Employing the well-
known expansion of the Coulomb potential over
the spherical harmonics:

1
�R � r�

� 4��
l�0

� min�r,R�l

max�r,R�l�1

1
2l � 1 �

m��l

l

Y*lm�r
r�Ylm�R

R� (8)

(here R and r are, respectively, the lengths of the
radius vectors R and r) shows that the spherically
symmetric component (l � 0) does not depend on
the electron position r provided it is located closer
to the coordinate origin than the ligand atom at R
(R 	 r). Together with the assumption about the
compactness of the d-shell (�R 		 1, where � is the
exponent of the Slater d-orbital) this allows one to
exclude the CFC mechanism on the general theo-
retical grounds. The same reasoning explains why
it is not possible to stabilize any bound state of an
electron (e.g., in a vacancy in a crystal or in a
“cavity” in a liquid) by external charges.

Second mechanism considered was the sym-
metry restricted covalency (SRC), which ex-
plained the orbital expansion by the formation of
delocalized MOs of predominantly d-character,

but having some contribution from the ligand
states as stipulated by the LFT Eq. (2). Accepting
the SRC mechanism has two important conse-
quences. First is the possibility to ascribe differ-
ent extent of expansion to different one-electron
states in the d-shell.

This option was used up to full scale in Ref. [1]
where three nephelauxetic ratios �ee, �et, and �tt

(�33, �35, and �55 in the original notation) had been
introduced to represent the effect of the expansion
of the orbitals in the e- and t2-manifolds of octahe-
dral and tetrahedral complexes on the Coulomb
interaction matrix elements involving the orbitals
from them. The numerical fits of the experimental
data reviewed in Ref. [1] allowed to conclude that
in all cases the following relation holds:

1 � �tt � �et � �ee (9)

in a fair agreement with the qualitative picture of
orbitals Eq. (2) according to which no delocaliza-
tion (expansion) of the t-orbitals takes place (thus
giving �tt � 1, which must be overridden by
including �-overlap in the consideration) and the
noticeable delocalization is expected only for the
e-orbitals.

Second consequence is that the delocalization of
the d-states due to mixing with the ligand states as
the only source of the orbital expansion puts the
observed renormalization of electron–electron in-
teractions in the d-shells in TMCs in a strict relation
with the crystal field splitting of the latter. Indeed,
as one can see, the estimates of the nephelauxetic
ratios accepted in Ref. [1] are

�tt � xt2g

4 ; �et � xt2g

2 xeg

2 ; �ee � xeg

4 . (10)

Taking into account that

xeg

2 � 1 �
1
4�eg

2 (11)

one may expect that the nephelauxetic series (that
of the ligands with decreasing �’s) has to be similar
to the spectrochemical series (that of increasing
10Dq, see earlier). This, however, does not happen
and the nephelauxetic series for ligands (i.e., for
each fixed TMI) can be presented as follows [1, 5, 6]
(in order of increase of the amount of renormaliza-
tion):
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F� � H2O � urea(O) � NH3 � En�
1
2Ox2�

� NCS� � Cl� (12)

� CN� � Br� � N3
� � I� � S2� � Se2� � Te2�,

which in many cases demonstrates not only devia-
tions from the spectrochemical series Eq. (1) but
even inversions: F� vs. I�; Cl� vs. Br�, etc.

It is worth noticing that the numerical values of
the renormalization constants (nephelauxetic ra-
tios) ���, had been derived from the experiment
under some additional assumptions. First, it had
been assumed that the Racah parameters B and C
are related by a fixed coefficient about four. It is
true for the theoretical values of these parameters
defined through the Slater-Condon parameters
taken as integrals over Slater type d-orbitals:

F2
th�dd� �

5 � 2093
49 � 76800�d

F4
th�dd� �

9 � 91
441 � 9216�d (13)

(�d is the orbital exponent for the Slater d-function).
Then taking into account the definitions of the Ra-
cah parameters

Bth � F2
th�dd� � 5F4

th�dd�

Cth � 35F4
th�dd� (14)

one arrives to:

Cth/Bth �
175
44 � 4 �

1
44 � 3.977. (15)

However, the basic assumption of the rigid ratio
F th

2 /F4
th of 69-4/5 following from Eq. (13) and lead-

ing to Eq. (15) does not take place even in free ions,
and thus F2(dd) and F4(dd) must be treated as inde-
pendent parameters and so must be considered B
and C. According to [6] the ratio C0/B0 where sub-
script 0 refers to the free ions is always larger than
four and smaller than five. Also the assumption
that B and C renormalize by the same nephelauxetic
ratio throughout the complex formation is only true
if the renormalization takes place according to the
SRC mechanism. Using the data on simple d5 com-
plexes (those of Mn2� and Fe3�) for which the
Racah parameters can be directly extracted from
d–d excitation spectra, we establish the remarkable
deviations from the assumption of the uniform
renormalization of the Racah parameters B and C as
shown in Table I. According to it the B parameters
are always strongly renormalized than the C pa-
rameters leading to the C/B ratios in the complexes
to be systematically larger than five and sometimes
to exceed six. Also, the complexes with very close
values of 10Dq are known to give sometimes differ-
ent values of renormalization constants indicating
the absence of the direct relation between the
amount of delocalization of the d-shell and the in-
teraction renormalization in it.

All this calls for a new visit to this fascinating
area of theoretical inorganic chemistry.

2. Effective Hamiltonian of Crystal
Field Theory

As we mentioned previously despite the correct
qualitative description of the spectrochemical series

TABLE I ______________________________________________________________________________________________
The estimates of the nephlauxetic ratios as extracted from experimental data given in Refs. [1, 5, 6].

�B � B/B0 �C � C/C0 � � C/B

Mn2�, B0 � 860, C0 � 3850, �0 � 4.447
MnF6

4� 0.819 0.948 5.186
MnCl6

4� 0.743 0.893 5.382
MnCl4

2� 0.612 0.920 6.736
MnBr4

2� 0.623 0.917 6.585
Mn(H2O)6

2� 0.795 0.939 5.298
Fe3�, B0 � 1015, C0 � 4800, �0 � 4.729
FeF6

3� 0.675 0.773 5.416
FeCl4

� 0.506 0.569 6.315

Racah parameters B and C are in cm�1
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in the LFT, it cannot provide a quantitative method
for calculation of the splittings of d-levels. The rea-
sons were mentioned earlier—the unclear source of
the matrix elements H�� and Hd� to be used in Eq.
(4) and the need to take into account the details of
the electron–electron interaction (correlation) of
electrons in the d-shells of TMIs. These deficiencies
were the fundamental reason to develop the Effec-
tive Hamiltonian Crystal Field (EHCF) theory Ref.
[7], whose basic purpose was to unite the estimate
of the crystal field induced by the ligands with
taking into account the correlations of electrons in
the d-shells. This twofold task required the usage of
a twofold tool: i.e., of combining the McWeeny [8]
group function (GF) representation of the molecu-
lar electronic structure with the Löwdin partition
technique Ref. [9]. The GF method as applied to
TMCs assumes the wave functions of the ground
and lower-energy excited states of the latter to have
the form:


n � �n
d � �0

l , (16)

where �n
d is some full CI function for nd electrons in

the d-shell, and �0
l is a single-determinant ground

state for the l-system. Taking this way of segment-
ing the electronic structure into groups reflects the
main feature of that of the TMCs, which is the
presence of the strongly correlated d-shell of a spec-
ified composition, i.e., containing some fixed inte-
ger number nd of (d-)electrons with low energy
excitations localized in it and of relatively inert (i.e.,
having rather high excitation energies) ligands. To
be able to reproduce the splitting of the states of the
d-shell under the influence of the l-system, the one
electron transfers (delocalization) between the d-
and l-systems have to be taken into account as in
the LFT. Basically such transfers destroy the simple
form of the wave function Eq. (16) by admixing the
states with nd � 1 (nl 
 1) electrons in the d- and
l-systems (charge transfer states) to it. However,
experimentally we see that the number of electrons
in the d-shell is a good quantum number and is
perpetually used in chemical classification of the
TMCs. Of course, there are situations when classi-
fication in terms of fixed number electrons in the
d-shell fails, but we consciously exclude them from
the current consideration. On the other hand, one
has to realize that TMCs conforming to this classi-
fication do conform to it exactly, not approximately:
their d–d-excitation spectra are precisely those of
three or five electrons in this shell since there is no

such a thing as a spectrum of approximately 5.1- or
3.2-electron system. Thus, in the compounds of in-
terest it goes about some effective d-shell with the
fixed number electrons in it. In such a setting, the
contribution of the charge transfer states is taken
into account with the use of the Löwdin projection
technique. It is done as follows: the total Hamilto-
nian for a TMC is rewritten in the form:

H � Hd � Hl � Hc � Hr, (17)

where Hd is the Hamiltonian for d-electrons in the
field of the TMC atomic cores, Hl is the Hamiltonian
for the l-system electrons, Hc and Hr are, respec-
tively, the operators of Coulomb and resonance
interactions between two electron groups singled
out in the TMC.

Projecting the exact Hamiltonian Eq. (17) is per-
formed to the subspace spanned by the functions
with the fixed number nd of d-electrons. By this the
original Hamiltonian Eq. (17) is replaced by the
effective one acting in this configuration subspace.
By simple algebra the explicit form of the effective
Hamiltonian is obtained [7]:

Heff � PH0P � Hrr

H0 � Hd � Hl � Hc

Hrr � PHrQ�EQ � QH0Q��1QHrP (18)

where P is the operator projecting to the subspace
of the functions with the fixed number nd of the
d-shell electrons and nl � N � nd is that of the
l-subsystem electrons; and Q � 1 � P.

The eigenstate energies must be obtained from
the relation:

En � ��n�Heff�En��
n�. (19)

Eigenvalues of the effective Hamiltonian coin-
cide with exact Hamiltonian eigenvalues by con-
struction. Since the effective Hamiltonian depends
on energy, the last equation must be solved itera-
tively until convergence in energy is achieved.
However, since the charge transfer states (deter-
mining the poles of the above effective Hamilto-
nian) lay significantly higher in energy than the
d-shell excitations this dependence turns out to be
weak and can be neglected, so one can set:

Heff�En� � Heff�E0� (20)
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where E0 is the ground state energy of the Hamil-
tonian H0. Thus obtained effective Hamiltonian cor-
responds to the second order of the Raleigh–Schrö-
dinger perturbation theory in Hr.

Variation principle applied to the effective Ham-
iltonian with the trial function of the form Eq. (16)
leads to the self-consistent system of equations:

Hd
eff�n

d � En
d�n

d

Hl
eff�0

l � E0
l �0

l

Hd
eff � Hd � ��0

l �Hc � Hrr��0
l �,

Hl
eff � Hl � ��0

d�Hc � Hrr��0
d�. (21)

In this system, the effective Hamiltonian Hd
eff for the

d-electron subsystem depends on the wave function
of the ligand subsystem �0

l , and in its turn the
effective Hamiltonian Hl

eff for the ligand subsystem
depends on the d-electrons’ wave functions �0

d.
These equations must be solved self-consistently as
well. In the EHCF method, Ref. [7], the Slater de-
terminant �0

l is constructed of MO’s of the l-system,
obtained from the Hartree–Fock equations in the
CNDO/2 approximation for the valence electrons
of the ligands. In this case, the transition from the
bare Hamiltonian Hl

eff for the l-system to the corre-
sponding effective (dressed) Hamiltonian reduces
to renormalization of one-electron parameters re-
lated to the TMI:

Uii
eff � Uii �

1
5nd�

�

G�i,

ZM
eff � ZM � nd, (22)

where Uii is the parameter of the interaction of 4s-
and 4p-electrons (i � 4s, 4px, 4py, 4pz) with the TMI
core, ZM is TMI core charge, g�i � (���ii) � 1/2
(�i�i�) are the parameters of intraatomic Coulomb
interactions. The �0

l function thus obtained is used
further for constructing the effective Hamiltonian
for the d-shell.

The effective Hamiltonian for the d-shell after
averaging Eq. (21) inter-subsystem interaction op-
erators Hc and Hrr over the ground state of the
l-system takes the form:

Hd
eff � �

���

U��
effd��

� d�� �
1
2 �

����

�
��

�������d��
� d��

�d��d��, (23)

where d��
� (d��) are operators of creation (annihila-

tion) of electron with the spin projection � on the
�th d-AO; (�����) are the two-electron integrals of
the Coulomb interaction in the d-shell. Effective
one-electron parameters U��

eff of the d-shell contain
contributions from the Coulomb and from the pro-
jected [Eq. (5)] resonance interaction with the l-
system:

U��
eff � ���Udd � W��

atom � W��
ion � W��

cov, (24)

where

W��
atom � ���� �

i�s,p

G�,iPii�
W��

ion � �
L

�PLL � ZL�V��
L . (25)

Here Pii is one-electron density matrix element for
the ligand subsystem, PLL � �l�L Pll, ZL is the Lth
atom core charge, V��

L is the matrix element of the
d-electron potential energy in the electrostatic field
of a unit point charge placed on the Lth ligand atom
(see later). The covalence contribution to the crystal
field is given by

W��
cov � � �

i

�MO�

��i��i�1 � ni

�Edi
�

ni

�Eid
	 (26)

where ��i is the one-electron matrix element (reso-
nance or hopping integral) between the �th d-or-
bital and the ith ligand MO, ni (� 0, 1) is the
occupation number of the ith MO, �Edi (�Eid) are
excitation energies required to transfer an electron
from the d-shell (ith MO) to the ith MO (d-shell).

The effective Hamiltonian for the d-shell Eq. (23)
formally coincides with the CFT Hamiltonian. The
substantial difference is the covalence contribution
Eq. (26) to the d-shell one-electron parameters Eq.
(24), taking into account the effect of virtual charge
transfers between the metal d-shell and the ligands,
i.e., the delocalization of the d-states. Thereby, the
EHCF contains not only electrostatic but also cova-
lence terms coming from the resonance interactions
between the d-shell and the ligands as the LFT does.

According to calculations performed in Refs. [7,
10–13] for the TMCs of divalent cations, the cova-
lence contribution to the splitting parameter 10Dq
dominates and gives up to 90% of the total. This
allows to state that like in the LFT in the EHCF, the
splitting of the d-shell is controlled by an analog of
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the above � parameter, i.e., by a ratio of the electron
hopping integral to the energy of the inter-sub-
system charge transfer state. Generally, the EHCF
method allowed to describe correctly the symmetry
of the ground states and the optical d–d-transition
energies with precision up to 1000 cm�1 for about a
hundred of the TMCs of the first transition row
divalent cations ranging from hexafluoroanions to
porphyrine complexes and improved the semiem-
pirical description of TMC electronic structure sig-
nificantly.

3. Renormalization of
Electron–Electron Interaction in the
d-Shell

The EHCF method as presented in the previous
section lacks an important element: no renormaliza-
tion of the electron–electron interaction in the d-
shell appears from the above derivation. Strict ap-
plication of the EHCF theory assumes that the free
ion values B0 and C0 of the Racah parameters are
used. This, however, would contradict to the exper-
iment and thus the experimental values of B and C
had been used throughout the calculations in Refs.
[7, 10–13]. This clearly reduces the predictive
power of the otherwise very attractive EHCF pic-
ture and of the pragmatic calculation method based
upon it. For that reason, we undertake this study in
which we try to obtain the estimate of the amount
of the renormalization of the electron–electron in-
teractions in the d-shell within the same framework,
which previously allowed very precise estimates of
the splitting of the d-shell. Before doing so, we
notice that these two effects: splitting and interac-
tion renormalizations appear in different orders of
perturbation theory with respect to one-electron
hopping matrix element responsible for charge
transfers between the d- and l-systems. The splitting
is of the second order in � whereas renormalization
must be of the fourth order.1 This also agrees with
the LFT estimates Eq. (10) and explains our old
result where only the aforementioned perturba-
tional estimate of the fourth order had been tested2

and the nephelauxetic ratios turned out to be ca.
0.98 � 0.99 in all considered cases. This failure

indicates that in the EHCF context some other rea-
sons of the renormalization of the Coulomb inter-
action between electrons in the d-must be admitted.

3.1. CONTINOUS INSULATOR MODEL OF
NEPHELAUXETIC EFFECT

It is fair to say that the ligand polarization had
been mentioned as a mechanism of renormalization
of Coulomb interaction in the d-shells of TMCs at a
pretty early stage. If the nephelauxetic series Eq.
(12) is rewritten in terms of donor atoms Ref. [5], it
becomes:

F � O � N � Cl � Br � I � Se � Te

which approximately corresponds to the order of
the atomic polarizabilities. It, however, had been
considered as a secondary effect in Ref. [1], al-
though obvious deviations between the spectro-
chemical and nephelauxetic series were clear. The
same idea had been used in Ref. [14]. According to
these authors, if one assumes that a TMI bearing the
d-shell with the Slater orbital exponent �d is placed
inside a sphere of radius b cut in the medium with
dielectric constant, �, the Slater-Condon parameters
F2(dd) and F4(dd) renormalize with the nephelaux-
etic ratios �2 and �4 given by:

1 � �2 �
1260
299 � � � 1

3� � 2�� 4
b�d

� 5

1 � �4 �
20 � 10!

13 � � � 1
5� � 4�� 1

b�d
� 9

1 � �2

1 � �4
�

4
5175�5� � 4

3� � 2� �b�d�
4. (27)

Assuming � � 12, b � 1.5 Å, and �d � 2.06, the
authors in Ref. [14] reproduced the magnitude of
the �4 ratio for one particular case (Co2� impurity
ion in the tetrahedral site of MgAl2O4) and under-
estimated �2 by ca. 40%, thus yielding the correct
order of magnitude of the effect. The approxima-
tion of infinite space filled by an insulator outside
the sphere reasonable in the case of a impurity TMI
in the crystals is not that much important since
obvious transition to the model of a spherical layer
reduces to subtracting of corresponding powers of
b*� (b* is the external radius of the spherical layer)
does not significantly affect the numerical result
due to high powers of the b/b* � 1 ratio as entering
in the correcting multipliers (1 � (b/b*)5) and (1 �

1It is worth noting that the very notation of in the theory of the
nephelauxetic effect is not particularly convenient. The quantities of
definite order are not the nephelauxetic ratios themselves �, but
their deviations from the unity: 1 � �.

2Kharitonov, D. N.; Tchougréeff, A. L. unpublished.
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(b/b*)9) for the first two rows of Eq. (27). One can
estimate to what extent the value of � � 12 used in
Ref. [14] can be reproduced by available data on
polarizability of the ligands using the Clausius-
Mossotti formula for �:

� � 1 �
4�

3 ��. (28)

According to Ref. [1], they range from ca. 1 Å3 for
F� to 14 � 16 Å3 for Te2�, whereas the densities to
be used to get the above value of the dielectric
constant range from unrealistically high value of 2.5
ions per Å3 for F� to unrealistically low 0.16 ions
per Å3 for Te2�. These estimates show that the
polarizability-based model of renormalization of
the Coulomb interaction of d-electrons can cover a
wide range of observed values of renormalization.
Remarkably enough the formulae Eq. (27) have the
multiplicative structure

1 � � � h�ligands�k�metal)

prescribed by Ref. [1] with h to be identified with
the �-dependent multiplier and k to be the �d-de-
pendent one.

3.2. POLARIZATION PROPAGATOR MODEL
OF NEPHELAUXETIC EFFECT

From the quantum chemical point of view, the
expression Eq. (27) lacks the atomic (or even orbital)
resolution necessary for quantum chemistry. To de-
rive the analog of the result, Eq. (27) compatible
with quantum chemical description and particu-
larly with the EHCF theory one has to follow the
general theory of the GF-based semiempirical
methods as described in Refs. [15–17].

It must be noticed that the derivation of EHCF
was performed in an assumption that not only the
charge transfer excitations in the nd � 1 (nl � 1)
electrons manifold have the energy large enough to
assure the validity of the perturbation theory with
respect to small parameter � but also the energies of
the excitations in the l-system are large enough not
to take them into account. The excitations of the
l-system are, however, responsible for its polariza-
tion. One has to realize that taking the wave func-
tion of the TMC in the form of Eq. (16) even after
Löwdin partition with use of the complementary
projection operators P and Q is an approximation.
In fact, the operator P projects out the states with

the charge transfer between the d- and l-system, but
does not assure the product form of Eq. (16). Prod-
ucts of different states of the d- and l-systems sat-
isfying only the condition of the fixed number of
the electrons in each of the singled out groups enter
in the expansion of the true ground state of the
effective Hamiltonian Eq. (18). The form Eq. (16) is
a kind of self-consistent field approximation to it.
To improve this description one has to perform one
more projection namely to the subspace of the
products where all possible states of the l-system
are replaced by its ground state. Formally, we pre-
viously consider the projection operator � :

� � Id � ��0
l ���0

l �, (29)

and the complementary projection operator Q �
1 � � on the subspace orthogonal to it. Inserting
the projection operators � and Q into general ex-
pressions for the effective Hamiltonian acting in the
subspace Im � (spanned by the functions of the
form Eq. (16)—all possible �n

d times the ground
state �0

l ), yields the expression:

Heff��� � �Heff� � �HeffQR���QHeff�,

R��� � ��Q � QHeffQ��1. (30)

The first term is precisely d-electron Hamiltonian
Eq. (23) multiplied by the l-system ground-state
projection operator ��0

l ���0
l �. The second gives the

correction to it. Different terms in Heff behave dif-
ferently under this projection. Taking into account
that � projects to the product of the eigenstates of
the operators Hd

eff and Hl
eff Eq. (21) one can see that:

PHeffQ � PWdlQ, (31)

where

Wdl � Ŵdl � ��Ŵdl��d � ��Ŵdl��l (32)

is the operator of reduced interaction of the d- and
l-systems where:

Wdl � Vc � Vrr

Vc � Hc � ��Hc��d � ��Hc��l

Vrr � Hrr � ��Hrr��d � ��Hrr��l (33)

where the expectation values of the interaction op-
erators calculated for the ground state of the d- and
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l-systems are subtracted (i.e., only the fluctuations
of the interacting quantities are retained). With
these notions, the correction acquires the form:

�Wdl����Wdl�. (34)

As before the idea of relative inertness of the
l-system is formalized by the assumption that the
excitation energies in it are large as compared with
the excitation energies in the d-system, which are
only interesting for us. For this reason, one can
guess that the dependence of the resolvent on � is
weak and that the values of � in the interesting
energy range are much smaller than the resolvent
poles that are all lying not lower than the first
excitation energy in the l-system. These notions
allow to replace the resolvent R(�) by its value at �
� 0 (by this, the electronic dynamic effects in the
l-system are excluded):

��0� � � �
��0

���
l ����

l �
E�

l , (35)

where E�
l are excitation energies in the l-system.

Restricting for the simplicity in Eq. (32) by the
reduced Coulomb operator:

Vc � �
dd��d
ll��l

�dd��ll���d�d�l�l� � l�l���d�d���d

� d�d���l�l���l�,

we get after averaging over the ground state of the
l-system the following correction to the d-system
Hamiltonian:

�
dd�d�d��d

d�d�d��d� �
ll�l�l��l

�dd��ll���l�l��d�d���ll�l�l�
l �0�,

(36)

describing the weakening of the interaction be-
tween the fluctuations of the electron density in the
d-shell due to interaction between the polarizations
induced by these fluctuations in the l-system. The
polarization propagator of the l-system entering the
answer is:

�ll�l�l�
l ��� � �

��0

��0
l �l�l����

l ��� � E�
l ��1���

l �l��l���0
l �.

(37)

The result Eq. (36) can be rewritten in terms of the
polarization correction to the two-electron matrix
elements:

��dd��d�d�� � �
ll�l�l��l

�dd��ll���ll�l�l��l�l��d�d��. (38)

Significant simplification can be reached in the
basis of canonical MOs of the l-system where the
polarization propagator is diagonal in that sense
that only the matrix elements of the form �ll�l�l are
nonvanishing where l and l� refer to the occupied
and vacant states, respectively, of the l-system.

The correction Eq. (36) must be included if the
fluctuation of the electronic density in the l-system
of the TMC as compared with the wave function
obtained as solution of the system Eq. (21) are not
considered explicitly. This is precisely the case in
the EHCF theory. Incidentally, the intrashell Slater-
Condon parameters Fk (dd) with k � 2, 4 are pre-
cisely those which describe the interactions be-
tween the density fluctuations in the d-shell and
those which one should expect to renormalize to
reproduce the nephelauxetic effect. The Hamilto-
nian matrix elements capable to couple the density
fluctuations in the d-shell with those in the sur-
rounding are those of the Coulomb interaction. In
the free ion, the fluctuation operators like d�d�
transform according to the SO(3) representations
characterized by the angular momentum 2 and 4,
which are incidentally used for classification of the
Slater–Condon parameters.

As it is shown in Ref. [7], the matrix elements of
the form (dd��ll�) describing the Coulomb interac-
tion between the electrons in the d- and l-systems
fall into two types (i) intraatomic ones, describing
the interaction between the d- and sp-shells of the
TMI and (ii) those between the d-shell of the TMI
and the electrons in the ligand atoms. In the ionic
model of the CFT, the elements of the type (ii) are
responsible for splitting of the d-levels. Accord-
ingly, the Coulomb interaction operator Hc is a
sum:

Hc � H1
c � H2

c (39)

and we consider the effect of two contributions to
Eqs. (36)–(38) separately.

3.2.1. Intraatomic Contribution to
Nephelauxetic Effect

In the intraatomic context, it is convenient to use
the one-electron wave functions of definite angular
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momentum projection (complex spherical harmon-
ics) instead of cubic harmonics usual for the atomic
states in quantum chemistry. We start from remind-
ing the form of a general intraatomic matrix ele-
ments of the Coulomb interaction between elec-
trons. In general, for the atomic states nilimi, i � 1 �
4 � ni ’s are the principal quantum numbers, li ’s are
the azimuthal quantum numbers, and mi’s are mag-
netic quantum numbers of the states involved) the
matrix element (m1m2�m3m4) with m1 � q � m2; m3
� q � m4 and with respective nili ’s reads:

� � 1�q�l1�l3��m2�m4�� l1 k l2

0 0 0�� l3 k l4

0 0 0� �

� ��2l1 � 1��2l2 � 1��2l3 � 1��2l4 � 1�

� � l1 k l2

q � m2 � q m2
�

� � l3 k l4

� �q � m4� q m4
�Rk��nili�� (40)

where the symbols �· · · · · · · · ·
· · · · · · · · ·� are the Wigner

3jm-symbols as described in many places, e.g., in
Ref. [18]. For the interaction matrix elements in the
d-shell it yields:

�m2 � q,m2�m4 � q,m4� � 25�
k

� � 1�q��m2�m4�

� �2 k 2
0 0 0� 2� 2 k 2

q � m2 � q m2
�

� � 2 k 2
� �q � m4� q m4

�Fk�dd�. (41)

Intraatomic matrix elements coupling the fluctu-
ations in the d- and p-shells are those coupling the
fluctuations with k � 2 (for two p-functions k � 4 is
not accessible, whereas k � 0 are not the fluctua-
tions). Since in the octahedral and tetrahedral com-
plexes the p-shell of the TMI remains nonsplitted
(as in the free ion), the spherical harmonics can also
be used for it. Thus we get:

�dd��pp�� � �m2 � q,m2�m3 � q,m3� � � � 15 �

� � 1�q��m2�m3��2 2 2
0 0 0��1 2 1

0 0 0� �

� � 2 2 2
q � m2 � q m2

�
� � 1 2 1

� �q � m3� q m3
�F2� pd�. (42)

A product of two such elements (to be further
multiplied by the by the polarization propagator
matrix element) is:

�dd��pp��� p�p�d�d��. (43)

Taking into account that the element (p�p�d��d���)
is as well proportional to F2 (pd) with the symmetry
multiplier

� p�p�d�d�� � �m5 � p,m5�m4 � p,m4� �

� 15�
k

� � 1�p�3��m5�m4��2 2 2
0 0 0��1 2 1

0 0 0� �

� � 2 2 2
� � p � m4� p m4

�
� � 1 2 1

p � m5 � p m5
�F2� pd� (44)

subject to the selection rules

m5 � q � m3 (45)

m3 � � p � m5 (46)

which immediately yields

p � q (47)

(transferred angular momentum projections must
be equal). Using once again the first of the afore-
mentioned conditions, we arrive to the following
combination of the 3jm symbols depending on the
momentum projections of the individual states in
the d- and the p-shells:

� � 1�q��m2�m4�� 2 k 2
q � m2 � q m2

�
� � 2 k 2

� �q � m4� q m4
� � (48)

� � 1 2 1
� �q � m3� � q m3

�� 1 2 1
� �q � m3� q m3

� .

(49)

First two multipliers and the phase factor yield
precisely that of the matrix element (m2 � qm2�q �
m4m4) in the d-shell. Different values of m3 in the
second pair of multipliers number different (degen-
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erate) states in the p-shell, contributing to the renor-
malization. These products must be summed up
which yields a factor of 1/5 independent on q. We
see that all matrix elements in the d-shell renormal-
ize accordingly so that the result can be represented
as a renormalization of the Slater-Condon parame-
ter F2(dd). The correction it receives reads:

�
9
5�1 2 1

0 0 0� 2

�F2� pd��2
xt1u

2 yt1u

2

�t1u

(50)

which after inserting the value of the 3jm symbol
reduces to

�
6

25�F2� pd��2
xt1u

2 yt1u

2

�t1u

. (51)

In these expressions, the last multipliers repre-
sent the contribution of the CLS as defined in Ref.
[19] to the polarization propagator of the l-system;
�t1u is the energy gap between the occupied and
empty states of the t1u-symmetry spanned by the
p-states of the TMI, and the xt1u and yt1u are the
expansion coefficients of the corresponding MOs as
defined by Eq. (2).

Already this result allows one to see that the
renormalization of the intrashell interaction is not
uniform in that sense that the proposed treatment
renormalizes only the Slater–Condon parameter
F2(dd), but not F4(dd). Thus in terms of the Racah
parameters, it means that the B parameter renor-
malizes whereas the C parameter does not. That is
what we could expect on the basis of our analysis
summarized in Table I where the renormalization
of the parameter B is systematically much more
pronounced than that of C. Of course one should
not ascribe all this difference to the above Eq. (51) at
least for two reasons: first or all the renormalization
of C is an established fact, which needs to be ex-
plained, and second, the estimate of 1 � �2 coming
from:

6
25xt1u

2 yt1u

2
F2� pd�

F2�dd�

F2� pd�

�t1u

(52)

turns out to be too small. Indeed, the ratio F2(pd)/
F2(dd) of the “experimental” values falls in the
range 0.1 � 0.3 for all TMIs of the first row. That
calculated for the ratio �p/�d � 0.5 characteristic for
the Burns’ exponents used in the EHCF yields

the ratio F2(pd)/F2(dd) to be ca. 0.25.3 Nevertheless,
the earlier formula has at least the use that it dem-
onstrates the chemical specificity of the interaction
renormalization and describes the intraatomic con-
tribution to it which clearly cannot be covered by
the continuous insulator model Eq. (27).

In more general setting not limited by the CLS
model of the ligands, rather including all their va-
lence orbitals like it is normally done in the EHCF
Eq. (52) must be modified to

1 � �2 �
6

25
�F2� pd��2

F2�dd� �
��x,y,z

�
i�occ
j�vac

�ci�cj��
2

�j � �i
(53)

where the last sum is nothing but the orbital–or-
bital polarizability of the �th (4)p-AO of the TMI.
Sensitivity to the chemical specific of the surround-
ing appears due to the MO coefficients of the re-
spective p-AOs in the occupied and vacant MOs.

3.2.2. Ionic Contribution to Crystal Field and
the Nephelauxetic Effect

Further and probably dominating contributions
to the renormalization of the interaction parameters
of the d-shell comes from the second (interatomic)
term of the Coulomb interaction operator between
the d- and l-systems. As previously, the key element
of the construction is identifying the matrix ele-
ments of the interaction which are responsible for
the coupling between the density fluctuations in the
corresponding systems. Incidentally, the EHCF
contains the electrostatic interaction between the
electrons in the d- and the l-systems of the form:

H2
c � �

mm�

V̂mm�

V̂mm� � �
L

�
l�L
�,�

Vmm�
L ,dm�

� dm��l�
�l� (54)

with

3In fact, the ratio F2(pd)/F2(dd) as a function of �p/�d for the
principal quantum number 3 of the Slater d-orbitals nicely ap-
proximates as (�p/�d)2 with the Hilbert square norm of the
difference between the exact ratio and the quadratic estimate
being less than 2 � 10�3 for the integration interval [0, 1] and
becoming less than 2 � 10�4 for a more realistic interval [0.2, 0.8]
of the �p/�d values.
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Vmm�
L � 5�4� �

k�0,2,4

� � 1�m

�2k � 1
�2 k 2

0 0 0�
� � 2 k 2

m m� � m � m��Fk�RL�Yk
m�m���L,
L� (55)

where (RL, �L, 
L) are the spherical coordinates of
the ligand atom L (the TMI is located in the center
of the coordinate frame); Yk

m � m� (�L, 
L) are the
spherical functions with the phases defined follow-
ing Condon and Shortley [20]. Functions Fk (RL) are
the integrals of squares of the radial parts Rnl(r) of
the atomic d-functions:

Fk�R� � R��k�1�

0

R

rkRnl
2 �r�r2dr

� Rk

R

�

r��k�1�Rnl
2 �r�r2dr (56)

and depend on the distance RL from the atom of
metal to the atom L. If the Slater AOs are taken for
Rnl(r), the Fk(R) functions have been evaluated and
are given, e.g., in Ref. [6].

The approximation in Eq. (54) is to assume all
two-center matrix elements of the form

�mm��ll�� (57)

to be diagonal with respect to AOs ll� and to be
equal for all AOs centered on the same atom L of
the ligand. Despite this, the components of Eq. (54)
with k � 2, 4 describe precisely the interaction
between the fluctuations in the d-shell and the elec-
tronic density in the l-system. The average of this
operator produces the ionic contribution W��

ion Eq.
(25) to the effective crystal field as in the classical
CFT. The fluctuations occurring on top of this av-
erage are responsible for the effect interesting to us.
Generalizing the moves of Section 3.2.1., we obtain
the correction to the matrix element (dd��d�d���) in
the form of Eq. (38) and then inserting explicit
forms of the matrix elements Eq. (55) we recast it in
the form of renormalization of the Slater-Condon
parameters F2 and F4. After substituting the matrix
elements and of the elements of the polarization
propagator supermatrix of the form �lll�l� as stipu-
lated by the approximation Eq. (54) to Eq. (38) we
immediately get:

��mm��m�m��

� � 100��
LL�

�
l�L;l��L�

�
k,k��2,4

� � 1�m�m�

�2k � 1�2k� � 1
�

� �2 k 2
0 0 0��2 k� 2

0 0 0� �

� � 2 k 2
m m� � m � m��

� � 2 k� 2
m� m� � m� � m�� �

� Fk�RL�Yk
m�m���L,
L�

Fk��RL��Yk�
m��m���L�,
L�� �

i�occ
j�vac

CilCjlCil�Cjl�

�j � �i
. (58)

Summation over the one-electronic states l � L; l�
� L� centered on ligand atoms LL� can be performed
and straightforwardly yields:

��mm��m�m�� � � 100��
LL�

�
k,k��2,4

� � 1�m�m�

�2k � 1�2k� � 1

� � �2 k 2
0 0 0��2 k� 2

0 0 0� �

� �2 k 2
m m� � m � m��� 2 k� 2

m� m� � m� � m�� �

� Fk�RL�Yk
m�m���L,
L� Fk��RL��Yk�

m��m���L�,
L���LL�

(59)

giving the result in terms of atom-atomic polariz-
abilities �LL� of the l-system as coming from the
semiempirical SCF calculation of the latter assumed
by the EHCF theory. This expression is of course
not spherically symmetric any more. By itself it
does not represent any problem since in the TMC
there is no such symmetry and in this respect the
result is correct. However, both the general practice
of spectroscopy of TMCs and the EHCF theory base
the description of electron–electron interactions in
the d-shell on a tacit assumption of spherical sym-
metry of these latter (usage of the B and C Racah
parameters or the Slater–Condon parameters). For
this reason, we consider below a symmetric version
of the atomically resolved version of the polariza-
tion stipulated nephelauxetic effect by singling out
the spherically symmetric part of the renormaliza-
tion and reducing it to that of the Slater-Condon
parameters F2(dd) and F4(dd).
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For this end, we assume the environment of the
TMI in the TMC (the l-system) to be approximately
spherically symmetric so that its excitation spec-
trum can be classified according to irreducible rep-
resentations of the SO(3) group, i.e., as having def-
inite angular momentum and its z-projection. Then
the polarization propagator � is diagonal in the
basis of such states:

��R,R�� � �
k,�

��k���R,R�� � � �
k,�

�k���k��
�k

��k���R,R��

� �
f*k�R� fk�R��

�k
Yk

�*�R
R�Yk

��R�

R�� (60)

which can be understood as a sum over excitations
of a spherical layer having the excitation spectrum
of energies {�k}. The ground state of the layer is
spherically symmetric (k � 0). The spatial angular
dependence of the state k�� is that of the spherical
harmonic Yk

� (�, 
), which is complemented by
some radial dependence fk(R) of the one-electron
transition density to obtain its total spatial depen-
dence. This yields the expression for the polariza-
tion propagator of the effective medium represent-
ing the l-system in the coordinate representation.
Using the k�-resolved polarization propagator
leads to the selection rules

k � k�

m � m� � � � � �m� � m��

(one can think that one of the operators V̂mm� mm�

ignites in the l-system an excitation with definite k�,
which must be quenched by the V̂m�m� m�m��� one),
which reduce the general expression Eqs. (58) and
(59) to

��mm��m�m��

� � 100��
LL�

�
k�2,4

� � 1�m�m�

2k � 1 �2 k 2
0 0 0� 2

�

� � 2 k 2
m m� � m � m��� 2 k 2

m� m� � m� � m��
� � �

�

��k���RL,RL��

� Fk�RL�Yk
���L,
L�Fk�RL��Yk

����L�,
L��. (61)

It is easy to check that the phase factor together
with the 3jm symbols yields precisely the coefficient

of the Slater-Condon parameter Fk(dd) in the ex-
pansion of the two-electron matrix element
(mm��m�m���) so that the given result can be repre-
sented as a renormalization of the Slater-Condon
parameters, namely:

�Fk�dd� � �
4�

�2k � 1��
LL�

�
�

��k��

�RL,RL��Fk�RL�Yk
���L,
L�Fk�RL��Yk

����L�,
L��. (62)

On the other hand, the atom-atomic polarizabili-
ties �LL� of the l-system entering Eq. (59) correspond
to the values of �(R,R�) through the standard rela-
tion between the coordinate and the AO represen-
tations. Indeed, for a system described in the AO
representation, the orbital–orbital mutual polariz-
ability �lll�l�

�lll�l� � �
i�occ
j�vac

CilCjlCil�Cjl�

�j � �i

contributes to that in the coordinate representation
according to:

��R,R�� � �
LL�

�
l�L;l��L�

��l�R��2��l��R���2�lll�l�.

where �l(R) and �l�(R�) are the explicit forms of the
l-th and l�-th AOs giving necessary spatial density
distributions. The approximation of Eq. (55) is
equivalent to setting

��l�R��2 � ��3��R�RL�

for all l � L. This immediately results in

��R,R�� � �
LL�

��3��R�RL��
�3��R��RL���LL�.

This move allows to single out the spherically
symmetric part of the renormalization:

�Fk�dd� �

�
4�

�2k � 1��
LL�

Fk�RL�Yk
���L,
L� Fk�RL��Yk

����L�,
L���LL�

(63)

which can be as well understood as a double-gen-
eralized Fourier transform of the point–point polar-

NEPHELAUXETIC EFFECT REVISITED

VOL. 109, NO. 11 DOI 10.1002/qua INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2619



ization propagator calculated in a finite number of
points referring to the positions of the ligand atoms.

The generalized Fourier transform can be used to
establish the relation with the continuous insulator
model result Eq. (27). For that end, we represent in
Eq. (62) the sum over LL� as an integral over R, R�
of an expression containing the LL� sum of the �(3)

densities centered in RL, RL� as a multiplier. Going
to the spherical coordinates for the both integration
variables R, R� and performing integration over the
angular variables, we arrive to the following ex-
pression for the polarization-driven interaction
renormalization:

�Fk�dd� � �
4�

�2k � 1��k �

b

�

dRR2fk�R� Fk�R�
 2

.

According to Ref. [6], Fk(R) � 1/Rk�1, then as-
suming fk (R) � R�k we find that �Fk(dd) � b2k�2�k,
which agrees with Eq. (27) provided for all k �k �
�1/2. This is precisely the decay exponent for the
radial function of the wave in the spherical layer as
given by a Bessel function with a half-integer index,
which one can expect to be a model for the l-system.

4. Outlook and Discussion

The derivation of the formulae for describing
nephelauxetic effect in TMCs in terms of the polar-
ization propagator and reducing atom–atom polar-
izability for those forming the l-system of the TMCs
naturally poses the question on the sources of these
quantities (polarizabilities). General expressions for
it like used in Eq. (58) should not deceive the read-
er: in combination with semiempirical methods us-
ing the valence basis only some (indefinite) part of
the total polarizability propagator can be repro-
duced. In the case of organic molecules where the
number of occupied and empty orbitals is some-
what balanced it may be not that critical and ac-
ceptable estimates of polarizabilities can be ob-
tained in semiempirical context (see Ref. [21]). The
situation comes to a visible disaster with the stron-
gest renormalizers: late halogene anions (Br�, I�) or
halcogene dianions (Se2�, Te2�). When treated
semiempirically these important ligands cannot
have any polarizabilty at all—no vacant orbitals are
present. In this situation, one has to accept extend-
ing the set of necessary semiempirical parameters
on account of polarizabilities. It should not be con-

sidered as a catastrophe: so-called ab initio methods
require much more parameters to describe their
respective basis sets or pseudopotentials used, none
of which individually has any physical sense. Po-
larizabilities, however, have transparent physical
meaning and can also be used in a line with the
proposition of developing a “new generation” of
semiempirical methods [22] characterized among
other features by extending these latter by includ-
ing dispersion forces ultimately determined by the
same polarizabilities and being in a way another
face of the same effect: of interactions between the
fluctuations of electron densities in different parts
of the system as omitted from the Hartree-Fock or
other mean field picture. An alternative might be
developing estimates of the polarizabilities of the
closed shell anions with no vacant orbitals on the
basis of some analysis of interplay between the
valence shell electrons considered explicitly and
both the core and empty states not included in the
calculation; however, this option will be postponed
for the future.
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