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A. L. TCHOUGRÉEFF,1,2,3 J. G. ÁNGYÁN4

1JARA, Institute of Inorganic Chemistry, RWTH Aachen, Germany
2Poncelet Laboratory, Independent University of Moscow, Moscow Center for Contunous
Mathematical Education, 119991 Moscow, Russia
3Division of Electrochemistry, Department of Chemistry, Moscow State University,
119991 Moscow, Russia
4CRM2, Nancy-University, CNRS, B.P. 239, Vandoeuvre-lès-Nancy, France

Received 18 January 2009; accepted 17 February 2009
Published online 3 June 2009 in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/qua.22201

ABSTRACT: We analyze various approaches to construct exchange-correlation
functionals which are able to describe states of definite spin multiplicity in the density
functional theory (DFT) realm and outline the characteristics of possible functionals
consistent with the Kohn–Sham theory. To achieve this goal the unitary group
technique is applied to label many-electron states of definite total spin and to calculate
the corresponding analogs of the Roothaan coupling coefficients. The possibility of
using range separated Coulomb potential of electron–electron interaction for
constructing functionals discriminating multiplet states in the d-shells is explored and a
tentative system of state-specific functionals, covering nontrivial correlations in d-shells
of transition metal ions, is proposed for the Fe2� ions. © 2009 Wiley Periodicals, Inc. Int J
Quantum Chem 110: 454–475, 2010
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1. Introduction

A lthough the density functional theory (DFT)
based methods of modeling electronic struc-

ture of molecules and solids widely proliferate dur-

ing last decades [1–3], the problem of consistent
description of transition metal and rare earth com-
pounds with open d- and f-shells, respectively, re-
mains a still unresolved, challenging problem in
this framework [4]. One of the main reasons for this
failure of the DFT is that the multiplet spin/orbital
momentum states are generally not easily described
within the DFT paradigm. The source of that inti-
mate “unfriendliness” of the DFT to the multiplet
states lays in the “oversymmetry” of the fundamen-
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tal quantity pertaining to the realm of DFT: the
one-electron density. As it has been demonstrated
many times, states of different total spin and/or
spatial symmetry may produce equal one-electron
densities. The complication arising from this is the
impossibility to distinguish the nature of the
ground state on the basis of the total density only:
although only one of say two functions represents
the ground state, that is, the exact energies of the
involved states may be different, they turn out to be
degenerate in the DFT context. In other terms, if the
same densities are fed to the “universal” density
functional implied by the DFT, it is going to pro-
duce the same value of the electronic energy for
states whose exact energies are different. Of course
the latter remark may be opposed by noting that the
“universal” functional is going to output the
ground state energy only, but in this case it is not
clear how other important pieces of information
concerning the nature of this ground state (e.g., its
spin multiplicity) can be extracted from such an
answer.

This situation certainly requires some clarifica-
tion which is addressed in this article. To do so, we
give below a brief description of relevant elements
of the electronic structure theory (Section 2). Then
we consider an archetypical example of the prob-
lems encountered by the DFT while trying to repro-
duce correct spin properties of many-electron sys-
tems (Section 3). Then we propose a general scheme
allowing to include states of definite spin in the
DFT theory (Section 4). This, however, does not
solve the problem of the multiple states in the open
d- and f-shells of the transition and rare earth ions.
For this end, we explore in Section 6 the possibility
to circumvent these problems with use of the short/
long range separation of Coulomb interaction be-
tween electrons and propose in Section 5 some
conceivable state-dependent definition of ex-
change-correlation functionals capable to repro-
duce the energies of nontrivially correlated many-
electronic states in the d-shell of the Fe2� ions.

2 Theoretical Background

2.1. ELECTRONIC DISTRIBUTION

The main idea of the DFT is to reduce the de-
scription of entire electronic structure to a single
quantity: the one-electron density, the diagonal part
of the one-electron density matrix. The possibility
of such a reduction is proven by the Hohenberg–

Kohn theorems [5] which state an existence of a
universal one-to-one correspondence between one-
electron external potential and the one-electron
density in that sense that not only the one-electron
potential acting upon a given number of electrons
uniquely defines the ground state of such a system,
that is, its wave function and thus the one-electron
density, but also that for each given density inte-
grating to a given number of electrons N a one-
electron potential yielding that given density can be
uniquely defined from the density. The “density
only” formulation of the electronic structure prob-
lem, even if it is practically achieved, leaves unan-
swered an important question of the nature of the
ground state thus obtained, for example, about its
total spin (or other symmetry features).

Incidentally, the symmetry properties of quan-
tum states, like total spin are easier expressed in
terms of wave functions (see Ref. [6].) so it would be
practical to consider tentative relation between the
wave function and density only pictures of the
electronic structure. The required relation can be
established with use of the reduced one- and two-
electron density matrices as much simpler objects
than the wave functions, providing equivalent de-
scription of electronic structure. The reduced den-
sity matrices respectively depend on two (x, x�) and
four (x1x2, x1�x2�) coordinates:

��1�� x; x�� � N��*� x, x2,. . .xN�

� �x�, x2,. . ., xN)dx2. . .dxN,

��2�� x1x2; x�1x�2� �
N�N � 1�

2 ��*� x1, x2, x3,. . .xN�

� �� x�1, x�2, x3,. . ., xN�dx3. . .dxN, (1)

where the composite electronic coordinate x repre-
sents a pair (r, s) of three dimensional radius vector
r of an electron and of the discrete variable s taking
either of the two allowed values �� /2 of the pro-
jection of electronic spin. The transition to the de-
scription in terms of reduced density matrices is
itself a significant simplification (although being
absolutely exact). The one-electron density implied
by the DFT theory appears then as a result of fur-
ther reduction of Eq. (1):

��r� � �
s

��1��rs;rs� (2)
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Thus according to the DFT paradigm the one-
electron density which depends on one spatial ra-
dius-vector must be able to serve as an equivalent
substitute to the N-electronic wave function depen-
dent on N radius vectors and N more spin projec-
tions of all electrons involved. The obvious loss of
information which takes place by going from Eq. (1)
to Eq. (2)—we remind that going from the wave
function �(x1, x2, x3, . . . xN) to the reduced density
matrices by Eq. (1) does not produce any loss of at
least important information—must be compensated
by the “universal” and “exact” density functional
which is in general unknown.

2.2. ELECTRONIC ENERGY

Leaving aside the “ideal” DFT using the un-
known “universal” and “exact” functional of the
density Eq. (2) and turning to pragmatic methods
pertaining to the DFT realm needs some approxi-
mate expressions for the energy presented as a
functional of the density Eq. (2) only. In the wave
function and in the equivalent reduced density ma-
trix formulations the energy has the form:

E � �T̂e	 � �V̂ne�
R��	 � �V̂ee	 � Vnn�
R�� (3)

where {R} stands for the set of radius-vectors of all
nuclei inducing the electrostatic potential external
to the electrons of the system. In the coordinate
representation, the above averages acquire familiar
appearance:

�T̂e	 � �
1
2�

s
�

r�r�

���1��rs;r�s�dr

�V̂ne�
R��	 � �
i

Zi� ��r�dr
�Ri � r�

�V̂ee	 �
1
2�

ss�

����2��rs,r�s�;rs,r�s��
�r � r�� drdr�

Vnn�
R�� �
1
2�

i�j

ZiZj

�Ri � Rj�
; where

� �
�2

� x�2 �
�2

� y�2 �
�2

� z�2 (4)

where the expressions Eq. (4) are assumed to be
specific for a given geometry {R} and for an elec-

tronic state described by the N-electronic wave
function � � � (x1, . . . , xN) used to define the
density matrices Eq. (1). The first row in Eq. (4) is
the kinetic energy of electrons, the second row is
the energy of Coulomb attraction of electrons to
nuclei, the third row is the energy of interelectronic
repulsion, and the fourth one is the energy of Cou-
lomb repulsion of the nuclei, which does not de-
pend on the electronic density/wavefunction.

In the above expressions Eqs. (3) and (4), only the
average of the nuclear potential V̂ne is exactly a
functional of the required form: that of the one-
electron density Eq. (2). All other terms in Eqs. (3)
and (4) require further consideration. It applies sim-
ilarly to the remaining one- and two-electron con-
tributions to the energy. As for the one-electron
term, the kinetic energy requires knowledge of the
one-electron density matrix Eq. (1) rather than its
diagonal part Eq. (2) although effectively in a nar-
row range of spatial separations r � r�, which must
be sufficient to determine the second derivative.
The attempts to avoid this bottleneck and to obtain
pragmatic DFT methods brought Kohn and Sham
[7] to their famous orbital construct which allowed
them to express the kinetic energy in terms of some
single-determinant wave function yielding by def-
inition the required (exact) one-electron density.
Then the kinetic energy is calculated as one of the
system of noninteracting electrons described by a
single determinant built of KS orbitals.

2.3. ELECTRONIC DENSITY AND
ELECTRONIC ENERGY DECOMPOSITIONS

Although the Kohn–Sham construct offers an ef-
ficient technique to handle the difficult kinetic en-
ergy problem and provide a very good first approx-
imation to it, the representation of the electron-
electron interaction energy in terms of the one-
electron density (and possibly further parameters
derived from the KS determinant) remains the cen-
tral problem on modern density functional theory.
Generally, calculating the Coulomb electron-elec-
tron energy (3-rd row of Eq. (4)) requires knowl-
edge of the two-electron density matrix. According
to [8] it decomposes:

��2�� x1, x2; x�1, x�2� �
1
2
���1�� x1; x�1� ��1�� x2; x�1�

��1�� x1; x�2� ��1�� x2; x�2�
�

� �� x1; x2; x�1; x�2�, (5)

where the first (determinant) term corresponds to
the part of the two-particle density matrix which
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can be accounted for even in the independent elec-
trons approximation. The second term in Eq. (5)—
the cumulant of the two-particle density matrix—is
responsible for deviation of electrons’ behavior
from the independent electron model, that is, for
their Coulomb correlations. The Coulomb interac-
tion of electrons Eq. (4) can be decomposed to con-
tributions associated to the terms of the above two-
particle density matrix decomposition Eq. (5):

�Vee	 � EH � E� xc;

E� xc � E� x � E� c (6)

by singling out first the “classical” part of the Cou-
lomb interaction energy, the Hartree energy:

EH �
1
2�

ss�
���1��rs,rs���1��r�s�,r�s��

�r � r�� drdr�

�
1
2���r���r��

�r � r�� drdr� (7)

and then the exchange and correlation energies:

E� x � �
1
2�

s
���1��rs,r�s���1��r�s,rs�

�r � r�� drdr� (8)

E� c � �
1
2�

ss�
���rs,r�s�;rs,r�s��

�r � r�� drdr� (9)

whose definitions Eqs. (8) and (9) are given respec-
tively in terms of the off-diagonal part of one-elec-
tron density matrix �(1) (r�s, rs) and of the two-
electron density matrix cumulant �(rs, r�s�; rs, r�s�),
the difference between the exact two-electron den-
sity matrix and its Hartree-Fock (self-consistent
field) estimate.

Although the definition of the Hartree-energy is
unique, and constitutes together with the nuclear-
electron repulsion energy the part of the total en-
ergy that can be written straightforwardly as a sim-
ple analytic functional of the one-particle density,
the exchange and correlation energies are defined
in quantum chemistry and in DFT in different
ways. As far as the exchange energy is concerned,
one should remark that the one-particle density
matrix, appearing in Eq. (8) is supposed to be exact.
This quantity is not available even in exact KS
theory, where we have at best the one-particle den-

sity matrix associated to the single determinant
constructed from the exact KS orbitals. By conse-
quence, the exact exchange energy in DFT is in
general not equal to E� x.

It must be observed that the usual definition of
the correlation energy in quantum chemistry, pro-
posed by Löwdin in Ref. [8] differs from that given
in Eq. (9) which follows rather the suggestion due
to Kutzelnigg and Mukherjee [9, 10]. This latter
definition has the conceptual advantage that it uses
the quantities entering Eqs. (7)–(9) irrespective to
any approximate method of calculation of the elec-
tronic energy. Some authors, (cf. e.g., Refs. [11, 12])
argue that pragmatic DFT methods can be consid-
ered as approximations to the two-electron density
matrix cumulant.

This situation is as well slightly more compli-
cated in conventional Kohn–Sham theory, where
the correlation energy involves also the difference
of the exact and KS kinetic energies. However, this
kinetic energy contribution can be assimilated to a
potential energy term the virtue of the adiabatic
connection procedure, which allows one to write
the total correlation energy as an average electron–
electron interaction over the adiabatic connection
path.

3. Symmetry Nonsensitivity of the
Density-only Methods

3.1. ARCHETYPICAL EXAMPLE OF EXISTING
PROBLEMS

To better understand the problems which appear
in the DFT realm when trying to describe the cor-
rect total spin of a many electronic state, we con-
sider the simplest system of two electrons occupy-
ing spatial orbitals �a	 and �b	 (which can be
understood as notation for one-dimensional irre-
ducible representations of a point group) and form-
ing corresponding singlet and triplet states 1B and
3B. The relevant wave functions in the coordinate
representation are given by:

�1B� x1, x2� �
1
2�a�r1�b�r2� � b�r1�a�r2���	�s1�
�s2�

� 
�s1�	�s2��,

�3B� x1, x2� �
1
2�a�r1�b�r2� � b�r1�a�r2���	�s1�
�s2�

� 
�s1�	�s2��, (10)
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both having the zero projection of the total spin.
Following the definitions of the one-electron den-
sity matrices Eq. (1) the states Eq. (10) immediately
yield exactly the same one-electron density matrix:

�2s�1B
�1� � x, x�� �

1
2�	*�s�	�s�� � 
*�s�
�s����a*�r�a�r��

� b*�r�b�r��� (11)

irrespective to the total spin of these states. This
result is well known for decades and appears even
in textbooks [13]. Obviously the density Eq. (2)
which is required by the DFT is as well the same for
the two spin states.

The exact two electron density matrices calcu-
lated according to their definition Eq. (1) from the
wave functions Eq. (10) are, however, different:

�1,3B
�2� � x1x2, x�1x�2� �

1
4�	*�s1�
*�s2� � 
*�s1�	*�s2��

� �	�s�1�
�s�2��
�s�1�	�s2��� � �a*�r1�b*�r2�

 b*�r1�a*�r2���a�r�1�b�r�2�  b�r�1�a�r�2��

with the upper sign corresponding to S � 0 and the
lower one to S � 1. Comparing the above expres-
sion with the decomposition Eq. (5), one easily sees
that only the cumulant of the two-electron density
matrix can be responsible for the distinguishing of
the two-electron density matrices for the singlet
and triplet states.

The “oversymmetry” of the density (and even of
the first order density matrix) with respect to the
total spin exemplified by Eq. (11) is not accidental,
but is a consequence of a very general result (see
Refs. [14, 15] and references therein). Even a higher
symmetry can be proven [16]. In its modern formu-
lation (Theorem 1 of Ref. [14]) it reads: “The elec-
tron density of an arbitrary N-electron system,
characterized by the N-electron wave function cor-
responding to the total spin S, and constructed on
some orthonormal orbital set, does not depend
upon the total spin S of the state and always pre-
serves the same form as it is for a single-determi-
nant wave function.” The proof given in Ref. [14]
relies not upon the spin properties themselves
rather on the manifestation of permutation symme-
try of the exact wave function in terms of the total
spin. We address this issue later in Section 4.2.1.

3.2. METHODS PROPOSED TO TREAT
COINCIDING DENSITIES

3.2.1. Multiplet Sum Method

The first attempt to get around this problem of
coinciding densities in the DFT context dates back
to the work Ref. [17]. The analysis of problems
performed there is precisely repeated in the above
two-electron two-orbital model. The prescription
Ref. [17] concerning the way out reads as follows: to
evaluate correctly the energy of the singlet and
triplet states 1B and 3B in terms of the quantities
which can be obtained with use of single determi-
nant wave functions. To do so, one has to address
the single determinant function �a	b
� which is not
a pure spin state, but in fact is a linear combination
of two above spin states:

�a	b
� �
1

�2
��1B,Sz � 0	 � �3B,Sz � 0	) (12)

Averaging the Hamiltonian over the linear com-
bination Eq. (12) of the pure spin states immedi-
ately yields:

1
2E�1B� �

1
2E�3B� (13)

The energy of the triplet state entering the above
combination can be independently extracted from
another single determinant wave function: �a	b	�
corresponding to the component of the triplet with
the spin projection �1. Thus one can express the
energy of the (nonsingle-determinant) singlet state
linearly combining the averages of the Hamiltonian
over the single determinant states of which, how-
ever, one belongs to the spin projection �1. Obvi-
ously the above move was only possible because
the off-diagonal matrix element of the Hamiltonian
between the singlet and triplet contributions to the
determinant of interest vanishes due to the spin
symmetry. The different expressions for E(1B) and
E(3B) thus obtained are then treated as required
distinct energy functionals to be used to calculate
the energy, respectively, for the singlet and triplet
states possessing the same one-electron density. It
is instructive to check (and in this simple case it can
be done by direct evaluation) where the difference
between the energy expressions comes from. Insert-
ing the one-electron density matrix Eq. (11) which is
the same for both spin states in the definitions of the
Hartree and exchange energies Eqs. (7) and (8)
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yields for the both spin states equal Hartree and
exchange contributions:

Hartree
1
2��aa�aa� � �aa�bb� � �bb�aa� � �bb�bb��;

exchange
1
2��aa�aa� � �ab�ba� � �ba�ab� � �bb�bb��.

(14)

One can see that (i) the self interaction terms in
the Hartree contribution are precisely cancelled by
the corresponding terms in the exchange part; (ii) at
the same time, obviously, there is no other source
where the difference between the spin state ener-
gies could come from except the cumulant of the
two-electron density matrix and thus the correla-
tion energy as defined by Eq. (9) is responsible for
the difference in the resulting expressions:

E�1B� � �aa�bb� � �ab�ba�

E�3B� � �aa�bb� � �ab�ba� (15)

On the other hand one may notice that the clas-
sification of the energy contributions as exchange or
correlation ones by Eqs. (8) and (9) is in some way
arbitrary as well. Indeed, for the above model the
energy of the triplet state with the spin projection
�1 is exactly the sum of the Hartree and exchange
contributions because the latter state is represented
by a single determinant wave function for which
the cumulant precisely vanishes. However, the
equal energy for the triplet state with the zero spin
projection breaks down differently: into the Har-
tree, exchange, and correlation contributions,
where the Hartree contribution is the same as in the
case of the spin projection �1, but only the sum of
the exchange and correlation contributions is the
same for different values of Sz.

The above way leading to the energy expressions
for different spin states is not completely satisfac-
tory (and not clearly generalizable): although for-
mally, the results can be treated as functionals of
the density the difference of the two energy expres-
sions is obtained by a kind of trick. Referring to the
triplet component with Sz � �1 in the derivation of
the multiplet energy looks out as an alien element
(in fact the energy is uniquely determined by the
spatial multipliers in the wave functions Eq. (10),
without any reference to the spin components at
all). This strange element of the derivation ap-

peared in order to compensate somehow the ele-
ment of the general theory which is missing in the
DFT, the cumulant of the two-electron density ma-
trix. Despite this criticism, the result of the deriva-
tion is very transparent; it reduces to deriving ac-
cording to McWeeny’s notice in Ref. [18] “of a
particular type of energy expression—irrespective
of the nature of the wavefunction,” namely one-
linear in the Coulomb and exchange two-electron
integrals over the involved orbitals.

Further development of this approach is based
on the assumption that it is always (or at least for
unspecifically wide class of cases) possible to ex-
press the energy of a pure spin multiplet state al-
lowable for a given number of electrons/orbitals as
a linear combination:

E�n�S� � �
i

wi
n�SEi (16)

where Ei are the diagonal matrix elements of the
energy operator taken with respect to all necessary
Slater determinants (numbered by i). The one-electron
density (matrices) corresponding to these determi-
nants are different and the whole scheme becomes
workable provided the set of the coefficients (weights)
wi

�s exists and they are uniquely defined by the spin
and symmetry quantum numbers � and S and other
quantum numbers n serving to distinguish poten-
tially existing states with equal � and S. Apparently,
only a restricted number of examples of such func-
tional forms is known. The reason is quite simple and
the above consideration allows to single out the range
of cases where the derivation analogous to that of Eq.
(12) can be performed. It applies if the total spin
allows to completely distinguish the electronic states.
In this case, the energy of the state of the highest
available spin Smax can be expressed through a single
determinant function (the cumulant is vanishing)
with the highest available projection of the total spin.
Then this result can be used to evaluate the energy of
the state with Smax � 1, etc. The recipe immediately
fails as soon as multiple states of the same total spin
appear in the system. This is, however, the everyday
life, so in what follows we switch to considering fur-
ther possibilities of constructing the energy function-
als useful in this situation.

3.2.2. Restricted Open Shell KS (ROKS)
Method

The situation with reproducing total spin depen-
dence of the energy as it appears in the DFT context
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is by no means unique: the same problem arises in
the Hartree–Fock–Roothaan (HFR) context because
the latter lacks any adequate representation of the
cumulant of the two-electron density matrix as
well. Within the “extended” HFR context, some
ways out have been proposed. Incidentally, the
method of Ref. [17] is precisely the Slater multiplet
sum method Ref. [19] which migrated from the
HFR to the DFT context. Another option is the
ROHF (restricted open shell Hartree–Fock) method
whose respective migration resulted in a range of
the ROKS (restricted open shell Kohn–Sham proce-
dures [20, 21]) being the DFT counterpart of the
former. Despite different appearance they have
many common features (and we do not address
here the methods based on the statistical-ensemble-
averaging).

The derivation of the ROHF (or equivalently
“old MC SCF,” see below) bases on the general
expression of the form:

E�n�S� � �
ij

Ci
n�SCj

n�SHij (17)

where Ci
n�S are the expansion coefficients of the

eigenfunction �n�S�x1,x2,x3,. . .xN� of the many-elec-
tron hamiltonian over some appropriate basis states
�i�x1,x2,x3,. . .xN� (e.g., the Slater determinants, see,
however, below). In this case, no alien states of
wrong spin projection may appear. On the other
hand, the contribution of the off-diagonal elements
Hij to the energy may be nontrivial (in contrast with
Eq. (16)). The knowledge of the expansion coeffi-
cients Ci

n�S in general requires diagonalization of the
Hamiltonian matrix making the expansion coeffi-
cients and thus the energy itself some sophisticated
irrational function of the Hamiltonian matrix ele-
ments including two-electron integrals. It was
Roothaan [22] who first noticed that certain states
�n�S of atoms and linear molecules, even those re-
quiring many-determinant (multireference, multi-
configurational) wave functions, yield energy ex-
pressions which are linear with respect to two-
electron integrals (ii� jj) and (ij� ji) (respectively,
Coulomb and exchange ones). It is only possible if
the wave function expansion coefficients Ci

n�S in Eq.
(17) can be determined on the symmetry grounds,
that is, without nontrivial diagonalization. In this
case, there is no need that the off-diagonal elements
Hij which are linear expressions in the two-electron
integrals and thus give a linear contribution to the
energy functional disappear as required by Eq. (16).

Only the possibility to have the expansion coeffi-
cients Ci

n�S independent on the specific values of the
Hamiltonian matrix elements is the true prerequi-
site for obtaining the expressions for the energy of
the required (linear) form. Nevertheless, the num-
ber of cases when the described procedure was
possible in fact reduces to the pn states of atoms and
�n and �n states of linear molecules. Similarly, the
ROKS scheme proposed in Ref [21] and represent-
ing a migration of the Roothaan’s reasoning to the
DFT context allowed to obtain the functional forms
for the same set of states: pn, �n, and �n. Thus the
forecast of the year 1960 due to Roothaan [22]: “It is
a relatively simple matter to extend the open-shell
theory just presented in such a way that other im-
portant classes of atomic states can be accommo-
dated, as for instance, the dN configurations for the
transition elements. We postpone such generaliza-
tions for the present, and include whatever new
treatments may be necessary with the actual appli-
cations planned for the future” never became true
and the dN states generally cannot be squeezed in
the ROHF/ROKS scheme.

Under other angle of view, validity of the
Roothaan or similar schemes means that the cumu-
lant of the two-electron density matrix can be in
some particular case recovered by symmetry based
manipulations. In the cases considered by Roothaan
himself and recently used in the DFT context in Ref
[21], the possibility of obtaining closed expressions
for the energy functional in terms of two-electron
integrals over orbitals involved is stipulated by ad-
ditional symmetry of the system (in the chemical
context it goes about additional symmetry group G
with irreducible representations �, where G �
SO(3) for an atom G � SO(2) for a linear molecule,
and may be some point group for other molecules)
which allows to figure out the expansion coeffi-
cients Ci

n�S. It is clear that for an overwhelming
majority of cases, it is impossible to find any non-
trivial symmetry group G � C1 which predefines a
restricted character of any Roothaan-like treatment.
It is thus our next purpose is to explore other pos-
sibilities of designing energy functionals distin-
guishing the states of different spin multiplicities in
the DFT context.

4. Spin and Unitary Symmetry of the
Electronic Wave Function

As we mentioned previously any reference to the
spin projections throughout the derivation of the
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energy expressions for the two-electron two-orbital
model looks out as an alien element. The ultimate
reason for that is that the nonrelativistic Hamilto-
nian does not depend on spin variables at all and
the energy itself as well as the differences in its
form for different spin states originates solely from
the spatial multiplier of the many-electronic wave
function (spatial function). The idea to restrict the
entire consideration by those spatial functions per-
sists almost from the beginning of the quantum
chemistry and is known as “spin-free quantum
chemistry” [23]. It can be given different formula-
tions of which we use one based on the unitary
group (see Ref. [18]). We briefly remind its basic
facts in the Appendix.

4.1. UNITARY SYMMETRY OF THE SPATIAL
MULTIPLIER

The construct using the permutational symmetry
of the spatial part of the wave function had been
used for developing the so called generalized Har-
tree–Fock procedure [24] which had numerous de-
scendants (see e.g., [25, 26]). They basically per-
formed the task of presenting the energy in the
HFR-like form: linear with respect to Coulomb and
exchange integrals over the orbitals involved with
the coefficients dependent on the permutational
symmetry of the spatial part of the wave function
and thus on the total spin. The permutational sym-
metry, however, addresses the many-electron wave
functions in the coordinate representation which is
of restricted use in quantum chemistry. By contrast
the wave functions actually used are those in the
representation of the occupation numbers of the
orbitals involved. For that reason, it is more prac-
tical to switch to labeling of the many-electron func-
tions by irreducible representations of the unitary
group which are closely related to those of the SN

group. The corresponding construct is described in
the Appendix.

4.2. PHYSICAL QUANTITIES IN TERMS OF
UNITARY GROUP

Going to the representation of the U(M) group
has that advantage that it allows to easily write
down the energy of many electron states. This is
done as follows: for each Young pattern � one can
construct the set of generators Eij

� (ij � 1 � M) of
the group U(M) acting in the space of the irreduc-
ible representation � � � (M, N, S) whose matrix
elements between the tableaux v and v� can be

calculated irrespective to the physical nature of the
system described. The set of generators completely
defines the action of the group U(M) in the irreduc-
ible subspace of its tensors of the rank N with the
permutational/spin symmetry stipulated by the
Young pattern �.

The diagonal generators Eii
� are diagonal in the

basis of Young tableaux and their matrix elements
are equal to the occupation number (ni � 2, 1, 0) of
the i-th orbital in the Young tableau �v:

��v�Eii
���v�	 � �vv��Eii

�	�v � �vv�ni

By contrast off-diagonal generators Eij
� (raising

ones if i � j and lowering ones if j � i) have
nonvanishing matrix elements ��v�Eij

���v�	 if the
tableau v� contains at least one orbital symbol j,
whereas the tableau v contains one less orbital sym-
bol j than v� and one more orbital symbol i than it.
From this, it follows that the off-diagonal genera-
tors Eij

��i � j� have no nonvanishing diagonal matrix
elements.

4.2.1. One-Electron Density in the Unitary
Group Formalism

The generators Eij
� are by definition the compo-

nents of the spatial one-electron density operator
restricted to the subspace of the states belonging to
the � pattern (those having transformation proper-
ties of the corresponding rank N tensors with the
permutational symmetry stipulated by the Young
pattern � or equivalently having the total spin pre-
scribed by this pattern):

Eij
� � �

�

P����i���� j��P�,

where P� stands for the operator projecting N-elec-
tron wave function to the subspace of the functions
with the spatial part having the permutational sym-
metry of the irreducible representation � of either
SN or U (M) groups. It is remarkable to note that the
Young tableaux states have an important property
similar to that of the Slater determinants: the one-
electron density matrices generated from such
states are diagonal in the basis of the orbitals in-
volved in their construction.

With the use of this construct, one can easily
check the validity of the Kaplan’s Theorem 1. In-
deed, for whatever Young tableau �v, the one elec-
tron density pertinent to the corresponding N-elec-
tron state reads:
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��v�r,r�� � �
s

��v
�1��rs,r�s�

� �
s

��v����rs���r�s���v	

� �
�

�
s

�*�s���s��
ij

�*i�r��j�r��

� ��v��i���� j����v	 �

� �
ij

�*i�r��j�r����v�Eij
���v	 �

� �
ij

�*i�r��j�r���ij��v�Eii
���v	

� �
i

ni�*i�r��i�r�� (18)

which in turn does not depend on the permutation
symmetry labels �v, which is the only connection to
the total spin. Thus even the spatial density matrix
(not only the density) is permutation/spin indepen-
dent as stated in Ref. [14].

4.2.2. Energy in the Unitary Group Formalism

Further development is based on the possibility
to express the blocks of the Hamiltonian matrix
pertaining to N electrons in M orbitals with total
spin S through the generators Eij

�, with � � � (M, N,
S). The required representation reads Ref. [18]:

H � �
�
H� (19)

H� � �
ij

hijEij
� �

1
2�

ijkl

�ij�kl ��Eij
�Ekl

� � �jkEil
�� (20)

The matrix elements hij are the sums of the re-
spective matrix elements of the kinetic energy T̂ e of
electrons and of the external Coulomb potential V̂ne;
the quantities (ij� kl), the two-electron matrix ele-
ments of the Coulomb interactions.

For each of the states ��v	 represented by the
Young tableau with the Young pattern � and the
filling v (this information suffice to define the spa-
tial part of the N-electron wave function) the expec-
tation value of the energy reads:

E��v� � �
ij

hij�Eij
�	�v �

1
2�

ijkl

�ij�kl ���Eij
�Ekl

� � �jkEil
��	�v

(21)

For the one-electron contribution to the energy
one gets:

�
ij

hij�Eij
�	�v � �

i

hii�Eii
�	�v � �

i

hiini

and the Coulomb interaction of electrons is ex-
pressed through the Coulomb and exchange inte-
grals with respect to the orbitals involved in the
construction of the states represented by the Young
tableaux:

Hartree
1
2�

ij

�ii�jj��Eii
�Ejj

�	�v � exchange � correlation

�
1
2�

i�j

�ij�ji��Eij
�Eji

� � Eii
�	�v � �

i

�ii�ii��Eii
�	�v (22)

The Young tableau states �v are the eigenstates
of the diagonal generators Eii

�. For that reason the
Hartree contribution to the energy can be rewritten:

Hartree
1
2�

ij

�ii�jj��Eii
�	�v�Ejj

�	�v �
1
2�

ij

�ii�jj�ninj (23)

in terms of the products of the one-electron densi-
ties. From this, we see that the Hartree part of the
Coulomb energy is uniquely defined by the occu-
pation numbers of the spatial orbitals, that is, only
by the spatial density in the representation of orbit-
als. We see that as in the other representations the
Hartree term is contaminated by the self-interaction
of electrons and that the principal effect for which
the true exchange term is responsible in the HFR
context, the avoiding of the self interaction, is guar-
anteed by the specific form of the coefficient at the
integrals of the (ii�ii) type which must be absorbed
by the exchange contribution to the energy. The
averages of the off-diagonal generators’ products
entering the expression Eq. (22) are not, however,
uniquely defined either by the occupation numbers
of the orbitals in the tableau �v or by the total spin,
prescribed by the pattern �. They depend also on
the mutual positions of the orbital symbols in the
tableau. This is precisely the result obtained many
years ago in Ref. [27] under the name of the spin-
free self consistent field theory.

From the ROHF (old MCSCF) point of view the
result Eqs. (21) and (22) can be considered as a
recipe of obtaining the coupling coefficients aij and
bij at the Coulomb and exchange integrals in the
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462 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 110, NO. 2



ROHF expressions for the energy, which inciden-
tally acquire the �v dependence:

aij
�v � �Eii

�Ejj
� � �ijEii

�	�v (24)

bij
�v � �Eij

�Eji
� � Eii

�	�v (25)

Turning back to expressions Eq. (17), one can say
that constructing the spatial Young tableaux states
provide the expansion coefficients Ci

�v for the re-
spective linear combinations of the N-electron
Slater determinants, yielding the total spin speci-
fied by the Young pattern. These coefficients are
derived by purely symmetry reasons and do not
depend on the matrix elements of the Hamiltonian
thus satisfying the requirement of “universality.”
On the other hand it is obvious that specifying the
total spin only does not suffice to specify the elec-
tronic state. The procedure implied by Eq. (21) pro-
vides for each allowable set of M, N, S the whole
bunch of energy expressions labeled by the rows v
of the irreducible representation � � � (M, N, S).

4.3. MULTIPLET SUM METHOD FROM THE
UNITARY PERSPECTIVE

The first usage of the above formalism is to re-
peat the success of the MSM in case of two electrons
in two orbitals without addressing explicitly the
foreign component of the triplet state with Sz � �1.
Indeed, the spatial parts of the multiplet states in
Eq. (10) are equivalently represented as the Young
tableaux states:

1B� a � b 	

3B� a

b �O
Two electrons in two orbitals form only one spa-

tial function for the spin triplet state, but in addition
to one given above two more functions compatible
with the spin singlet state:

� a � a 	, � b � b 	

are available. Three spatial functions compatible
with the spin singlet state together form a basis of
the three-dimensional irreducible representation of
the group U (2) corresponding to the total spin 0.
The single spatial function compatible with the spin

triplet state spans the one-dimensional irreducible
representation of the group U(2). The Young pat-
tern label � here can be replaced by indicating the
total spin only. Then the generator Eab

S � 1 � 0, but
for S � 0 one has:

�a a�Eab
S�0�a b	 � �2 � �b b�Eab

S�0�a b	

These values suffice to perform the matrix mul-
tiplication of the generators Eab

S�0Eba
S�0 in the general

expressions Eq. (22), so that we obtain for the con-
tribution of the average interaction to the energy:

E�1B� � �aa�bb� � �ab�ba�

E�3B� � �aa�bb� � �ab�ba�

as it should be. We see that the archetypical result is
reproduced within the Young tableaux technique
without addressing the component of the spin mul-
tiplet with a foreign value of the spin projection.
Also the self-interaction contamination is removed
automatically.

4.4. DFT IMPLICATIONS

All the above treatment was not in any way
related to the DFT realm. The possibility of estab-
lishing such a relation can be based on the recog-
nition of the fact that the symmetry (in particular
the total spin) dependence must be extraneously
introduced into DFT considerations [28, 29] analo-
gously to the treatment by Filatov and Shaik Ref.
[21]. The unitary group formalism allows us to
conclude that for a given set of consistent values of
M, N, S one arrives to the family of functionals
labeled by the rows v of the irreducible representa-
tion � � � (M, N, S) of the U (M) group. The spin
symmetry features of these functionals are con-
densed in the �Eij

�Eji
� � Eii

�	� (or aij
�v, bij

�v ) coefficients
given above.

The energy matrix elements reflecting specific
features of the system can be easily figured out. The
coefficients aij

�v for the Coulomb integrals (ii� jj)
which define the Hartree part of the Coulomb en-
ergy are known, but they are of no practical use in
the DFT context, where the Hartree part of the
interaction is determined directly from the electron
density. Relatively, problematic (in the DFT con-
text) is to decide where the energy matrix element
to be combined with the coupling coefficients
�Eij

�Eji
� � Eii

�	�v (exchange) and � �Eii
�	�v (self-inter-
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action) has to come from. This choice must be com-
patible with various theoretical settings. First of all
we notice that if a hybrid functional is used which
contains some fraction of the Hartree–Fock ex-
change the latter must be modified accordingly so
that the corresponding (ij�ji) integrals over the
Kohn–Sham orbitals be included with the correct
coefficients �Eij

�Eji
� � Eii

�	�v. The same applies to the
integrals (ii�ii) which together with coefficients
� �Eii

�	�v will take care about some fraction of self-
interaction.

Further concerns are related with the treatment of
the nontrivial parts of the exchange-correlation func-
tionals within the �v numbering of the spin (permu-
tation) states. This can be solved on the basis of certain
consistency requirements. Among possible consis-
tency requirements, the most natural is that with the
TDDFT. The TDDFT approximation is equivalent to
constructing the corresponding time evolution of the
many-electronic state in the basis of single electron
excitations (particle-hole pairs) above the KS single
determinant wave function. Leaving aside the ques-
tion of the area of applicability of such an approach,
we notice that it requires an estimate of the two-
electron integrals coupling between different singly
excited determinants. The interaction appears as sec-
ond functional derivative of the energy with respect
to density (first functional derivative of the exchange-
correlation functional). In the orbital representation,
these derivatives acquire the necessary form of two-
electron integrals with the kernels determined by the
form of the used exchange-correlation functional. On
the other hand the (ij�ji), integrals appear in ROHF
and in unitary group formalism for �v states as a
consequence of configuration interaction between dif-
ferent Slater determinants implicitly entering in the
expansion of the Young tableau state �v. Thus to
ensure the compatibility of the corresponding compo-
nents of the theory, the couplings between the ele-
mentary excitations in TD-DFT and between Slater
determinants in expansions of �v states must be the
same. Thus they can be expressed through the inte-
gral kernels of the interaction (e.g., according to [30]):

�ij�ji�xc � ���*i�r��j�r� fxc�r,r���*j�r���i�r��drdr�; (26)

where

fxc�r,r�� �
�vxc�r�
���r��

Namely these quantities must be inserted in the
expressions for the exchange-correlation energies to
get these later consistent with the total spin/per-
mutation symmetry of the underlying many-elec-
tronic ground state. This is also in agreement with
the way of constructing the coupling operators by
Filatov and Shaik in their version of ROKS Ref. [21]
and a similar procedure can be easily designed for
the �v labeled states.

4.5. FURTHER EXAMPLES

As we mentioned many times, the spin in gen-
eral does not suffice to distinguish many electronic
states with the same one-electron density, which
produces problems in describing corresponding
states in the DFT. The only example of the usage of
the unitary group formalism given so far was, how-
ever, the simplest case when the total spin labeling
was sufficient. Below we briefly exemplify the fea-
tures one should expect in general case when there
exist Young tableaux differing by the positions of
the orbital symbols in these tableaux. In this case,
one can say that for given M, N, S uniquely defining
the irreducible representation � of the group U (M)
and for the row v of the latter defined by a specific
location of the orbital symbols in the tableau a
“Hartree-Fock-like” energy functional can be writ-
ten whose electron–electron interaction part is
given by Eq. (22). It can be optimized with respect
to the expansion coefficients of the involved orbitals
over the AO’s basis yielding an effective Fockian
matrix whose eigenvectors are precisely the orbitals
involved in the construction of the Young tableau
state in the same manner as it is in the ROHF/
ROKS.

It is easy to check that the positions of the orbital
indices in the tableaux really matter. For example,
for two Young tableaux states:

��v	 � � a
c�b

d �; ��v�	 � � a
b�c

d � (27)

both representing singlet states of four electrons in
four orbitals with equal one-electron density matri-
ces, the contributions to the energy functionals of
the form Eq. (22), proportional to the exchange
integrals, respectively, are [31]:

��v	: �ab�ba� � �cd�dc� �
1
2��ac�ca� � �ad�da�

� �bc�cb� � �bd�db��
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��v�	: � �ab�ba� � �cd�dc� �
1
2��ac�ca� � �ad�da�

� �bc�cb� � �bd�db�� (28)

where the Hartree and the self-interaction correct-
ing terms are omitted for brevity.

Remarkably enough neither of the expressions
Eq. (28) (combined with other necessary temrs)
yields a lower energy a priori, which one is lower
depends on the relations between the molecular
integrals involved. At this point one can return to
the qualitative interpretation of the Young tableaux
with different positions of the orbital symbols as of
reflecting different “pairing schemes.” Indeed, the
states in Eq. (27) can be, respectively, treated (and
this is in accord with the energy expressions Eq.
(28)) as pairwisely coupling electrons in the states a
and b and c and d to the singlets and triplets, then
coupling these intermediate states to the final sin-
glet states.

On the other hand, one can easily conclude that
for the above pair of Young tableaux �v and �v� for
which ni � nj � 1 and the difference between them
is only the positions of the orbital symbols b and c
in the tableaux Eq. (27), the operators Eij

�Eji
� entering

as multipliers of the (ij� ji) exchange integrals in the
exact Hamiltonian yield also an off-diagonal matrix
element of the Hamiltonian [31]:

��v�H���v�	 � �
�3
2 ��ac�ca� � �ad�da� � �bc�cb�

� �bd�db�� � 0, (29)

which shows that in this case a 2 � 2 diagonaliza-
tion is required for obtaining the electronic energy
exactly. Thus the energy functional becomes a
square root irrational function of the two-electron
integrals rather than a linear one. Additional sym-
metry relations may produce the energy expression
linear in the Coulomb and the exchange integrals
(in the above example it suffice that exchange inte-
grals (ac�ca), (ad�da) and (bc�cb), (bd�db) are pairwisely
equal (which makes Eq. (29) be zero) or alterna-
tively that the exchange integrals satisfy the equal-
ity:

�ab�ba� � �cd�dc� �
1
2��ac�ca� � �ad�da� � �bc�cb�

� �bd�db�� (30)

which makes the diagonal matrix elements of the
Hamiltonian be equal for the states represented by
Eq. (27). Both symmetries yield specific forms of the
2 � 2 configuration interaction matrix and by this
allow the diagonalization to be feasible on the
purely symmetry grounds.

5. State-Specific
Exchange-Correlation Functionals for
Atomic d-Shells

The above notion of irrationality shows that even
the unitary group formalism does not solve the
problem of constructing density functionals for the
specific correlated states. Although the unitary
group formalism allows to significantly contract the
expansions of the states of the definite total spin (in
fact the �v labeled states become single-configura-
tion, albeit each of them is a combination of many
Slater determinants) the nonlinearity of the energy
expression with respect to the two-electron inte-
grals hinders constructing the symmetry adapted
functionals along the lines suggested above. This
problem manifests itself in the description of the
many-electronic states in the d-shells of transition
metal ions. Using the unitary group formalism also
in this case does not allow to go further than the
Roothaan old MC SCF theory as described in Ref.
[22]. There the spin/angular momentum depen-
dent coupling coefficients aij and bij had been intro-
duced ultimately to express the cumulant of the
two-electron density matrix using symmetry con-
siderations. They are valid only if the multiplet
states can be uniquely obtained by applying oper-
ators projecting the Young tableau states to the
specific rows of the irreducible representations of
the SO(3) or SO(2) groups (atoms and linear mole-
cules, respectively). In these two cases, moderately
simple expressions for the classifying operators (re-
spectively, L2 and Lz) in terms of the generators Eij

�

can be written and used for constructing the re-
quired symmetry adapted combinations of the
Young tableau states. In the case of the atomic
p-shells (and molecular �- and �-shells), the number
of the SO(3) (SO(2)) symmetry labels (different val-
ues of the orbital momentum L) produced by the
projection of the Young tableau states to the definite
L2 states suffice to distinguish all different energies
in these shells. In the case of atomic pn-states the
symmetry SO(3) reduces also the number of inde-
pendent two-electron integrals (including both the
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Coulomb and exchange ones) to only two indepen-
dent Slater–Condon parameters Fk(pp); k � 0, 2.
This allowed the authors of Ref. [32, 33] to develop
state-specific functionals for the atomic pn-states. It
turns out, however, that for the d-shells it does not
suffice for a major part of the atomic electronic
terms of the transition metal ions [34]. Even in free
ions where the multiple terms having the same spin
and orbital momentum do exist and their energies
cannot be expressed linearly through the two-elec-
tron integrals. Despite the high-symmetry situation
of a free atom (ion) which reduces all the two-
electron integrals to a limited number (three)
Slater–Condon parameters Fk; k � 0, 2, 4 in the free
ions the energies of the multiplets require 2 � 2-di-
agonalization and thus their analytical expressions
contain square roots (for a handy reference see
[34]). This moment is crucial, it is not possible to get
rid out of the irrationality (square root) in the ex-
pression for the energy by linearly combining the
parameters of the Hamiltonian.

The situation clearly becomes less favorable in
lower symmetries or in larger subshells (e.g., par-
tially filled f-shells) where the terms of the same
spin and symmetry span the subspaces of dimen-
sionalities higher than two. For example, in the
octahedral environment the LS states of d4- (d6-)
configuration span up to seven-dimensional sub-
spaces of many-electronic states [35]. Clearly, at an
arbitrarily low symmetry the problem of linearly
expressing the exact energy of many-electronic
terms through the Coulomb and exchange integrals

cannot be solved and obviously the energy of any of
such multiple terms cannot be expressed as a linear
combination of Coulomb and exchange integrals. In
what follows below, we restrict ourselves to the
case of atomic d- shells and the square root irratio-
nalities in the state-specific expressions for the en-
ergy trying to squeeze the simplest thinkable irra-
tionality reflecting nontrivial correlations in a kind
of generalized density functional.

5.1. THE EXAMPLE OF Fe2� ION

We concentrate on the free Fe2� (d6) ion which is
an important object in the studies of biologically
active transition metal complexes and following
[34] provides a rich system of nontrivially corre-
lated multiple states in its d-shell. Namely this kind
of behavior is known to systematically evade from
any DFT-based treatment. The energy expressions
of the states in a free Fe2� (d6) ion are given in Table
I. They nontrivially depend on two Slater–Condon
parameters: F2 and F4. The ground state follows the
Hund’s rule and for the Fe2� (d6) ion it is the 5D
state. According to the data published Ref. [36] the
states �

1 S and �
1 D are not resolved from the spectra.

Also the 2F state cannot be present in the spectrum
of an even-electron system. Thus we exclude three
uppermost rows of the Table I and finally arrive to
the set of data Table II which can be used for
analysis.

To get an impression of what can be (and should
be) possibly achieved in terms of describing the

TABLE I ______________________________________________________________________________________________
The energy expressions of the many-electron states in the d-shell of the Fe2� ion.

E(�
1 S) � E0 �10F2 �6F4 

1
2
�3,088F2

2 � 26,400F2F4 � 13,3200F4
2

E(�
1 D) � E0 �9F2 �76.5F4 

1
2
�1,296F2

2 � 10,440F2F4 � 30,825F4
2

E(2F) � E0 �48F4

E(�
1 G) � E0 �5F2 �6.5F4 

1
2
�708F2

2 � 7,500F2F4 � 30,825F4
2

E(1I) � E0 �15F2 �9F4

E(�
3 P) � E0 �5F2 �76.5F4 

1
2
�912F2

2 � 9,960F2F4 � 38,025F4
2

E(3D) � E0 �5F2 �129F4

E(�
3 F) � E0 �5F2 �76.5F4 

1
2
�612F2

2 � 4,860F2F4 � 20,025F4
2

E(3G) � E0 �12F2 �94F4

E(3H) � E0 �17F2 �69F4

E(5D) � E0 �21F2 �189F4

E0 is given by the expression: E0 � ndT � nd(nd � 1)A/2 where T is the kinetic energy per electron, A � F0 � 49F4 and nd is the number
of electrons in the d-shell.
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multiple states of the d-shells, we determine param-
eters F2 and F4 from experimental data. This can be
done in a number of ways. The semi-empirical ap-
proach is to assume that F2 and F4 are independent
parameters. At the first stage we neglect the corre-
lation and take into consideration only the average
energies of the �

�2S�1�L states. The corresponding set
of energies is given in Table III. These energies are

linear in the parameters F2 and F4. Applying the
standard linear least squares procedure yields the
experimental “noncorrelated” estimate of the pa-
rameters (in cm�1):

F2
exp � 1,411.0,

F4
exp � 120.25,

F2
exp/F4

exp � 11.734. (31)

The quality of this result can be assessed by the
value of mean square deviation which is 686.80
cm�1 which must be compared with the range of
the energies described by the model being about
45,000 cm�1.

Next step consists in estimating the manifesta-
tions of correlations in the available data set. The
most direct way to do that is to consider the square
root contributions to the energies of the multiple
terms of the same spin and symmetry. These come

TABLE II ______________________________________________________________________________________________
The excitation energy expressions and their values (cm�1) for the many-electron states in the d-shell of the
Fe2� ion.

E(�1G)
16.F2 � 182.5F4 �

1
2
�708F2

2 � 7,500F2F4 � 30,825F4
2 30,886.4

E(�1G)
16.F2 � 182.5F4 �

1
2
�708F2

2 � 7,500F2F4 � 308,25F4
2 57,221.7

E(1I) 6.F2 �180.F4
30,356.2

E(�3P)
16.F2 � 112.5F4 �

1
2
�912F2

2 � 9,960F2F4 � 38,025F4
2 20,688.4

E(�3P)
16.F2 � 112.5F4 �

1
2
�912F2

2 � 9,960F2F4 � 38,025F4
2 49,576.9

E(3D) 16.F2 � 60.F4
30,725.8

E(�3F)
16.F2 � 112.5F4 �

1
2
�612F2

2 � 4,860F2F4 � 20,025F4
2 21,699.9

E(�3F)
16.F2 � 112.5F4 �

1
2
�612F2

2 � 4,860F2F4 � 20,025F4
2 50,276.1

E(3G) 9.F2 � 95.F4
24,940.9

E(3H) 4.F2 � 120.F4
20,300.8

TABLE III _____________________________________
The average multiplet energies (cm�1) in the d-shell
of the Fe2� ion.

E(�
1 G)av 44,054.

E(1I) 30,356.
E(�

3 P)av 35,133.
E(3D) 30,726.
E(�

3 F)av 35,988.
E(3G) 24,941.
E(3H) 20,301.
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from the diagonalization of the symmetry adapted
CI matrices. Technically, the correlations of that
sort are responsible for the splitting within the pairs
of states of the same spin and symmetry which do
not have any counterpart in the DFT and describe
the nontrivial (nondynamical) part of the correla-
tion. We can see from the Table IV that the corre-
lation splitting between the double states is by
�10% underestimated when calculated with use of
the noncorrelated experimental estimates of the F2

exp

and F4
exp parameters Eq. (31). The overall picture as

coming from the noncorrelated estimate can be
characterized by its mean square deviation 1,228.0
cm�1. This fit seems to be improvable by perform-
ing another (nonlinear) one for the entire set of
available excitation energy expressions and the cor-
responding experimental values as given in Table
II. The result of this new fit is, however, twofold.
The resulting values (cm�1) of the parameters
F2

expand F4
exp Eq. (32):

F2
exp � 1,468.92,

F4
exp � 113.30,

F2
exp/F4

exp � 12.960, (32)

which can be qualified as “correlated” experimental
ones, produce the mean square deviation of 842.37
cm�1 which manifests a significant improvement as
compared to analogous usage of the “noncorre-
lated” experimental values Eq. (31). Meanwhile, al-
though the overall picture is improved, the descrip-
tion of the average multiplet energies is
deteriorated when compared with the “noncorre-
lated” parameters Eq. (31), so that the correspond-
ing mean square deviation somewhat increases to
the value of 859.37 cm�1.

The above results deserve thorough attention.
First of all, we notice following Refs. [33, 37] that

the parameters F2 and F4 are by definition some
functionals of radial density:

Fk �
e2

Dk
�
0

�

�
0

�

�min�r1,r2��
k

�max�r1,r2��
k�1R2�r1�R2�r2�r1

2r2
2dr1dr2

D0 � 1; D2 � 49; D4 � 441 (33)

where R2(r) is the radial density distribution for the
involved atomic d-shell. However, according to the
Theorem 2 of Ref. [14] for whatever spatial multi-
plet, the one-electron density is spherically sym-
metric. Thus the quantities Fk are the functionals of
one-electron density which in the said case have
only the radial dependence r � �r�. For that reason,
the energies in Table I can be also treated as func-
tionals of the one-electron density representing the
averages of the electron–electron interaction energy
for each specific many-electron state in the d-shell.
When supplied by the relevant one-electron contri-
butions (expression for the kinetic energy and that
for the electron–nuclear attraction), they become
the state specific energy functionals.

T�R2�r�� � Vne�R2�r�� �
nd�nd � 1�

2 A�R2�r��

� XCnLS�R2�r�� (34)

where the contribution proportional to A[R2(r)] is
remarkably analogous to the Hartree energy, how-
ever, free from the self-interaction and the XCnLS

contributions are the state specific exchange-corre-
lation functionals. They can be treated according to
the variational principle (in some analogy with Ref.
[37]) this is going to yield some integrodifferential
equations for the functions R(r). This option will be
considered in details elsewhere. Here, we notice
that assuming the model Slater orbital form for the
functions R(r) in the d-shell:

R�r� �
�2��n�

1
2

��2n�!
rn�1exp� � �r�

allows one to evaluate the integrals in Eq. (33) thus
leading to the linear dependence of the latter on the
orbital exponent �:

TABLE IV _____________________________________
The splittings of the multiplets (cm�1) with coinciding
L and S in the d-shell of the Fe2� ion.

Calc/noncorr Calc/corr Exp

 (�
1 G) 24,140 25,984 26,335.3

 (�
3 P) 25,993 28,255 28,888.5

 (�
3 F) 26,142 27,726 28,576.2

All values in cm�1.
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F0
th �

793
3072�

F2
th �

2093 � 5
49 � 76800�

F4
th �

91 � 9
441 � 9216� (35)

(here, n � 3). The ratio of the theoretical values

F2
th/F4

th �
2093 � 5

49 � 76800� 91 � 9
441 � 9216 � 13.8 (36)

can be compared with one extracted from the cor-
related and noncorrelated experimental estimates
of the parameters F2

exp and F4
exp Eqs. (31) and (32),

which indicates that for some reasons the correlated
model for the energies better agrees with the Slater
model for the radial density distribution. Since as
we mentioned the density is spherically symmetric
for whatever of the states listed in the above Tables
the only parameter characterizing the density is the
orbital exponent �, provided the said multiplets are
constructed on the Slater radial orbitals. In view of
the linear dependency of Fk

th on � the state specific
expressions for the energies and energy differences
in Tables I and II become linear functions of � as
well.

The excitation energy expressions can be con-
verted to the full scale density functionals for the
d-shell if one complements the above electron inter-
action energies by the one-electron terms for the
d-shell with six electrons in it. The one-electron
terms are (i) the kinetic energy per electron:

�2

2 ; (37)

(ii) the potential energy of attraction to the nucleus
per electron where the three in the denominator
stands for the principal quantum number of the
d-shell under consideration:

�
Z
3 � (38)

The average electron–electron interaction value
common for all electronic terms is proportional to
the Racah A parameter whose expression in terms
of F0

th and F4
th is given in the footnote to Table I. For

the iron(II) ion, we can set Z � 8 and the number of

d-electrons nd � 6 to take care about the core screen-
ing, then the expression for the energy becomes:

3�2 � 16� � 15
143
576�. (39)

The value of � comes then as one providing the
minimum to the above functional, so that:

� �
8
3 �

5
2

143
576 � 2.0460· · · (40)

in a remarkable correspondence with the Slater
rules yielding for this setting the value of 2.08 sim-
ply by ascribing the screening increment of 0.35 to
each electron (except one) in the d-shell. The screen-
ing increment coming form the formula for A
amounts 0.387.

Including further contributions for the electron-
electron interaction energy which are now state
specific yields for the ground state:

� � 2.0621 (41)

On the other hand, taking one of the higher
excited states 1I whose energy is about 30,000 cm�1

above the ground state gives:

� � 2.0533 (42)

From these estimates, one can derive the follow-
ing conclusion: The orbital exponent and thus the
radial density is very weakly sensitive to whatever
correlations. This finding is in agreement both with
the accepted concept of correlation which attributes
it exclusively to the cumulant of the two-electron
density matrix so that there is no need to reload its
manifestations on the density as well as with nu-
merous demonstrations of no relation between the
one-electron density and the correlations known in
the literature (see e.g., Ref. [38]).

Further analysis can be based on the observation
that inserting the theoretical definitions for the F2

th

and F4
th parameters Eq. (33) into expressions for the

excitation energies result in linear models for these
energies with the single fitting parameter �. Two
such models can be constructed: the noncorrelated
which uses only the average energies of multiple
states with equal L and S and the correlated one
which covers all 10 available excitation energies.
Fitting the excitation energies to the noncorrelated
model yields the value of 2.4823 for �. The quality of
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fitting with only one parameter is certainly some-
what worse than that using two independent pa-
rameters F2

exp and F4
exp and the mean square devia-

tion becomes 1,058.0 cm�1 for the set of average
energies of the multiplets (noncorrelated fit). The
value of � which comes from the linear fitting pro-
cedure with the correlated energy expressions is
2.4604 and the mean square deviation is 1,013.3
cm�1. We see that also in this case the correlations
only marginally affect the one-electron density dis-
tribution and that despite some deterioration of the
precision as compared with the two-parameter
models the overall quality of the fit is surprisingly
good.

5.2. SUMMARY

Let us summarize the findings of this Section.
We managed to obtain simple expressions for the
energies of the nontrivially correlated ionic states
(these expressions include nondynamic correlation
through the square root terms) with definite values
of L and S as functions of a single parameter �, the
Slater orbital exponent for the d-shell. In the context
of the accepted model, it is the only quantity char-
acterizing the density in the d-shell. In a sense, there
is one-to-one correspondence between the electron
density of the d-shell and � thus the expressions for
the energy can be considered as state specific en-
ergy functionals of the form:

nd

�2

2 � nd

Z
n� �

nd�nd � 1�

2
143
576� � XCnLS�nd,�� (43)

written in terms of the orbital exponent � uniquely
related to the density within the model used and
where XCnLS (nd, �) stands for state dependent ex-
change-correlation terms as obtained by inserting
the expressions for the Slater–Condon parameters
Fk

th Eq. (35) in the expressions given in Table I or
analogous expressions for other d-shell fillings Ref.
[34].

As one can see our estimates of the characteristic
quantity � yield the values which fall into two
classes depending on the type of the estimate, those
coming from the variational estimate for the total
energy of each respective state give the values close
to � � 2.08 coming from the Slater rules. The esti-
mates based on fitting the excitation energies to �
yield much larger value (much less diffuse d-shell)
about 2.5 with extremely weak influence of electron
correlation on the estimates of either of these types.

These numerical results must be compared with
other (empirical) values of the orbital exponents.
These, however, demonstrate a wide range of val-
ues. For example, Ref. [39] report the value � �
3.7266; Ref. [40] suggests � � 3.152; Ref. [41] gives �
� 2.722; and Ref. [42] provides � � 3.15 basically
repeating the value of Ref. [40]. This indicates that
either the correlated or noncorrelated estimates,
coming from the excitation energies only, fall in the
range defined by the Slater rules and other semi-
empirical estimates. Although, the deviations be-
tween the density parameter estimates coming
from different types of procedures also are expect-
able (we remind the existence of distinct thermo-
chemical and spectral semi-empirical parameteriza-
tions) the true source of observed deviations is of
certain interest.

6. Range-Separated Treatment of
Electronic Coulomb Interaction in
Atomic d-Shells

Based on the idea that the short-range behavior
of the e-e interactions can be efficiently transferred
from the homogeneous e-gas to arbitrary many-
electron systems, whereas the long-range e-e inter-
actions being much more system specific (less
transferable), Savin and Stoll suggested a generali-
zation of the Kohn–Sham theory by splitting explic-
itly the short- and long-range e-e interactions [43–
46]. The nontransferable long-range interactions
can be assimilated to a wave function treatment,
just like the kinetic energy in the conventional
Kohn-Sham model, which results in a replacement
of the noninteracting Kohn–Sham reference system
by a “long-range-interacting” one. Although in con-
ventional KS theory, the effective KS Hamiltonian
has an exact single-determinant solution, the gen-
eralized, range-separated variant includes a certain
amount of explicit e-e interaction and the corre-
sponding effective Schrödinger equation has to be
solved in a multideterminant form [47]. However,
due to the nonsingular nature of the lr Coulomb
operator, the solution can be converged consider-
ably faster in both the one-electron and many-elec-
tron basis.

Recent works on the range-separated hybrid
methods were mostly based on the separation of
the Coulomb potential into short- and long-range
parts was performed according to:
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1
r12

� 	 1
r12



s

� 	 1
r12



l

	 1
r12



s

�
erf��r12�

r12

	 1
r12



l

�
erfc��r12�

r12

1 � erf�x� � erfc�x� (44)

The treatment of the long-range exchange has
been done in the Hartree–Fock framework, while
the correlation could be treated by MP2 [48] or
CCSD(T) [49] level, leading to a successful descrip-
tion of London dispersion forces in vdW complexes
[50] or by MCSCF level [51] to treat typical nondy-
namic correlation problems, like the case of the H2
dissociation. A simpler model, where long-and
short-range correlations are both handled by den-
sity functional approximations (RSHX-exchange-
only range separated hybrid [52], like LC-�PBE of
Scuseria [53]) has been recently shown to be quite
successful in predicting magnetic coupling con-
stants in transition metal systems [54].

In the following, we examine the behavior of the
range-separated approach on the simple Fe(II) ion
model system.

6.1. RANGE SEPARATED HYBRID
APPROACH

To make easier the evaluation of analytical inte-
grals and obtain the Fk

th parameters, we decided to
employ the “Yukawa”-like separation as proposed
in Ref. [55]:

	 1
r12



s

�
exp� � 
r12�

r12
,

	 1
r12



l

�
1 � exp� � 
r12�

r12
. (45)

The value of 
3 0 corresponds to the absence of
the long-range part. By contrast 
3 � corresponds
to the evanescence of the short-range part. The
reach of the short-range interactions is roughly in-
versely proportional to the value of 
 measured in
inverse bohr units.

The initial assumption is that only the long-range
part of the Coulomb interaction contributes to the
non-dynamical correlations in the d-shells so that

only the matrix elements of �1/r12�l must be taken
into account when the CI matrices describe the
nontrivial correlation in the d-shells. To check this
assumption, we have performed the following.
With use of analytical results of Refs. [56, 57] we get
for the Yukawa potential the following expansion:

�r1 � r2��1exp� � 
�r1 � r2�� � 4��
l�0

� �
m��1

l

�r�r���
1
2

Il�
1
2
�
r�� Kl�

1
2
�
r��Yl

�m	r�

r�

Yl

m	r�

r�

 (46)

where Il�
1
2

and Kl�
1
2

are the modified Bessel func-
tions of the half-integer index, r� � min (r1, r2), r�

� max(r1, r2), and the vectors r� and r� are as-
signed correspondingly. The above expression
must be inserted in the definition of the matrix
elements of the electron–electron interaction (see
e.g., Ref. [34]) which due to the spherical symmetry
of the Yukawa potential allows us to express these
latter in terms of the short range analogs of the
Slater-Condon parameters. For the 3d Slater orbitals
with the orbital exponent �, the estimates for the
short range F2

�s) and F4
�s) and long-range F2

�1� and F4
�1�

contributions to the Fk
th parameters Eq. (35) are:

F2
�s� � F2f�s�; F2

�1� � F2f�1�; f�1� � f�s� � 1

F4
�s� � F4G

�s�; F4
�1� � F4G

�1�; G�1� � G�s� � 1

f�1� � 1 �
4�2

6,279�
 � 2��12�1,575
10 � 37,800
9�

� 413,420
8�2 � 2,714,880
7�3 � 11,850,720
6�4

� 35,848,960
5�5 � 75,603,840
4�6

� 107,827,200
3�7 � 94,591,744
2�8

� 38,578,176
�9 � 6,429,696�10�

G�1� � 1 �
4�2

91�
 � 2��12�63
10 � 1,512
9�

� 16,380
8�2 � 104,832
7�3 � 433,888
6�4

� 1,188,096
5�5 � 2,101,632
4�6

� 2,263,040
3�7 � 1,487,616
2�8 � 559,104
�9

� 93,184�10� (47)

Introducing a new variable
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t �




 � 2�
(48)

we get somewhat simpler expressions for the long-
range scaling coefficients,

G�1� � �
256t12

91 �
2304t11

91 �
8,832t10

91 �
18,432t9

91

� 240t8 � 144t7 � 16t6 �
144t5

7 �
6t4

7 �
30t3

7

�
15t2

7

f�1� � �
6,400t12

6,279 �
75,520t11

6,279 �
1,34,528t10

2,093

�
1,285,120t9

6,279 �
384,880t8

897 �
14,160t7

23 �
23,600t6

39

�
2,451,808t5

6,279 �
23,150t4

161 �
6910t3

483 �
3,455t2

483

(49)

Numerical optimization of the sum of square
deviations, where the theoretical values are ob-
tained under the condition that the parameters F2
and F4 under the square roots are, respectively,
replaced by the long range contributions F2

�1� and
F4

�1�, with respect to � and t results in the values:

� � 2.46425

t � 0.725436


 � 13.0218 (50)

The range separation parameter 
 is obtained by
inverting the definition of t. These values corre-
spond to the following scaling parameters:

f�1� � 0.965879

G�1� � 0.912733 (51)

The precision of this estimate can be character-
ized as previously by the mean square deviation
which amounts to 996 cm�1. Taking into account
that the short-range e-e potential corresponding to

 � 13.02 falls down to a negligibly small value, say
0.001, for r � 0.5 bohr, it can be concluded that
electron repulsion at shorter than 0.5 bohr direct

space distance has an insignificant effect on the
multiplet structure.

By contrast, if the theoretical values are obtained
under the condition that the parameters F2 and F4
under the square roots are, respectively, replaced
by the short range contributions F2

�s) and F4
�s), the

optimization of the sum of square deviations with
respect to � and t results in the values:

� � 2.4653

t � 0.0482271


 � 0.249838 (52)

These values correspond to the magnitudes of
the scaling parameters:

f�s� � 0.982441

G�s� � 0.994545 (53)

Incidentally, the precision of the procedure sin-
gling the short-range part characterized as previ-
ously by the mean square deviation yields the value
985 cm�1, quite similar to the long-range estimate.
The reach of the “short- range” interactions, mea-
sured by analogous criteria as before (falling off the
short-range Coulomb potential below 0.001) is
about r � 16 bohr, which englobes practically the
full range for the significant densities of the d-
electrons. It means that the long-range “tail” of the
electron–electron interactions is essential to recover
the correct muliplet structure. Furthermore, one can
see that the renormalization of the F functions is in
the order of 1%, confirming that the use of the
optimal 
 implies the involvement of practically the
full range of interactions (cf., previous Section).

A further lesson drawn from this simple model
study is that the short range/long range separation
of the Coulomb potential is not sensitive to the
correlations as well: the characteristic parameter of
the density distribution � in all cases equals to 2.46
with variations in the third digit after the decimal
point. Thus the short range/long range separation
does not lift thus the strong contradiction between
the estimates of the orbital exponent by the Slater
rules or variationally from the state specific func-
tionals Eq. (43) and those from linear fit for the
excitation energies. Thunkable way out looks out
twofold: First, the Slater rules can be thought to
overestimate the screening (for the d-shell the
screening by the inner shells is treated to be com-
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plete, which yields the value 8 for the effective
charge) thus leading to the values of � too small
when compared with those extracted from the fit-
ting of the experimental data on excitation energies.
Second, one can think that the value of parameter
F0 is for some reason much stronger renormalized
when compared with its theoretical value Eq. (35)
than those of the parameters F2 and F4. If we apply
long-short range separation and calculate F0 at the
values of 
 and � Eq. (52) extracted from the fitting
of excitation energies with the short-range parts F2

�s)

and F4
�s) under the square roots the fraction of the

short range part in F0 amounts h(s) � 0.688608 of the
latter. Now, if we assume that the short range part
for some reason renormalizes to zero and thus only
the long range part of the e-e potetial contributes to
the real value of F0 then the variational estimate of
the orbital exponent reads:

� �
8
3 �

5
2 �

143
576 � �1 � h�s�� � 2.4743 (54)

which shows some reasonable consistency with the
values extracted from analysis of experimental
spectra. Of course, this may well be a pure coinci-
dence, but possible consequences of the above hy-
pothesis on the way of renormalization of the
Slater-Condon parameters will be considered else-
where.

7. Conclusion

In this article, we discussed a few possible ways
of avoiding the dead-locks of the pragmatic meth-
ods of molecular electronic structure theory based
on the DFT, which appear due to the non-sensitiv-
ity of the basic quantity of the DFT, the one-electron
density, to the differences in the spin (permuta-
tional) or/and spatial symmetry of the underlying
many-electronic states. This nonsensitivity is re-
flected by two theorems (recent Theorems 1 and 2
of Ref. [14]) which formalize two basically known
facts that (i) the one-electron density does not de-
pend on the total spin of the many-electron state,
and, that (ii) the one-electron density in a many-
electronic state, which transforms according to any
irreducible representation of the group acting on
the spatial coordinates of electrons (SO(3), SO(2), or
their point subgroup), transforms according the
fully symmetric irreducible representation of the
corresponding group.

These theorems imply necessarily that the in-
formation concerning the symmetry of the re-
spective many-electronic states at hand is to be
introduced into any DFT-based treatment extra-
neously. When it goes about the total spin (or
equivalently about the permutational symmetry)
of a many-electron state, we suggest to use state-
specific functionals labeled by the Young tab-
leaux �� (the rows of the irreducible representa-
tions of the unitary group U (N)) and to develop
a procedure analogous to ROKS for each of them.
In the particular case of multiple states sharing
the same L and S in the d-shells of transition
metal ions, we suggest state-specific correlated
functionals of the density and their model based
on the assumption of a Slater orbital form of the
radial density distribution. This procedure re-
duces the functional-type density dependence to
function-type dependence on the orbital expo-
nent. With the use of these expressions the exci-
tation energies of the many-electron states of the
Fe2� ion are reproduced with remarkable accu-
racy. The variational treatment of the proposed
functionals reproduces with similar precision the
values of the orbital exponent of the Fe2� ion
prescribed by the Slater rules. Nevertheless, the
estimates of the orbital exponent coming from the
variational principle and from the fit of the exci-
tation energies differ significantly although they
fall in the range provided by different semi-em-
pirical estimates. Some ideas related to concilia-
tion of these two groups of estimates have been
derived from analysis of the short range/long
range separation of the electron-electron interac-
tion potential.

ACKNOWLEDGMENTS

The authors are thankful to Profs. I. V. Abaren-
kov, I. Mayer, G. M. Zhidomirov, I. G. Kaplan, A.
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Appendix: Permutation Symmetry of
the Spatial Function

Because the Hamiltonian does not depend on
spin variables one may wonder why the total spin
at all affects the energy. The answer lays in the
symmetry of many-electron wave functions with

CLASSES OF ADMISSIBLE EXCHANGE-CORRELATION FUNCTIONALS

VOL. 110, NO. 2 DOI 10.1002/qua INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 473



respect to permutations of coordinates xi of all N
electrons of the system (group SN). The correct
wave function must be antisymmetric with respect
to them (Pauli principle for fermions). This simple
statement applies when the complete electronic co-
ordinates xi � (ri, si); i � 1 � N are taken as
arguments of the wave function. Because of the fact
that the nonrelativistic electronic Hamiltonian does
not depend on the spin projections si the wave
function of electrons can be represented as a prod-
uct of the spatial and spin parts dependent respec-
tively on the spatial (ri) and spin (si) coordinates
only (see e.g., Eq. (10)) with the antisymmetry re-
quirement applicable to the entire products. To cal-
culate the energy, it is enough to know only the
spatial part (multiplier) of the N-electronic wave
function. As one can see in Eq. (10) the spatial parts
of the triplet and the singlet are, respectively, anti-
symmetric and symmetric with respect to permu-
tations of the spatial coordinates r1 and r2 and
namely this difference is the only real source of the
differences in the energy.

In contrast with the simple permutation symme-
try properties of the complete wave functions those
of the spatial multipliers are in general case some-
what more involved. The permutation properties
are conveniently described in terms of the Young
patterns and Young tableaux. Generally, the Young
patterns are shapes formed by N boxes arranged in
rows of non-increasing length:

These shapes label the irreducible representations
of the group SN. The Young pattern corresponding to
the totally antisymmetric wave function contains only
one column of the height N. The fact that there is only
one possibility to fill this column by electron labels
from 1 to N corresponds to the one-dimensionality of
the antisymmetric representation of the SN group.
Separation of the antisymmetric function into spatial
and spin parts predefines their respective permuta-
tion properties: they must belong to the adjoint rep-
resentations of the SN group, because the product of
two functions belonging to adjoint representations
yields the required antisymmetric function. The
Young patterns corresponding to adjoint representa-

tions of SN are connected by 180° rotation around the
bissectriss of their common upper left corner. Because
the Young patterns which can be used for construct-
ing the spin functions may contain no more than two
rows, those usable for constructing the electronic spa-
tial functions, respectively, cannot contain more than
two columns:

The most remarkable feature of the Young pat-
terns as applied to electronic wave functions is that
they are in a one-to-one correspondence with the
total spin, namely: the length of the one-column
part of the spatial Young pattern equals to 2S. This
allowed F. A. Matsen [23] yet many years ago to
suggest to avoid any remark concerning the spin in
(nonrelativistic) quantum chemistry context and to
replace it by referencing to the permutational sym-
metry of the corresponding states. Although, it is,
of course, a matter of terminology, within such a
formulation the triplet component with Sz � �1
would never arise by this, lifting any possible con-
fusion.

The same tools can be used to describe the irre-
ducible representations of the group of unitary ma-
trices. The corresponding construct evolves as fol-
lows Ref. [18]: for any number of spatial orbitals M
the group U (M) of the unitary M � M matrices acts
as a “dynamical” group by transforming orbitals.
Any given number of electrons N and any value of
the total spin S conforming with two previous val-
ues produces an irreducible representation � of the
group U (M). As in the case of the SN group irre-
ducible representations of the group U(M) are la-
beled by the Young patterns, but the meaning of
their elements is different. The representation by
N-electron spatial functions has the tensor rank N
and the corresponding Young pattern contains N
boxes arranged in no more than two columns each
of the height not larger than M, such that the first
column is by 2S boxes longer than the second one.
This irreducible representation is degenerate and its
rows v can be numbered by distributing M orbital
symbols in the above N boxes in such a way that
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they do not decrease (some ordering is assumed
among them) along the rows and strictly increase in
each column. Under this rule, some orbital symbols
in principle may appear no more than twice in a
two-column pattern by this representing a doubly
occupied spatial orbital, those appearing once rep-
resent singly occupied orbitals. Thus constructed
Young tableaux represent states transforming ac-
cording to the rows � of the representation �. The
Young tableau characterizes first of all the permu-
tation symmetry of the state in that sense that the
spatial part of the many electron function described
by the Young tableau �� is derived from the prod-
uct of orbitals where each enters as many times as
it appears in the tableau by applying the symme-
trization over rows of the tableau and antisymme-
trization over its columns. This construct is also
known as immanant wave functions Ref. [27].
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