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We apply the atom–atom potentials to molecular crystals of iron(II) complexes with bulky

organic ligands. The crystals under study are formed by low-spin or high-spin molecules of

Fe(phen)2(NCS)2 (phen = 1,10-phenanthroline), Fe(btz)2(NCS)2 (btz = 5,50,6,60-tetrahydro-

4H,40H-2,20-bi-1,3-thiazine), and Fe(bpz)2(bipy) (bpz = dihydrobis(1-pyrazolil)borate, and

bipy = 2,20-bipyridine). All molecular geometries are taken from the X-ray experimental data

and assumed to be frozen. The unit cell dimensions and angles, positions of the centers of masses

of molecules, and the orientations of molecules corresponding to the minimum energy at 1 atm

and 1 GPa are calculated. The optimized crystal structures are in a good agreement with the

experimental data. Sources of the residual discrepancies between the calculated and experimental

structures are discussed. The intermolecular contributions to the enthalpy of the spin transitions

are found to be comparable with its total experimental values. It demonstrates that the method

of atom–atom potentials is very useful for modeling molecular crystals undergoing the spin

transitions.

I. Introduction

The crystal field theory (CFT), proposed in ref. 1 and known

to majority of chemists through ref. 2, suggests that coordination

compounds of d-elements with electronic configurations d4,

d5, d6 or d7 can exist either in high-spin (HS) or low spin (LS)

forms (sometimes intermediate values of the total spin are also

possible). In the case of strong-field ligands the d-level splitting

measured by the average crystal field parameter 10Dq exceeds

the average Coulomb interaction energy of d-electrons P and

the ground state is LS. In the case of weak-field ligands with

10Dq { P, the ground state is bound to be HS. If, however,

10DqD P, the LS and HS forms of the complex may coexist in

equilibrium, and the fraction of either spin form depends on

temperature, pressure, and/or other macroscopic thermo-

dynamic parameters. The process when the fraction of molecules

of different total spin changes due to external conditions is

called a spin crossover (SC) transition. For the first time this

phenomenon was reported in 1931.3 Nevertheless, extensive

studies of SC started only in 1960s–70s. Nowadays, dozens of

complexes capable to undergo spin transitions (spin-active

complexes) are known, and most of them are those of Fe(II).

A general review of the field can be found in ref. 4.

A wealth of potential practical applications like displays and

data storage devices (see a detailed review in ref. 5) is one of

the reasons for research activity in this area. Industrial

applications pose strict demands on the characteristics of the

materials to be used. As a consequence, the problem of

predicting SC transition characteristics (whether it is

smooth or abrupt, the transition temperature, the width of

the hysteresis loop, the influence of additives6) is of paramount

importance. Theoretical description of spin transitions is a

great challenge by itself, and until now a coherent theory

allowing to relate the composition of the materials with the

characteristics of the transition has not been developed.

A discussion of these issues and an overview of the existing

theories are given in ref. 7.

In general, the SC modeling includes two aspects: (i) that of

the interactions within one molecule of a spin-active complex,

and (ii) that of the interactions between these molecules.

The latter is crucially important for understanding specific

features of the SC transitions in solids because the SC

manifesting itself as a first-order phase transition is controlled

by intermolecular interactions. These ideas are built in the

simplest model capable of describing spin transitions in solids

proposed by Slichter and Drickamer.8 This model considers

the solid as a regular solution of molecules in the LS and HS

states. The model predicts, in agreement with the experiments,

that the spin transition may be either smooth or abrupt or

may exhibit hysteresis, and its character is determined by a

phenomenological intermolecular parameter G, specific for

each material. However, the experimental data on the heat

capacity and the X-ray diffraction contradict to this model.

The thermal dependence of the heat capacity of the

Fe(phen)2(NCS)2 crystal is better explained by an alternative
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domain model.9 Diffraction patterns of spin transition crystals,

measured at intermediate temperatures, simultaneously

contain the Bragg peaks corresponding to the pure LS and

HS phases, while no peaks for intermediate lattice of a

solution were observed.10 Another problem is that the

parameter G is phenomenological one, and it cannot be

sequentially derived in terms of microscopic characteristics

of the constituent molecules or their interactions. At the same

time, within the Slichter–Drickamer model, the type of

behavior is tightly related to the sign and magnitude of G, so
that a smooth transition requires G 4 0, an abrupt transition

occurs at G o 0 and hysteresis is possible only if G o 0 is less

than some critical threshold, which in its turn depends on the

transition temperature.8 It has been shown that if the relaxation

of the lattice is not allowed, then under very natural assumptions

G is positive,11 but the lattice relaxation can lead to G of either

sign.12

Significant progress in the understanding of the spin

transitions in crystals is attributed to the Ising-like models

of intermolecular interactions in spin-active materials.13

Adaptations of the initial Ising model to the spin transitions

include corrections for intramolecular vibrations, domain

formation, parameters distribution, elastic distortions,

presence of two metal atoms in a spin-active molecule,

etc.7,14 These models do not have analytical solutions and

they are solved either in a mean field approximation which

leads to results analogous to (or even coinciding with) the

Slichter–Drickamer model7 or numerically.

In spite of the diversity of the models used in the literature,

the theoretical description of the spin transitions is not yet

satisfactory. First, the existing theories are not capable to

reproduce the whole set of the experimental data (e.g. asym-

metry of the hysteresis loop7). Second, all of them contain

phenomenological parameters, like G in the Slichter–Drickamer

model, or the energy gap Di or the interspin interaction

constants Jij in the Ising-like models, or the bulk modulus K

and the Poisson ratio s in ref. 15 (K and s can be measured,

but for the purpose of the theory they must be independently

predicted), etc. Third, even if the models include microscopic

level consideration, they use oversimplified description of the

molecules (as spheres, ellipsoids), which is not sufficient for

constructing a complete theory, especially due to importance

of the short intermolecular contacts tentatively responsible for

the cooperativity effects (p–p interactions, S� � �H–C interactions,

hydrogen bonds, etc.16).

These shortcomings can be overcome by using explicit

potentials for intra- and intermolecular interactions. In this

case one may expect to obtain independent estimates of the

numerous parameters required by the phenomenological

theories. These potentials should also be a helpful tool for

checking the validity of the initial postulates, such as the

formation of a regular solution or the domain structure, thus

clarifying some obscure points in the theory itself.

An adequate ab initio calculation of the energies of isolated

transition metal complexes, and moreover those of the crystals

formed by these complexes, is a very complicated problem.

Significant electron correlation within the d-shells breaks the

self-consistent field approximation, so that explicit account of

nontrivial (static) electron correlation is unavoidable. The

existing implementations of ab initio approaches for solids fail

to provide the necessary quality of the results.

There is a number of attempts to use the density functional

theory (DFT)-based methods to take into account the electron

correlation in the SC complexes.17 These methods yield good

results for many characteristics of isolated spin-active

molecules (optimal molecular geometry, Mössbauer

parameters, vibrational frequencies, nuclear inelastic scattering

spectra).18–21 However, the DFT in its traditional form, as it is

demonstrated in ref. 22, is not capable of reproducing

coherently the static correlations, which are extremely important

for the correct description of the spin transitions even in an

isolated molecule. For that reason the results for the energy

gap between the LS and HS states, and hence for the transition

temperature, obtained by the DFT techniques are absolutely

disastrous. The common versions of DFT, such as B3LYP,

often predict a wrong ground state multiplicity, let alone the

value of the energy difference.17 For example, the temperature

of the spin transition in Fe(phen)2(NCS)2 was found to be an

order of magnitude too large (1530 K instead of 176 K).23

In addition, most DFT studies are limited to isolated molecules

in vacuo, and the heat of the spin transitions in a crystal is

identified with the energy difference of isolated molecules. The

influence of the intermolecular interactions is thus neglected.

Only a few isolated attempts to explicitly model a spin-

active crystal by the DFT method have been reported.20,21,24,25

The application of the LDA approximation with the periodic

boundary conditions to the crystals of Fe(trim)2X2 (X = F,

Cl, Br, or I, and trim = 4-(4-imidazolylmethyl)-2-(2-imidazolyl-

methyl)imidazole) formed by either LS or HS molecules20

demonstrated that the intermolecular interactions strongly

affect the energy splitting between the LS and HS isomers,

thus necessitating their adequate treatment within coherent SC

models. The experimental X-ray structures for some of these

complexes are available, so that the optimal geometry of the

crystals found by LDA can be verified. This comparison

showed that the unit cell volumes were overestimated by

20–24%. At the same time, the calculated N� � �X distances

were 0.1–0.3 Å lower than the experimental ones, and the

p-stacking distances were underestimated by 0.3–0.7 Å.

Although in general it is difficult to separate the errors from

intra- and intermolecular interactions, the geometry of individual

spin isomers is usually described much better than the relative

position of the molecules in the crystal. The GGA approximation

has been used to optimize molecular geometry and lattice

parameters of the LS and HS crystals of [Fe(pyim)2(bipy)]-

(ClO4)22C2H5OH (pyim = 2-(2-pyridyl)imidazole).26 The

bond lengths were found to be quite reasonable. However,

the lattice parameters were poorly reproduced, so that even the

wrong sign of the unit cell volume change for the LS to HS

transition was obtained: (�6.82 Å3 instead of experimental

value of +228.02 Å3). The authors explain it by ‘‘the well-

known shortcomings of DFT methods in application to weak

intermolecular interactions’’.26 The DFT + U approach with

the GGA approximation has been applied to model spin-

active crystals of Fe(phen)2(NCS)2 and Fe(btr)2(NCS)2(H2O)

(btr = 4,40-bis-1,2,4-triazole).25 The studies of the

Fe(phen)2(NCS)2 crystal have demonstrated that DFT is

capable of reproducing the lattice parameters with the
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precision of 1–5% and the unit cell volume with the precision

of 2–7%.27 Unfortunately, these two works do not employ a

much better substantiated approach to the DFT-based

treatment of van der Waals interactions previously proposed

by the same authors, based on the explicit treatment

of correlations coming from the long range part of the

electron–electron interactions.28

Summarizing, DFT models either produce poor results for

spin-active complexes or require parameters (like DFT + U)

adjusted to reproduce the experimental data. At the same time,

the very idea of modeling such complex system as a crystal

formed by spin-active transition metal complexes at a uniform

level of theory seems to be incorrect. The systems under

consideration consist of numerous components, and it is much

more natural to treat these components separately—each at

the adequate level of the theory. The most important separation

is that on intra- and intermolecular interactions. On the

level of molecules one can further separate a highly correlated

d-shell from the rest of the molecule. This idea has

been implemented as a specialized quantum chemical

method—effective Hamiltonian of crystal field (EHCF)29

which has been successfully applied to describe the spin

isomers of Fe(phen)2(NCS)2.
30 Furthermore, it has been

demonstrated that the geometry of spin-active complexes can

be adequately described by the EHCF technique with ligands

treated by molecular mechanics force fields.31

On the level of interactions between molecules the paramount

fact is that the molecular crystals formed by spin-active

molecules consist of complexes with bulky organic ligands.

Intermolecular contacts in such crystals are those between the

organogenic atoms like C, H, N, S, etc. The d-shells of the

central ions are effectively shielded by the ligands. Thus, it is

reasonable to assume11 that the d-shells do not directly affect

the interactions between the molecules of the different total

spin in the crystal, but influence it indirectly: through the

variation of the equilibrium interatomic distances Fe–N in

these complexes, which is further translated into different

‘‘sizes’’ of the LS and HS isomers. In this context, the standard

methods developed for organic molecular crystals can be

successfully applied in this case as well. The main purpose of

the present work is to identify an adequate way to model

intermolecular interactions for crystals formed by spin-active

molecules.

II. Atom–atom potentials method

In order to avoid unnecessary complications, we limit our

task in the present paper to checking the possibility of

applying the simplest method of modeling intermolecular

interactions—atom–atom potentials32—to crystals formed by

spin-active complexes. The method assumes that the energy of

the molecular crystal (calculated relative to the system of

isolated molecules) can be represented as:

U ¼ 1

2

X

aa0mm0�r�r0
Eaa0 ðRðaa0mm0�r�r0ÞÞ; ð1Þ

where each term is the energy of the interaction between the

a-th atom of the mth molecule in the unit cell number

�r = (ra,rb,rc) and the a0-th atom of the m0-th molecule in the

unit cell �r0 depending on the distance R. Due to the equivalence

of all unit cells, we can get rid of summation over �r0, and the

energy per molecule u can be written as:

u ¼ 1

2M

X

aa0mm0�r

Eaa0 ðRðaa0mm0�r0ÞÞ; ð2Þ

where M is the number of molecules per unit cell.

A number of approximations have been suggested for the

atom–atom interaction. The most widespread ones are the

Buckingham potential (6-exp):

Eaa0 ðRÞ ¼ �
Aaa0

R6
þ Baa 0 e

�Caa0R; ð3Þ

and the Lennard-Jones potential (6 � n):

Eaa0 ðRÞ ¼ �
Aaa0

R6
þ Baa0

Rn
: ð4Þ

In both cases the energy rapidly decreases at large interatomic

distances (as R�6), and therefore only pairs of closest atoms

contribute to the total energy of the system, in spite of the fact

that the summation in eqn (1) is made over all pairs of atoms

in the crystal.

In the above formulae the Aaa0 and Baa0 parameters for

the interaction between atoms of different types are often

calculated as the geometric mean values of the corresponding

homogeneous interaction parameters:

Aaa0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AaaAa0a0

p
; Baa 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BaaBa0a0

p
; ð5Þ

while the Caa0 parameter is approximated in a similar way as

an arithmetic mean value:

Caa0 ¼
1

2
ðCaa þ Ca0a0 Þ: ð6Þ

Due to approximations (1)–(4), the energy can be represented

as a fast computable function depending on the lattice

parameters and relative positions and orientations of the

molecules in the unit cell provided that molecular geometry

of the complex is fixed. Having found the minimum of this

function, one gets estimates of the intermolecular interaction

energy (sublimation energy), the equilibrium unit cell

parameters, and the positions and orientation of the molecules

in the unit cell at the absolute zero temperature and absence of

external pressure.

One can easily extend the method to account for the

external pressure. For this purpose one should optimize the

enthalpy H instead of the potential energy U. The enthalpy is

defined as

H = U + PV, (7)

where the volume V is determined by the lattice parameters.

As for the thermal dependence of the lattice parameters, the

matter is not so simple. One should basically minimize

the Gibbs energy G to estimate the equilibrium values of the lattice

parameters at a non-zero temperature (and pressure). This

procedure includes calculation of the entropy of the crystal

undergoing the spin transition, which is a separate non-trivial

challenge, as shown in ref. 35. To avoid this, one may confine

the procedure to minimization of the internal energy U or the

enthalpy H, but the resulting lattice parameters will be
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relevant only for the absolute zero of temperature. On the

other hand, in practice the parameters of atom–atom inter-

action are fitted in such a way that the lattice parameters

corresponding to the minimum of the model internal energy U

best reproduce the experimental lattice structures measured at

the room temperature (see e.g. ref. 36). In this case the model

includes the entropy factor implicitly, and the lattice

parameters found by direct minimization of U should actually

refer to the room temperature.

The accuracy of the atom–atom approach is corroborated

by extensive statistics obtained for organic molecular

crystals.32–34 Typically it provides the accuracy level of ca.

0.1–5 kcal mol�1 in energy terms for a wide range of organic

crystals. However, in theory we can expect much better

precision for the relative energies of the crystals undergoing

the spin transition, since the LS and HS crystals are very

similar to each other (as is shown below, the shortest contacts

are the same).

III. Modeling method

We performed calculations for the molecular crystals formed

by each of the spin isomers of Fe(phen)2(NCS)2,

Fe(btz)2(NCS)2, and Fe(bpz)2(bipy). The ligands are depicted

in Fig. 1. The objects were chosen based on the following

considerations. First, all these crystals consist of neutral

molecules only, without ions or solvents. As a result, the

molecules are held together in the crystal by the van der Waals

forces (no strong Coulomb forces or obvious hydrogen bonds

are involved), which dramatically simplifies modeling of the

energy. Second, these three substances represent two different

types of spin transitions: abrupt one in the Fe(phen)2(NCS)2
and Fe(bpz)2(bipy) crystals, and smooth one in the

Fe(btz)2(NCS)2 crystal. Finally, the crystallographic data

(including the molecular geometries) for both HS and LS

forms of these three substances are available in the literature.

The energy of van der Waals interactions was described by

the Lennard-Jones (6–12) potential with the parameters of the

‘‘universal force field’’ (UFF) parameterization37 and by the

Buckingham (6-exp) potential with the parameters provided in

ref. 36 (see Tables 1 and 2). In the latter case the parameters

for the C� � �H, N� � �H, S� � �H, C� � �N, and S� � �C interactions

are given in ref. 36 explicitly and there is no need to use eqn (5)

and (6). Unfortunately, the system of parameters36 for the

(6-exp) potential has not been extended to boron. Hence we

took the minimum depth and the interatomic separation at

the minimum for the B� � �B pair from ref. 38, estimated the

corresponding A, B and C parameters and found the

parameters for the B� � �H, B� � �C, B� � �N, and B� � �S pairs

following eqn (5) and (6). The parameters of the (6-exp)

potential for pairs involving Fe atom(s) are not determined,

but they are immaterial in the present context, and we set them

to be equal to zero.

The MOLCRYST program suite39 capable of calculation

and minimization of molecular crystals energy and enthalpy

with use of the Lennard-Jones and Buckingham atom–atom

potentials was employed. This program has been thoroughly

tested on the examples of molecular crystals of aromatic

hydrocarbons. The geometries of HS and LS forms of the

complexes were taken from experiments40–42 and were assumed

to be fixed (frozen) throughout the modeling. The validity of

the rigid-body approximation can be tested43 and the analysis

of the difference vibrational parameters for an SC crystal

demonstrated44 that the non-rigidity is relatively small for

both HS and LS forms.

When calculating the energy according to eqn (2), we

restricted ourselves to summation over three layers of unit

cells around the central ‘‘0th’’ unit cell. In other words, only

those �r = (ra,rb,rc) were included into the sum, for which

|ra|r 3, |rb|r 3, and |rc|r 3. It was found that extending this

limit to 4 or more layers does not affect the final result for the

energy or enthalpy (the differences are less than 0.01 kcal mol�1).

As for the equilibrium values of the lattice parameters, their

values are stable (within 0.1%) already with one layer of the

surrounding unit cells (those adjacent to the ‘‘0-th’’ cell)

included into the summation.

To find the equilibrium values of the lattice parameters,

positions of the centers of masses (CM), and the rotation

angles of molecules in the unit cell, minimization of the

enthalpies of six pure crystals (three HS and three LS) was

performed. Pressure was set to be 1 atm. In all the cases the

experimental crystallographic data were taken as initial

approximations. At the first stage we minimized the enthalpy

as a function of five or six parameters (a, b, c, one non-trivial

rotation angle, and one non-trivial CM coordinate in the cases

of the Fe(phen)2(NCS)2 and Fe(btz)2(NCS)2 crystals; the same

plus the unit cell angle b in the case of the Fe(bpz)2(bipy)

crystals), preserving the symmetry of the crystal (Pbcn, Pbcn

and C2/c correspondingly); after that we checked that the final

point of the previous step is the global minimum, allowing for

variation of all 27 parameters (a, b, c, three unit cell angles,

three rotation angles for each of four molecules in the unit cell,

three CM position coordinates for three out of four molecules

in the unit cell; the fourth molecule position is not independent

due to the crystal translational symmetry). The optimized

structures are shown on Fig. 2–4.
Fig. 1 Structure formulae for the ligands of the spin-active complexes

studied.

Table 1 Parameters of the Lennard-Jones (6–12) potential37 used in
the calculations

H B C N S Fe

A/kcal Å6 mol�1 50.9 1668 685 332 2365 15.9
B/107 kcal Å12 mol�1 0.147 38.6 11.2 3.99 51 0.048
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The enthalpy was calculated as the sum of the internal

energy and the product of the pressure and the volume of

the crystal with 1 mole of molecules. In all the cases the

internal energies were found to be about �50 kcal mol�1

relative to the isolated molecules. The experimental data to

verify this result are not available. However, the energy

magnitude is quite reasonable in comparison with the

available data on organic molecular crystals,33,45 taking into

consideration that the numbers of interatomic contacts per

molecule in the crystals under study are a few times higher

than those in ordinary organic crystals. The differences

between the internal energies and the enthalpies in all the

cases at 1 atm are rather small, less than 0.01 kcal mol�1,

which is not surprising, since we deal with solid substances.

As mentioned above, the (6-exp) potential parameterization

from ref. 36 implicitly includes the entropy contribution since

it was fitted to reproduce the room temperature geometries of

crystals by minimization of the internal energy rather than the

Gibbs energy. So the results of our calculation with the

Buckingham potential should be compared with the room

temperature experimental data. The matter is not so clear in

the case of the UFF parameter system.37 The authors

introduce their parameters of the van der Waals interaction

explicitly referring to ionization potentials, polarizabilities,

and Hartree–Fock calculations, so these parameters seem to

be providing unadjusted estimates of the internal energy.

Nevertheless, direct comparisons of the numbers produced

with their empirical parameters and experimental geometries

are widely used in ref. 37. Strictly speaking, we do not have

sufficient information to judge whether our results obtained

with this (6–12) potential describe physical properties for the

absolute zero temperature or for the room temperature.

However, comparing the experimental data on the lattice

parameters of Fe(phen)2(NCS)2 at 15 K, 32 K, 130 K and

298 K46 with the results of our calculations, we can see that the

latter are somewhat closer to the high-temperature values of

the lattice parameters, rather than to the low-temperature ones.

The room temperature crystallographic data are available

only for the HS crystals. As for the LS crystals, we need to

extrapolate their experimental lattice parameters to the room

temperatures to make the comparison with the results of our

calculations possible. This is especially important for the

analysis of the changes of the lattice parameters DV, Da,
Db, Dc, etc. in the course of the spin transition, otherwise

the calculated experimental values would include not only the

Table 2 Parameters of the Buckingham (6-exp) potential36 used in the calculations

H� � �H C� � �H N� � �H S� � �H C� � �C C� � �N S� � �C N� � �N S� � �S B� � �B38

A/kcal Å6 mol�1 26.1 113 120 279 578 667 1504 691 2571 3.688
B/103 kcal mol�1 5.774 28.87 54.56 64.19 54.05 117.47 126.46 87.3 259.96 19.84
C/Å�1 4.01 4.10 4.52 4.03 3.47 3.86 3.41 3.65 3.52 6.82

Note: parameters for the S� � �N interaction and interactions of B with other atoms were calculated according to the superposition approximations

(5) and (6).

Fig. 2 Crystal structure of Fe(phen)2(NCS)2.

Fig. 3 Crystal structure of Fe(btz)2(NCS)2.

Fig. 4 Crystal structure of Fe(bpz)2(bipy). The upper molecules

appear to be overlapping but are, in fact, distinct and separated by

depth.
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contribution of the spin transition itself, but also of thermal

expansion of the crystal. In the cases of the Fe(phen)2(NCS)2
and Fe(btz)2(NCS)2 compounds, the dependences of the V, a,

b, c parameters and the HS molecule fraction x (from the

magnetic susceptibility data) on temperature are known in

the range from ca. 130 K to 293 K41 (each series consists of

22–25 observations). In a linear approximation,

V(T,x(T)) = (1 � x)(Vo,LS + kV,LS(T � To))

+ x(Vo,HS + kV,HS(T � To)), (8)

and similarly for the a, b and c parameters. We determined the

coefficients Vo,LS, kV,LS, Vo,HS, kV,HS, etc. by the method of

least squares (the R2 values of such models are typically

0.995–0.999), and made extrapolation of the lattice parameters

to the room temperature and unchanged fraction of the HS

molecules. These extrapolated values were used for comparison

with the results of the method of atom–atom potentials. As for

the Fe(bpz)2(bipy) crystal, the lattice parameters, published in

the literature, were measured only at few temperatures.42,47

Thermal coefficients of expansion, calculated for the LS form

on different temperature intervals, differ significantly, which

does not allow for a reliable extrapolation of the lattice

parameters to the room temperature. On the other hand,

high-temperature coefficients of expansion are more stable.

Because of these reasons, we extrapolated the HS crystal

lattice parameters to 139 K to estimate DV, Da, Db and Dc
free of thermal distortions, though only at 139 K. The results

of the extrapolations made are used in the next Section for

comparison with calculated optimal lattice parameters.

IV. Results and discussion

A Crystal geometries

The most important characteristic of the lattice from the

viewpoint of thermodynamical description of the spin transitions

is the unit cell volume. It is also vital for adequate description

of the critical phenomena and elastic long-range effects, as was

shown in ref. 14. The estimates of this quantity obtained by the

atom–atom potentials model are given in Tables 3–5. The

average error in the computed volume is 1.8%, ranging from

0.5% to 4.0%. The Lennard-Jones and the Buckingham

potentials provide comparable levels of accuracy. These

numbers should be compared with the discrepancy of

20–24% in ref. 20 and 1–8% in ref. 26 (both calculated with

the DFT method), the only analogues published so far. At the

same time one should remember that these data include

relatively small errors in the geometries of separate molecules

while our calculations are free of them because we used the

experimental structures for the molecules.

The changes of the unit cell volumes in the course of the spin

transition are relatively small differences of two large numbers,

and their correct estimation is difficult. For example, DV of

[Fe(pyim)2(bpy)](ClO4)2�2C2H5OH was found to be

negative,26 though all complexes studied experimentally have

positive DV, in agreement with the fact that the Fe–N bonds

are longer in the HS complexes, and thus the HS molecules

should have a larger ‘‘size’’. The calculated value of DV for

[Fe(trim)2]Cl2, published in ref. 20, has the correct sign, but

the experimental volumes of the LS and HS crystals are

available only for different temperatures, which makes it

impossible to compare the experimental and calculated values.

The values of DV of the Fe(phen)2(NCS)2 compound,

calculated by us with both Lennard-Jones and Buckingham

atom–atom potentials, are fairly close to the experimental

values (extrapolated to the room temperature), being probably

overestimated by 10–17% (while the uncertainty in the

extrapolated experimental value is ca. 10%). In the case of

Fe(btz)2(NCS)2, the errors are correspondingly about +15%

and �3% for the two potentials, while the uncertainty in

the extrapolated experimental value is ca. 7%. Finally, in the

case of Fe(bpz)2(bipy) the calculated values differ from the

experimental one, extrapolated to 139 K, by 4–14%. We

would like to stress that the temperature dependence of DV
is much stronger, than that of the unit cell volume V. For

example, the low-temperature (at 15 K) DV(Fe(phen)2(NCS)2)

equals to 61.2 Å3, the DV value extrapolated to 293 K is about

70–79 Å3, and the difference between the experimental unit cell

volume of the HS form at 293 K and that of the LS form at

130 K is 119.1 Å3. The presumable errors of the atom–atom

potentials method in calculations of DV (ca. 5–15 Å3) are

comparable with the uncertainties in the extrapolated

estimates for experimental values (ca. 3–9 Å3) and much less

than the changes in the volumes of the crystals caused by

temperature expansion of the crystals (dozens of Å3).

As for the unit cells themselves, in all the cases the symmetry

for the energy minimum points, according to our calculations,

coincides with the experimental one. Orientation of a molecule

in the unit cell can be characterized by three angles, corresponding

to the transformation of coordinates from the molecular

coordinate system (e.g. that of the principal axes of inertia

tensor) to the laboratory (or crystal) coordinate system. In all

the considered cases, two of these angles have trivial values (0, 90

or 1801); the values of the third angle, corresponding to rotation

around the C2 axis of the molecule, are given in Tables 3–5.

The same is true for the CM positions of molecules within a unit

cell. Two parameters out of three for each molecule are trivial

(0, 1/4, 1/2, or 3/4 of the corresponding translation period).

The remaining parameter (corresponding to the y coordinate in

the units of b) is given in Tables 3–5 as well. One can see that the

calculated values are fairly close to the experimental ones both

for the rotation angles and the CM positions.

The discrepancy between the calculated and experimental

values of the lattice parameters a, b, c is in the 0.1% to 3.2%

range, on average being equal to 1.3% for the (6–12) potential

and 1.4% for the (6-exp) potential. As for the changes of these

parameters in the course of the spin transition, in most cases

the results predicted by the method of atom–atom potentials

are in a good agreement with the experimental data (the errors

are ca. 0.05–0.1 Å). What is especially noteable is that the

method is capable of reproducing decrease of some lattice

periods in the course of the spin transition, which may happen

in spite of the overall increase of the unit cell volume

(the parameter b of the Fe(phen)2(NCS)2 crystal, the

parameter a of the Fe(bpz)2(bipy) crystal). However, we

have three problematic cases: the variation of the parameter

c of the Fe(phen)2(NCS)2 crystal (underestimated by the factor

of 3–5 times), and the variation of the parameters a and b of
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the Fe(btz)2(NCS)2 crystal (wrong sign of the result for a and

underestimation by the factor of 3–4 times for b). It is

important that both Lennard-Jones and Buckingham poten-

tials yield close results. Trying to find an explanation for these

errors, we noted that these three parameters are most sensitive

to temperature changes. For example, the poorly predicted Dc
of the Fe(phen)2(NCS)2 crystal (calculated from the c values

extrapolated to the same temperature) changes in relative

terms by 0.4% per 100 K, while both Da and Db—only by

0.2% per 100 K. Similarly, Da, Db and Dc of the Fe(btz)2(NCS)2
crystal decrease by 0.7%, 1.1% and 0.6% per 100 K. This allows

us to suggest that omission of the explicit treatment of the

entropy contribution to the Gibbs energy, and thus the

uncertainty in renormalization of the empirical parameters of

the potentials, is one of the main sources of errors in the method

in its current form, even if it is partially compensated by data

correction for the thermal expansion.

Another possible explanation (which does not exclude the

previous one) is that some specific interactions take place in

these crystals, different from those in ordinary organic crystals

used for fitting the presumably pure van der Waals interaction

parameters. This proposition is discussed in the next Section.

Table 3 Comparison of experimental and calculated unit cell parameters for Fe(phen)2(NCS)2 (at 1 atm)

a/Å b/Å c/Å b/1 V/Å3 Angle/1 CM y/b H/kcal mol�1

The LS isomer

Calc. (6–12) 13.185 9.922 17.347 90 2269.2 142.85 0.1112 �54.46
Calc. (6-exp) 12.992 9.852 17.279 90 2216.4 144.47 0.1136 �55.02
Exp. 15 K46 12.762 10.024 17.090 90 2186.3 143.84 0.0943 —
Exp. 130 K40 12.770 10.090 17.222 90 2219.1 140.51 0.0925 —
Exp. extrap. to 293 K 12.77 10.18 17.40 90 2259 — — —
The HS isomer

Calc. (6–12) 13.525 9.910 17.583 90 2356.7 147.36 0.1071 �52.65
Calc. (6-exp) 13.264 9.869 17.542 90 2296.2 149.35 0.1088 �53.80
Exp. 15 K46 13.185 9.948 17.135 90 2247.5 153.84 0.0989 —
Exp. 293 K40 13.161 10.163 17.481 90 2338.2 147.09 0.0938 —
The difference between the HS and LS isomers

Calc. (6–12) 0.340 �0.012 0.236 0 87.5 4.51 �0.0040 1.81
Calc. (6-exp) 0.272 0.017 0.263 0 79.8 4.88 �0.0048 1.22
Exp. extrap. to 293 K 0.39 �(0.02–0.04) 0.05–0.08 0 70–79 — — —
Exp. (15 K)46 0.423 �0.076 0.045 0 61.2 10.00 0.0045 —

Table 4 Comparison of experimental and calculated unit cell parameters for Fe(btz)2(NCS)2 (at 1 atm)

a/Å b/Å c/Å b/1 V/Å3 Angle/1 CM y/b H/kcal mol�1

The LS isomer

Calc. (6–12) 13.266 10.518 16.889 90 2356.4 125.60 0.0385 �54.15
Calc. (6-exp) 13.099 10.498 16.741 90 2302.1 126.45 0.0445 �57.10
Exp. (130 K)41 13.055 10.650 16.672 90 2318.1 127.48 0.0421 —
Exp. extrap. to 293 K 13.17 10.80 16.88 90 2397 — — —
The HS isomer

Calc. (6–12) 13.242 10.724 16.947 90 2406.6 129.45 0.0451 �54.32
Calc. (6-exp) 13.077 10.669 16.803 90 2344.3 130.14 0.0498 �58.20
Exp. (293 K)41 13.288 10.861 16.920 90 2441.9 129.79 0.0415 —
The difference between the HS and LS isomers

Calc. (6–12) �0.023 0.206 0.059 0 50.2 3.85 0.0066 �0.17
Calc. (6-exp) �0.022 0.172 0.062 0 42.2 3.68 0.0054 �1.10
Exp. extrap. to 293 K 0.12 0.06 0.03–0.04 0 42–45 — — —

Table 5 Comparison of experimental and calculated unit cell parameters for Fe(bpz)2(bipy) (at 1 atm)

a/Å b/Å c/Å b/1 V/Å3 Angle/1 CM y/b H/kcal mol�1

The LS isomer

Calc. (6–12) 16.319 14.840 10.685 113.97 2364 92.55 0.2699 �49.78
Calc. (6-exp) 16.136 14.661 10.697 114.25 2307 91.93 0.2724 �40.22
Exp. (139 K)42 16.086 14.855 10.812 114.18 2357 90.91 0.2754 —
The HS isomer

Calc. (6–12) 16.242 15.178 10.823 113.60 2445 85.06 0.2703 �48.59
Calc. (6-exp) 16.032 14.995 10.834 113.92 2381 84.48 0.2728 �39.75
Exp. (293 K)42 16.307 15.075 11.024 114.95 2457 85.02 0.2782 —
Exp. extrap. to 139 K 16.16 14.99 11.04 114.9 2426–2429 — — —
The difference between the HS and LS isomers

Calc. (6–12) �0.077 0.338 0.138 �0.37 81 �7.49 0.0004 1.19
Calc. (6-exp) �0.104 0.334 0.137 �0.33 74 �7.45 0.0004 0.47
Exp. extrap. to 139 K 0.07 0.14 0.23 0.7 69–72 — — —
Exp. (30 K)47 �0.076 0.347 0.219 1.09 71.2 — — —
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B Contacts analysis

To study this problem, we analyzed intermolecular contacts in

the crystals, comparing atom–atom distances found in the

experimental studies with those optimized with the parameters

from ref. 36 and 37 (see details in the ESIw). In all three

materials the spin transition does not much affect the picture

of intermolecular contacts. In other words, the shortest

contacts in a LS crystal are also short (typically, though not

always, shorter than the sum of the van der Waals radii)

contacts in its HS form, and vice versa.

In most cases the shortest contacts involve hydrogen atoms

(S� � �H–C, C� � �H–C, N� � �H–C, C–H� � �H–C, or C–H� � �H–B).

It is well known that coordinates of the hydrogen atoms

determined from X-ray diffraction may be subject to significant

errors unless tricks of crystallographic computing are used.

While the X–H bond length is notoriously underestimated due

to the shift of the bonding electron pair towards the nonmetal

X atom, the direction of the X–H vector in three-dimensional

space is correctly found. Thus, the H atom should ‘‘ride’’ on

the nonmetal atomwith a fixed bond length (e.g., C–H= 1.09 Å,

N–H= 1.01 Å, O–H= 0.96 Å). Because the crystal structures

under study seemingly did not profit from such ‘‘riding’’

H atoms approach, we may suggest that one of the main

sources of mistakes in our results is the uncertainty in the

H positions. This also indicates that in the future research,

when taking into consideration intramolecular degrees of

freedom, one should take possible deformations of the C–H

bonds into account.

It is reasonable to suggest that the top of the list of the

highest atom–atom repulsion and attraction energies mainly

contains poorly described atom–atom interactions. Indeed,

poor description of weak interactions will not cause the system

to go long away from the experimental configuration in the

process of optimization, and only the mistreatment of

the strongest interactions will lead to significant distortions

of the crystal structure. In practice, the picture is not so clear

because molecules in organic crystals typically have numerous

contacts between various atoms. By analyzing the crystals

formed by the Fe(phen)2(NCS)2 or Fe(btz)2(NCS)2 molecules

we found that the sulfur atoms play very important role in the

intermolecular interactions (Fe(bpz)2(bipy) does not contain

sulfur). As our calculations demonstrated, the S atoms

participate in many close contacts with other atoms, thus

providing a significant contribution to the repulsion within

crystals; at the same time, their contributions to the attraction

are also dominant (attraction energies of various S� � �S pairs

are the largest by absolute value in these crystals; as for the

S� � �C contacts, in some of them attraction is also very strong,

while some other S� � �C contacts are among extreme cases of

repulsion).

The Fe(phen)2(NCS)2 molecule has S atoms only in the

NCS groups while in the case of Fe(btz)2(NCS)2 the chelating

ligand also contains the S atoms. We found that the S atoms of

both types participate in the contacts with extremal values of

the energy. Taking into consideration that the parameterization

of the van der Waals energy of the S� � �X contacts (X= S, C, H)

is not so well studied as compared to the C� � �C, C� � �H, and

H� � �H interactions, and that some involvement of the lone

pairs and vacant d-orbitals of the S atoms can complicate

the approximation of the S� � �X interactions by the

center-symmetric atom–atom contributions, we suggest that

improving the treatment of S� � �X (X = S, C, H) interaction

energies may be another way of developing a better model of

the atom–atom potentials for molecular crystals undergoing

spin transitions. For example, the shortest C� � �S distances

are found to be ca. 0.2 Å shorter than the sum of the

van der Waals radii of the atoms. In the case of the S� � �H–C

contacts, this contraction may reach even 0.27 Å.

To confirm these observations, we estimated numerically the

partial derivatives of the optimized lattice periods a, b and c of

the LS and HS Fe(btz)2(NCS)2 crystals (the most poorly

described material) with regard to the atom–atom potential

parameters (see the ESIw). We found that only three

parameters significantly affect the optimal structure of the

crystal: the equilibrium separations for the S� � �C, S� � �H, and

S� � �S pairs (listed in the order of decreasing effect).

Thus it is reasonable to suggest that due to some specific

interactions, the optimal interatomic distances involving

S atoms may be lower than determined by the standard

parameterization. Further research (including experimental

studies) in this field, dealing with other similar S-containing

spin-active crystals, would be of primary importance for

improving performance of the atom–atom potentials method.

C Contributions of intermolecular interactions to enthalpy

The results described in the previous Sections demonstrate that

the method of atom–atom potentials is capable of modeling

intermolecular interactions and reproducing experimental

data on the geometry of the unit cells. This allows us to go

on to estimate the contributions of the van der Waals inter-

molecular interactions to the energy (enthalpy) of the spin

transitions, which cannot be extracted from experimental data.

The results are given in the last columns of Tables 3–5. First of

all, one can see that this contribution may be either positive or

negative, which corroborates the theoretical conclusion of

ref. 12. Another important point is that the lattice contribution

to the enthalpy of the spin transition is comparable with its

total value. Though the estimates obtained with the Lennard-

Jones and Buckingham potentials are somewhat different, the

general picture is the same. For example, in the case of the

Fe(phen)2(NCS)2 crystal we found this component to be equal

to +1.81 kcal mol�1 (6–12) or +1.22 kcal mol�1 (6-exp),

while the total experimental enthalpy (from the calorimetrical

data) is +2.05 kcal mol�1.9 It means that one cannot neglect

intermolecular interactions in calculating thermodynamical

characteristics of the spin transitions in molecular crystals.

(This conclusion was also made in ref. 20 on the basis of DFT

calculations; however, the contribution of intermolecular

interactions, which can be extracted from their results

and ranging from 2 to 23 kcal mol�1, seems to be strongly

overestimated.)

D Pressure effects

Finally, we studied the behavior of the crystal lattice

parameters under the external hydrostatic pressure. Calculations

were made for the Fe(phen)2(NCS)2 and Fe(btz)2(NCS)2
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compounds, since the experimental data on the pressure effects

on the spin transition are available only for these crystals.48

We performed minimization of the enthalpies as a function of

the lattice parameters, CM positions of the molecules, and

their rotation angles, at two values of the pressure. The

external pressure was accounted for by the PV term in the

function to be minimized. The starting points of optimization

were the experimental geometries. As previously, at the first

step we minimized enthalpy as a function of five parameters,

preserving the symmetry of the crystal, and after that checked

that we get the global minima by allowing variation of all

27 parameters mentioned above. The results for the lattice

parameters of the LS forms at 1 GPa and 298 K are given in

Tables 6 and 7, and the compressibility coefficients at 1 atm

and 1 GPa—in Table 8. As one can see from the tables, the

high-pressure lattice parameters are very well reproduced

(errors are below 4%), though less accurately than those for

the low pressure. As for the compressibility coefficients, in

all the cases the correspondence between the calculated

and experimental values is qualitative (the compressibility

coefficients are underestimated by a factor of 1.5–3 as

compared to the experimental values). One can see that

the Buckingham potential produces better values than the

Lennard-Jones one. Taking into consideration that the

(6-exp) parameterization used in the present study is based

only on the crystal structures measured at 1 atm, and very few

contacts in those structures have distances corresponding to

the repulsive branch of the potential (see Fig. 5–7 of ref. 36),

we conclude that our results for the high-pressure structures

are better than one could expect.

V. Conclusion

The numerical modeling of the spin transitions in molecular

crystals is important from both practical and theoretical

viewpoints. There is no alternative to calculations explicitly

taking into account the composition and structure of

interacting molecules (instead of representing them by spheres,

or ellipsoids, or octahedra etc., immersed in an elastic media),

both for the purposes of theoretical study of the transition

mechanisms and for prediction of phenomenological

parameters for macroscopic models. Meanwhile, the modern

quantum chemical methods are hardly applicable to such

objects, because their accuracy level is not sufficient to

calculate the required values (for example, enthalpies of the

spin transitions).

We demonstrate that the atom–atom potentials can be used

for analysis of intermolecular contributions to the structure

and energy of spin-active crystals. Indeed, intermolecular

contacts in these crystals are those between the C, H, N, S,

etc. organogenic atoms, while the metal atom and its bonds

with the donor atoms of the ligands are hidden inside the

complex. As a consequence of that, the van der Waals

interactions in the spin-active crystals can be approximated

similarly to those in ordinary organic molecular crystals.

Table 6 Comparison of experimental and calculated unit cell parameters for Fe(phen)2(NCS)2 (at 1 GPa)

System a/Å b/Å c/Å V/Å3

LS (1 GPa) Calc. (6–12) 13.060 9.773 17.183 2193.2
Calc. (6-exp) 12.838 9.700 17.089 2128.0
Exp. (298 K)48 12.656 9.848 16.597 2068.6

Difference, LS (1 GPa)/HS (1 atm) Calc. (6–12) �0.465 �0.137 �0.399 �163.5
Calc. (6-exp) �0.426 �0.169 �0.453 �168.2
Exp. �0.505 �0.315 �0.884 �269.6

Difference, LS (1 GPa)/LS (1 atm) Calc. (6–12) �0.125 �0.149 �0.163 �76.0
Calc. (6-exp) �0.155 �0.161 �0.193 �86.0
Exp. �0.114 �0.242 �0.625 �150.5

Table 7 Comparison of experimental and calculated unit cell parameters for Fe(btz)2(NCS)2 (at 1 GPa)

System a/Å b/Å c/Å V/Å3

LS (1 GPa) Calc. (6–12) 13.072 10.410 16.640 2264.4
Calc. (6-exp) 12.877 10.380 16.502 2205.7
Exp. (298 K)48 12.839 10.454 16.362 2196.1

Difference, LS (1 GPa)/HS (1 atm) Calc. (6–12) �0.171 �0.313 �0.307 �142.2
Calc. (6-exp) �0.366 �0.343 �0.445 �200.9
Exp. �0.449 �0.407 �0.558 �245.8

Difference, LS (1 GPa)/LS (1 atm) Calc. (6–12) �0.194 �0.107 �0.249 �92.0
Calc. (6-exp) �0.389 �0.138 �0.386 �150.7
Exp. �0.216 �0.196 �0.310 �122.0

Table 8 Comparison of experimental and calculated compressibility
coefficients (in 10�1 GPa�1) for Fe(phen)2(NCS)2 and Fe(btz)2(NCS)2

System ka kb kc kV

Fe(phen)2(NCS)2 Calc. (6–12) 0.14 0.22 0.14 0.50
HS, 1 atm Calc. (6-exp) 0.16 0.22 0.17 0.56

Exp. (298 K)48 0.21 0.33 0.53 1.07
Fe(phen)2(NCS)2 Calc. (6–12) 0.07 0.12 0.07 0.26
LS, 1 GPa Calc. (6-exp) 0.09 0.13 0.09 0.30

Exp. (298 K)48 0.16 0.28 0.38 0.82
Fe(btz)2(NCS)2 Calc. (6–12) 0.22 0.14 0.20 0.56
HS, 1 atm Calc. (6-exp) 0.25 0.14 0.18 0.57

Exp. (298 K)48 0.41 0.43 0.37 1.21
Fe(btz)2(NCS)2 Calc. (6–12) 0.11 0.08 0.11 0.30
LS, 1 GPa Calc. (6-exp) 0.13 0.09 0.11 0.34

Exp. (298 K)48 0.28 0.33 0.28 0.89
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In the present paper we checked for the first time the

possibility to use the atom–atom potentials method for this

class of objects.

In all the cases the symmetry groups of optimized crystals

coincided with those found in experiment; the unit cell

volumes were calculated with the precision of 0.5–4%. Errors

in the predicted lattice parameters did not exceed 3% at the

ambient pressure and 4% at 1 GPa. Direction (sign) and

magnitude of the changes of the lattice parameters and

molecules positions in the unit cell in the course of

the temperature- and pressure-driven spin transitions were

reproduced correctly. The compressibility coefficients are in

a qualitative agreement with their experimental values,

although 1.5–3 times underestimated. Thus the accuracy of

the method of atom–atom potentials is quite sufficient at the

present level of the theory. We demonstrated that the performance

of the method can be further improved by adjustment to the

specific cases under study, and that the energy of interactions

involving sulfur atoms is the crucial term for adequate

treatment of spin transitions in the crystals studied.

Our work shows that any reliable calculation of spin

transition parameters (such as transition enthalpy) must

take into account intermolecular interactions. According

to our estimates for the Fe(phen)2(NCS)2 crystal, the

van der Waals contribution to the transition enthalpy is about

+(1.2–1.8) kcal mol�1 (as compared with the total transition

enthalpy of +2.05 kcal mol�1).

We believe that the accuracy of the method used in this

paper is limited by (i) implicit treatment of the entropy effects

(through fitting the interaction parameters, rather than explicit

calculation of frequencies of intermolecular oscillations);

(ii) uncertainty of the H atoms positions in the experimental

X-ray structures; (iii) description of the energy of interactions

involving the S atoms (due to possible involvement of lone

pairs and vacant d-orbitals of the sulfur atoms). Nevertheless,

even the current level of precision is enough for using the

method of atom–atom potentials to study the spin transitions

in molecular crystals.

The method of atom–atom potentials allows going beyond

modeling isolated spin-active molecules or crystals, formed by

repeating the same molecule by means of periodic boundary

conditions. It can be used for estimations of distortion energy

in the mixed crystals, for molecular dynamic simulations,

and in other similar computationally extensive studies, thus

opening new options of theoretical studies on the spin

transitions in molecular crystals.
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