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Abstract
We propose a new frustrated Heisenberg antiferromagnetic model with spatially anisotropic
exchange parameters Jc, Ja, and Jac, extending along the c, a, and a± c (c–a–ca model) lattice
directions, and apply it to describe the fascinating physics of copper carbodiimide, CuNCN,
assuming the resonating valence bond (RVB) type of its phases. This explains within a unified
picture the intriguing absence of magnetic order in CuNCN. We further present a
parameters–temperature phase diagram of the c–a–ca-RVB model in the high-temperature
approximation. Eight different phases including Curie and Pauli paramagnets (respectively, in
disordered and 1D- or Q1D-RVB phases) and (pseudo)gapped (quasi-Arrhenius) paramagnets
(2D-RVB phases) are possible. By adding magnetostriction and elastic terms to the model, we
derive possible structural manifestations of RVB phase transitions. Assuming a sequence of
RVB phase transitions to occur in CuNCN with decreasing temperature, several anomalies
observed in the temperature course of the lattice constants are explained.

(Some figures may appear in colour only in the online journal)

1. Introduction

Among the materials of the MNCN series (M = Mn, Fe,
Co, Ni), the phase CuNCN is the most peculiar example [1].
In variance with other members of the series exhibiting more
or less standard antiferromagnetic behavior, CuNCN is a
temperature independent (quasi-Pauli, see below) paramagnet
at room temperature and, at lower temperatures, switches
to a gapped (quasi-Arrhenius) temperature dependence.
Nonetheless, it is not metallic in the temperature range where
the Pauli paramagnetism occurs, hence no metal–insulator
transition can be responsible for the quasi-Arrhenius behavior.
It also does not manifest any magnetic neutron scattering [2]
so that no long-range magnetically ordered (LRMO) state
appears to which one could ascribe the susceptibility drop.
These findings brought us [3–6] to the idea that CuNCN
may form resonating valence bond (RVB) phases of the
Cu2+ local spin 1/2 which are unequivocally observed in
the Pauli paramagnetic phase with use of EPR [4]. This
idea allowed us [3–6] to explain the magnetic and polarized

neutron experiments by further assuming that the RVB
phases are those of an anisotropic triangular antiferromagnetic
Heisenberg model evolving in the ab crystallographic plane
(figure 1). Can one expect structural manifestations of the
conjectured transition between the RVB phases? Yes, because
instead of the typical decrease of the unit cell dimensions one
detects an anomalous temperature dependence of the lattice
parameter a in synchrotron experiments, to be related with
the 1D-RVB to 2D-RVB phase transition of the anisotropic
triangular Heisenberg model which opens the gap in the
quasiparticle spectrum along the a direction [5, 6].

Puzzlingly, the experiment [6] also shows some
irregularities for the lattice parameter c at about the same
temperature (80–100 K) as for the lattice parameter a, and
there are more irregularities in either the a- or the c-direction
at about 30 K (see figure 2).

The hypothesis of the triangular lattice is also not easy to
reconcile with the intuitive picture [7] of the most important
couplings extending along a and c. This brings us to the
idea of considering more antiferromagnetic couplings and of
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Figure 1. Crystal structure (unit cell) of CuNCN and exchange
parameters included in the consideration. Those in the ac
crystallographic plane are taken into consideration. The interactions
are always mediated by the NCN2− moieties. Two stronger
interactions (Jc and Jac) are mediated by the π -system of NCN2−

and extend, respectively, in the c and c± a directions; they in fact
couple the Cu2+ ions shifted by one half of the lattice parameter in
the c direction; somewhat weaker Ja contributed by a ferromagnetic
counterpoise term dependent on the hybridization at the N atoms
extends in the a direction.

formulating the Heisenberg model with the Hamiltonian∑
r

∑
τ

JτSrSr+τ , (1)

where the translation vector τ takes four values τi, i = 1–4:
τ1 = (a, 0); τ2 = (0, c); τ3 = (a, c); τ4 = (a,−c), with an
interaction of strength Ja along the lattice vector τ1 (two
neighbors), an interaction of strength Jc along the lattice
vector τ2 (two neighbors as well), and an interaction of

strength Jac along the lattice vectors τ3 and τ4 (two neighbors
along each)—see figure 1. Either interactions along τ1 and
τ2 or those along τ3 and τ4 taken separately must lead
to an antiferromagnetic state. However, when considered
simultaneously they interfere leading to a frustration not
allowing the spins to arrange in any LRMO state. For similar
systems a variety of RVB states have been proposed [8, 9].
Ground states of a similar, but spatially isotropic J1J2J3
model have been treated recently by various methods, and
it has been shown that spin-liquid (RVB) states are very
probable [10]. This generalizes the known Nersesyan–Tsvelik
model [11] which derives from ours by setting Ja = Jc, which
is clearly not the case for CuNCN. In this paper, we consider
in detail the RVB states of the above model in the mean-field
approximation and apply this approximation to analyze the
experimental data so far obtained for CuNCN.

2. RVB mean-field analysis of the model

2.1. Quasiparticle spectrum

Following the method [12] we use the fermion (spinon)
representation of the spins,

Si =
1
2 c†

iασαβciβ , (2)

where c†
iσ (ciσ ) are the fermion creation (annihilation)

operators; σαβ are the elements of the Pauli matrices and
summation over repeating indices is assumed. Applying the
technique as described in appendix A (this method widely
applies to various layered cuprates and is a standard treatment)
we arrive at the quasiparticle spectrum,

E2
k = 9(J2

aζ
2
a cos2x+ J2

c ζ
2
c cos2z+ 4J2

acζ
2
accos2x cos2z), (3)

where we set x = kx, z = kz and introduce effective order
parameters (OPs) ζa, ζc, and ζac describing the states of the
model.

The spectrum (3) is depicted in figure 3. It shows
three principal regimes: (i) one with two pairs of lines of

Figure 2. Course of the lattice parameters a, b, and c of CuNCN as a function of the temperature (see [6] where the experimental details
can be found). Data for the first run (λ = 0.501 95 Å) are given by squares and those for the second run (λ = 0.503 50 Å) by bullets. One
can see that the temperature course of the b parameter (black) shows no anomaly, whereas both the a and the c parameter (respectively, blue
and red) go in opposite directions below 100 K and exhibit other anomalies at about 30 K.
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Figure 3. Dispersion laws (quasiparticle energy—applicata, versus 2D-wavevector in the Brillouin zone k ∈ [−π, π]× [−π, π]—abscissa
and ordinate) of the c–a–ca-RVB model for several characteristic values of the OPs ζa, ζc, and ζac indicating key features of the
quasiparticle spectrum in different RVB states and the sketches of the relevant qDoS—normalized number of states versus quasiparticle
energy ε (see text for details).

nodes (gapless 2D-RVB), (ii) one with a pair of lines of
nodes (termed as 1D- and Q1D-RVB states), and (iii) one
with two pseudogaps and four nodal points (pseudogapped
2D-RVB)—for the naming of the states see below.

If either of the OPs ζa or ζc is the only nonvanishing
OP, the quasiparticle spectrum acquires corresponding lines
of nodes z = ±π2 (or x = ±π2 ) where the quasiparticles have
zero energy. We call these states one-dimensional (1D-RVB)
states since the dispersion of quasiparticles occurs in only one
crystallographic direction (a or c—see, however, below). The
quasiparticle density of states (qDoS) in the 1D-RVB states
is constant at zero energy, but it diverges at the ceiling of
the quasiparticle band due to the dispersionless ridge in the
spectrum [3], similarly to the 1D-RVB state of the anisotropic
triangular Heisenberg model found in [13]. If both OPs ζa,c
vanish and the OP ζac does not, two pairs of nodal lines exist
along which the quasiparticles have zero energy. In this state
the qDoS diverges logarithmically at zero energy.

If either of the nonvanishing OPs ζa,c is complemented by
the nonvanishing OP ζac, quasi-1D-RVB (Q1D-RVB) states
appear. The difference from the true 1D-RVB states is that
in the Q1D-RVB states one finds a nonvanishing dispersion
transverse to the node lines, so that the quasiparticle spectra
have local maxima and saddle points instead of a ridge.
Thus, the qDoS develops a finite hop at the ceiling of
the quasiparticle band and a logarithmic singularity at the
pseudogap. By contrast, if the nonvanishing OPs are ζc and
ζa, then (irrespective of the OP ζac) there are no lines of
nodes, but four nodal points (k = (±π2 ,±

π
2 )) of vanishing

quasiparticle energies. The two possible states of this type
are called 2D-RVB. The qDoS in 2D-RVB states vanishes
at zero energy, being proportional to the energy well below
the smaller pseudogap. Otherwise the quasiparticle dispersion
law has saddle points at the two pseudogap energies
and, thus, the qDoS of the 2D-RVB state develops two
logarithmic singularities at the corresponding pseudogaps. In
the Nersesyan–Tsvelik model (Ja = Jc) two logarithmic peaks

coalesce and only one pseudogap is manifested. The exact
forms of the qDoS of all RVB phases of the model are given
in table C.1, appendix C. In the last column of table C.1 we
show the analytical forms of the qDoS characteristic for the
respective forms of the quasiparticle spectrum. It turned out
quite unexpectedly that these qDoS can be found analytically
for all phases of the c–a–ca-RVB model. Leaving the details
of the derivation for a further publication we provide its sketch
in appendix C.

2.2. Free energy and phase diagram of the model

The thermal behavior of the c–a–ca model derives from its
free energy which can be written immediately [9] as

F = 3Jaζ
2
a + 3Jcζ

2
c + 6Jacζ

2
ac

−
2θ

4π2

∫
BZ

ln
(

2 cosh
(

Ek

2θ

))
d2k, (4)

where θ = kBT and BZ stands for integration over the
Brillouin zone. The minima of the free energy (4) with respect
to the ζ s correspond to possible phases of the system. The
study of the ground state (zero-temperature limit) of the
present model will be published elsewhere [14]. Here we
focus on the results which can be obtained with use of the
high-temperature expansion (technicalities are explained in
appendix B). Minimizing the high-temperature expansion of
(4) with respect to the OPs, we obtain the parameter phase
diagram shown in figure 4 for the triple of the reduced
exchange parameters subject to the condition J∗a+J∗c+J∗ac = 1
and a series of reduced temperatures θ∗ between 0.4 and
0.01 (the fractions of the above sum of the reduced exchange
parameters are meant). Eight phases are possible. For the
temperature above either of three critical ones,

θcrit
τ =

3
8 Jτ , (5)

the ‘gray’ phase persists in which all three OPs are equal to
zero.
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Figure 4. Parameter phase diagrams for the c–a–ca-RVB model in the high-temperature approximation. The abscissa and ordinate represent
the reduced parameters J∗a and J∗c ; these parameters, respectively, are equal to unity in the lower right and upper left corners; the entire set of
reduced parameters is subject to the condition J∗a + J∗c + J∗ac = 1. The reduced temperatures θ∗ are fractions of J∗a + J∗c + J∗ac. The color
coding for phases is as follows: Curie paramagnetic, with all OPs zero = gray, only one nonvanishing OP = red or green (1D-RVB, Pauli
paramagnet), = blue for ζc, ζa, ζac 6= 0, respectively; one OP vanishing = magenta, cyan (Q1D-RVB, Pauli paramagnet), = orange for
ζa, or ζc, or ζac = 0, respectively—observe the order of the list; yellow codes the phase with three nonvanishing OPs. Orange and yellow
phases (2D-RVB) feature a combination of the gapped Arrhenius-like temperature dependence of magnetic susceptibility and its linear
dependence well below the pseudogap. The small star shows the tentative position of CuNCN on the parameter phase diagram.

Below these temperatures, gapless phases appear in
respective corners of the parameter phase diagram. There are
two 1D-RVB phases with OPs ζc or ζa 6= 0 (red and green
areas in figure 4). The gapless 2D-RVB phase with only one
OP ζac 6= 0 occupies the blue area in figure 4.

Below the critical temperatures

θcrit
τ→τ,τ ′ =

Jτ ′

8

(
1−

2Jτ ′

3Jτ

)−1

=
3Jτ Jτ ′

8 (3Jτ − 2Jτ ′)
(6)

the corresponding phases with two nonvanishing OPs ζτ
and ζτ ′ appear (the notation refers to a transition from
the state with one nonvanishing OP, ζτ 6= 0, to a state
with two nonvanishing OPs, ζτ , ζτ ′ 6= 0). The phases with
two nonvanishing OPs are different as well. If one of the
nonvanishing OPs is ζac (magenta and cyan areas in figure 4)
these are Q1D-RVB phases. If the two nonvanishing OPs
are ζc and ζa, a 2D-RVB phase (orange) appears from the
1D-RVB phases (red and green).

The phase with three nonvanishing OPs (yellow) can only
appear below the octal point J∗a = J∗ac = J∗c =

1
3 ; θ
∗
= 1/8

where the phase with three vanishing OPs (gray) completely
disappears and shows up from the above Q1D-RVB phases
(magenta or cyan) at the critical temperatures

θcrit
τ,ac→a,c,ac =

3JacJτ̄
8 (3Jac − 2Jτ̄ )

, (7)

(τ̄ = c, a for τ = a, c). It is transient and exists only above the
critical temperature of

θcrit
a,c,ac =

3JaJacJc

8 (3JaJac − 5JaJc + 3JacJc)
, (8)

where it switches to the 2D-RVB phase with two nonvanishing
OPs (orange). The only difference between the dispersion
laws in these two 2D-RVB phases is somewhat more
pronounced dispersion along a ‘ridge’ in the case of the phase
with three nonvanishing OPs. Otherwise both pseudogapped
2D-RVB phases have a qDoS with two van Hove singularities
at the energies of their characteristic pseudogaps, and their
physics has to be pretty similar. All phase transitions are
of second order, that is to say that the OPs split from zero
continuously at the corresponding transition temperatures.
Obviously, in the high-temperature approximation only the
classical value of the critical exponent β = 1

2 can appear.
In general, one can expect that the high-temperature

expansion will be valid down to temperatures of the order
of J. This is, however, a too conservative estimate. It had
been shown in [9] that the high-temperature estimate for
the critical temperature of the transition between the Curie
and Pauli paramagnetic phases of the anisotropic triangular
Heisenberg model, which coincides with (5), precisely
reproduces the numerical result, showing by this that the
high-temperature expansion in a frustrated system remains
valid for temperatures reasonably below 0.5J. Furthermore,
the lower critical temperature given by (6) as well is in fair
agreement with the numerical result of [12] for the anisotropic
triangular Heisenberg model as shown in [3, 5]. This shows
that the validity range of the high-temperature expansion in
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Figure 5. Characteristic spin-pairing (valence bond) contributing to produce various RVB states. See text for details.

fact extends down to about 0.1J′, where J′ < J is a smaller
(oblique) exchange parameter of the anisotropic triangular
Heisenberg model. Thus at least in the most studied frustrated
model the number and approximate positions of critical points
are semiquantitatively reproduced by the high-temperature
expansion which in that sense remains valid down to a
pretty low temperature. This turns out to be true for a
frustrated system—where the motions remain chaotic due to
the frustration. That is why we cautiously rely on this method
for our new frustrated Hamiltonian.

In order to make the not particularly intuitively clear
minima of the free energy (4) more comprehensible we
on the basis of the analysis of [9] represent pictorially the
characteristic microstates contributing to the respective phases
in figure 5. According to [9] the RVB wavefunction is a
superposition (linear combination/resonance) of microstates
written with respect to individual spins residing in the vertices
of a lattice. In the case of the c–a–ca model these are
the vertices of a rectangular lattice with the constants a
(horizontal in figure 5) and c (vertical in figure 5). In the
microstates all spins form singlet pairs (valence bonds) of
the form 1

√
2
(c†

r↑c
†
r′↓ + c†

r↓c
†
r′↑). The microstates are thus

the products of valence bonds for different pairs of vertices
rr′ such that in a given microstate each spin enters in one
and only one valence bond. Being summed with different
amplitudes controlled in their turn by the values of the OPs
symbolized by the ⊕ sign, the microstates produce specific
RVB states. The states with a single nonvanishing OP are
easiest to understand. These are the gapless 2D- and 1D-RVB
states shown in two leftmost panels of figure 5. In these states
the bonds appear only along the directions where the OPs
are nonvanishing. Thus the 1D-RVB states differ, as one can
imagine, by the directions (a or c) in which the bonds extend.
Formally, being directed in, say, the c direction means that for
all bonds the following holds: r = r′ + nc, with an integer
n, and analogously for the 1D-RVB state extended in the a
direction. We use the color code of the respective phases in

figure 4 to render the bonds extended in the corresponding
directions. In the Q1D-RVB states the bonds extended in
one of the lattice directions are complemented by those
coupling the spins along the geometric diagonals: a ± c.
In the (pseudo)gapped 2D-RVB states the bonds extend in
either direction along the crystallographic axes. The 2D-RVB
state with all three nonvanishing OPs (yellow) contains all
possible bonds, whereas the 2D-RVB state with vanishing
ζac (orange) misses the bonds extended along the geometric
diagonals, as can be seen in the two rightmost panels. The
above considerations apply to the pure RVB states, i.e. at
zero temperature. For the respective RVB phases at finite
temperature the depicted ground states of each type are
accompanied by excited states taken with respective statistical
weights, in which some temperature dependent fraction part
of the bonds is broken.

3. Physical properties of CuNCN viewed through
the model

As mentioned above and previously [3–5], the absence of
magnetic scattering in CuNCN is perfectly explained by the
hypothesis of the RVB character of its phases. The magnetic
properties (qualitative behavior of the susceptibility as a
function of temperature) as deriving from the characteristic
features of the qDoS are designated in the first column of
table C.1. It is not surprising that the temperature-independent
paramagnetism (conditionally denoted as ‘Pauli’, although it
goes about spinons rather than conductivity electrons) occurs
in the (Q)1D-RVB phases with a constant qDoS at zero
energy. The ‘blue’ gapless 2D-RVB phase with two pairs
of intersecting node lines is manifested as a logarithmic
singularity in the qDoS at zero energy. This singularity
integrates and produces a logarithmic divergence of the
susceptibility at zero temperature which qualitatively would
be difficult to distinguish from the Curie paramagnetism. For
two pseudogapped 2D-RVB phases (yellow and orange) with
nodal points in the dispersion law and linear dependence

5
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Table 1. Temperature dependences of the OPs for possible phases of CuNCN in the high-temperature approximation of the c–a–ca-RVB
model. The areas of existence of the corresponding phases are given by the condition of positiveness of the expressions under the square
roots.

Color code OPs versus θ

Blue


ζc = ζa = 0

ζac =
4θ

3Jac

√
1− θ/θ crit

ac θ crit
ac = 3Jac/8

Magenta



ζa = 0

ζc =
4θ
3Jc

√
1− θ/θ crit

c,ac θ crit
c,ac =

3JacJc

8 (3Jac − 2Jc)

ζac =
8
3

√
2
3
θ

Jac

√
θ (Jac − Jc)

JacJc

Yellow



ζa =
4θ
3Ja

√
1− θ/θ crit

c,ac→a,c,ac θ crit
c,ac→a,c,ac =

3JacJa

8 (3Jac − 2Ja)

ζc =
4θ
3Jc

√
1− θ/θ crit

a,ac→a,c,ac θ crit
a,ac→a,c,ac =

3JacJc

8 (3Jac − 2Jc)

ζac =
4
3

√
1
3
θ

Jac

√
θ/θ crit

a,c,ac − 1 θ crit
a,c,ac given by (8)

Orange


ζa =

4θ
√

15Ja

√
1− θ/θ crit

c→a,c θ
crit
c→a,c =

3JaJc

8 (3Jc − 2Ja)

ζc =
4θ
√

15Jc

√
1− θ/θ crit

a→a,c θ
crit
a→a,c =

3JaJc

8 (3Ja − 2Jc)

ζac = 0

of the qDoS in the low-energy range one has also to
expect a linear temperature dependence of the susceptibility
in the low-temperature region (well below the smaller
pseudogap) superimposed with a quasi-Arrhenius behavior
with characteristic energy of the pseudogap at higher
temperature. This rich variety of possible phases in the
c–a–ca-RVB model allows us to eventually explain the
magnetic behavior of CuNCN. As previously, we assume that
the (Q)1D-RVB phase sets in at some fairly high temperature
which cannot be directly checked due to decomposition
of the material [4]. Incidentally, Curie paramagnetism is
not observed in CuNCN in the range of its thermal
stability. The same applies to the gapless 2D-RVB phase
with logarithmically divergent susceptibility. The Pauli
paramagnetism, which changes to the quasi-Arrhenius gapped
regime, is thus logically attributable to the (Q)1D-RVB
phases, transforming to the pseudogapped 2D-RVB phases at
lower temperatures. By this, the entire picture of the magnetic
properties of CuNCN is qualitatively reproduced.

The observed magnetic behavior qualitatively reconciles
with the temperature course of the lattice parameters a and
c (figure 2). The sequence of the parameter phase diagrams
shows which specific RVB phases emerge at the specified
temperatures in the respective areas of the parameter space.
The CuNCN species is characterized by a specific set of
parameter values derived in appendix D (see also below),
mapping to one point in the parameter space marked by the
star. At different temperatures various phases occupy slightly
different areas of the parameter space. In the lower row of
figure 4 we can see how the point representing CuNCN
while staying in its original place effectively moves from one
phase to another: subsequently changing from the Q1D-RVB

(magenta) to the transient 2D-RVB (yellow) and finally to the
low-temperature 2D-RVB (orange).

Below the octal point θ∗ = 1/8 (the lower row of ternary
diagrams in figure 4), the thermal evolution consists en
gros in squeezing out all the phases by the 2D-RVB phase
with vanishing ζac (orange). The 2D-RVB phase with three
nonvanishing OPs (yellow) is transient, so its parameter area is
never large and it is subject to deformations and displacements
under the ‘pressure’ of the orange phase. The parameter
estimate of appendix D positions CuNCN on the parameter
phase diagram (figure 4) at the point with the reduced
parameters (barycentric coordinates) J∗a = 0.172, J∗c = 0.400,
i.e., within the magenta phase, but close to and somewhat
below the quadruple point of the red, magenta, orange, and
yellow phases in the leftmost graph in the lower row. In this
row one can observe the following sequence of transitions
between the RVB phases:

Q1D-RVB→ 2D-RVB→ 2D-RVB

ζc, ζac → ζc, ζac, ζa → ζc, ζa

magenta→ yellow→ orange

(9)

upon decreasing temperature. The thermal dependence of
the OPs within these phases is described by the expressions
given in table 1. One should not expect that these expressions
derived from the high-temperature expansion for the free
energy will be exactly valid at low temperature. Specifically,
the prefactors θ should not be taken seriously since it has
been shown [14] that the exact ζa,c OPs flow to some finite
values as the temperature flows to zero. Thus, the OPs split
from zero values at the critical temperatures given next to
them. Since the exchange parameters satisfy the condition

6
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Jac ' Jc, the OP ζac is always small and decreases with
decreasing temperature, thus we do not consider it explicitly
further. The OP ζc increases either in the magenta or in the
yellow phase according to the same law (the reference/critical
temperatures for this OP in these two phases are equal),
but we assume that in the interesting temperature range
θ � θcrit

c,ac = θ
crit
a,ac→a,c,ac = 435 K it has almost reached its

zero-temperature limit and does not significantly change any
more1. The OP ζa splits from zero at the critical temperature
of θcrit

c,ac→a,c,ac ≈ 100 K (transition to the yellow phase).
Finally, at the lowest accessible critical temperature θcrit

a,c,ac (8)
a transition to the orange phase takes place2. The transition to
the orange phase (evanescence of ζac) at θcrit

a,c,ac whatever it is
affects neither the bandwidth, since this OP is never large, nor
the character of the temperature dependence of ζa, although
some variation of its slope can be expected. At this phase
transition, however, a remarkable change can be expected in
the character of the temperature dependence of ζc. Namely, it
switches from an increase to a decrease when the temperature
decreases. This happens because of an instantaneous change
of its reference temperature shown in table 1 from positive
θcrit

a,ac→a,c,ac in the yellow phase to θcrit
a→a,c in the orange phase,

which is negative in the relevant area (Jac ' Jc > Ja) of the
exchange parameter space. Changing the sign of the reference
temperature causes the change of the temperature course of
the OP ζc which, in the orange phase, starts to decrease with
temperature decrease instead of being constant (or very slowly
growing) in the yellow phase.

Previously [5, 6], we were able to explain the temperature
anomaly of the a lattice parameter by attributing it to opening
a gap in the quasiparticle spectrum in the crystallographic
direction a and formation of a gapped 2D-RVB state in the
triangular anisotropic Heisenberg model. This is accompanied
by the split of an RVB OP from zero, which is coupled to the
lattice constant through ‘magnetostriction’ terms. Although
the previous model (triangular anisotropic Heisenberg lattice)
could not be fully substantiated, similar moves absolutely
apply in the present model with three exchange parameters
and respective OPs. We assume as previously a linear
relationship between the exchange parameters Jτ and
geometry parameters ρλ,

Jτ = Jτ0 +
∑
λ

J′τ,λρλ. (10)

Following [15] we assume that zero values of ρs correspond
to a hypothetical structure, which the CuNCN crystal would

1 A possible minor increase of ζc produces no visible temperature
dependence of the Q1D-RVB quasiparticle bandwidth due to decrease of ζac,
so that these two contributions changing in opposite directions compensate
each other.
2 A word of caution needs to be given here: the present set of exchange
parameters yields a very narrow temperature range where the transient
(yellow) phase can exist. We assume that (8) strongly overestimates this
temperature (92 K), which must be considerably lower (about 30 K) since one
cannot rely upon the results of the high-temperature expansion any more. To
obtain more reliable estimates one needs to know at least the zero-temperature
limit of the a–c–ca model which is yet to be found. However, we assume
that the general shape of the phase diagram is correctly reproduced by the
high-temperature expansion and proceed within this setting.

have provided the exchange interactions Jτ were turned off.
The observed geometry of the crystal where the exchange
interactions result in the formation of one of the RVB phases
corresponds to the minimum with respect to ρλ of the free
energy (4) to which the elastic energy (E.1) is added, and the
exchange parameters are replaced according to the recipe (10).
Using the special form of the RVB free energy (4) we arrive
at the explicit expression (for details see appendix E)

ρµ =
∑
λ

(K)−1
µλ

(∑
τ

Aτ ζ
2
τ J′τ,λ

)
, (11)

the sought relation between the RVB OPs and their structure
manifestations (Aτ are the numerical coefficients: 3 for τ =
a, c; 6 for τ = ac) which further generalizes the famous
bond-length–bond-order relation to the RVB states.

The temperature dependence of the structure described
by the parameters ρλ is thus that of the relevant combination
of the squares of the corresponding OPs. In the magenta and
yellow phases the OP ζc is (almost) temperature independent,
thus ζ 2

c does not contribute to the visible variation of the lattice
constants; therefore we focus first on the contribution of the
OP ζa (our previous consideration allows us to neglect the OP
ζac).

Before switching to rationalizing the low-temperature
behavior of the lattice parameters shown in more detail
in figure 6, we stress once again that our purpose is to
provide a unified view of the data obtained in polarized
neutron scattering [2], susceptibility [1, 4], and structure
(synchrotron [6] and neutron [16]) experiments. Thus, in
our reasoning we follow the above unifying concept in the
hope that minor inconsistencies (possibly coming from the
uncertainty in the measurements or sample irregularities) can
be resolved in the future. In order to proceed we introduce
geometry variables ρa = δa = (a−a0), 2ρc = δc = (c− c0),
and assume that the exchange constant Ja is independent of the
deformation in the c-direction (see below). Thus, J′a,c = 0, and
we apply the general relation (11). In this setting the variation
of two lattice parameters is(

δa

δc

)
=

3J′a,aζ
2
a

|K|

(
Kcc

−Kac

)
, (12)

where |K| is the determinant of the 2 × 2 matrix of the
force constants. Clearly, the off-diagonal force constant Kac
makes the lattice parameter c sensitive to variations of the
OP ζa. Moreover, the effect on c is predicted to have the
opposite sign to that on a (a increases, c decreases, and
vice versa). When the pseudogap opens in the a direction
(about 100 K), two lattice parameters have to start changing
in opposite directions, as observed. The same behavior can be
traced in the neutron scattering data [16] which are going to
be analyzed in detail in a forthcoming publication.

The crucial point is the sign of the effect. At first glance
the situation seems to be counterintuitive since in order to
conform with the experimental increase of the a-parameter in
the 2D-RVB phase with two pseudogaps (orange or yellow)
as compared to the (Q)1D-RVB phase (red or magenta) the
exchange parameter Ja has to increase with an increasing

7
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Figure 6. The temperature dependence of the lattice parameters in
the low-temperature range as extracted from synchrotron diffraction
data [6] (red dashes with error bars). (a) The temperature course of
the a lattice parameter. The linear models with the slopes
−7× 10−6 Å K−1 (in the 2D-RVB phase with three nonvanishing
OPs—green line) and −5× 10−6 Å K−1 (in the 2D-RVB phase with
two nonvanishing OPs—blue line). (b) The temperature course of
the c lattice parameter. The linear models here are largely guides to
the eye, but the corresponding slopes are −13× 10−6 Å K−1 (blue
line) and 17× 10−6 Å K−1 (green line).

Cu–Cu interatomic separation. However, the effective value
of the (antiferromagnetic) exchange parameter Ja is a sum of
contributions of different signs,

Ja = Ja(antiferro)− Ja(ferro) > 0, (13)

where both Ja(antiferro) and Ja(ferro) are positive. The
antiferromagnetic contribution is accumulated on numerous
superexchange paths and is weakly affected by the Cu–Cu
interatomic separation since no direct matrix elements
between the states of the two Cu atoms affect Ja(antiferro) 3.

3 Although the question of determining the parameters is beyond the scope
of this paper some comments are worth adding. For the parameter Jc
the situation is transparent: this interaction is mediated by the π -orbitals
of the NCN2− units (the geometry dependence of Jac seems to be of
smaller importance due to the smallness of the conjugate OP ζac). Since
singly occupied d-orbitals on the connected Cu2+ sites overlap with the
same mediating orbitals of the NCN2− units, charge transfer between the
Cu2+ ions is possible, which can be considered as an analog of the O2−

bridge in the 180◦ geometry. Thus, the Jc interaction is according to
the Goodenough–Kanamori rules [7] antiferromagnetic and is expected to
strongly depend on the Cu–N interatomic separations which in their turn

By contrast, the ferromagnetic contribution strongly depends
on the angle ĈuNCu (see [7, 17]), and in the range of
ĈuNCu> 90◦, which is the case for CuNCN, decreases, while
the ĈuNCu angle and thus the Cu–Cu separation increases.
Likewise, the overall effective antiferromagnetic exchange pa-
rameter Ja increases while the counterpoising ferromagnetic
contribution decreases in absolute value. This explains the
overall positive sign of J′a,a and, thus, the experimental fact of
increasing lattice parameter a in the phase with the pseudogap
developing along the a-direction. Due the above sign relation
between the effect of the a-pseudogap opening on the a-
and c-lattice parameters, the experimentally observed extra
decrease of the c lattice parameter at 100 K is explained as
well.

The available data are insufficient to solve the subtle
question of the critical exponents of the OPs. However,
assuming the classical value of the critical exponent β = 1

2
prescribed by the high-temperature expansion as a plausible
interpolation in a way confirmed by fitting the susceptibility
run in the 2D-RVB phases (see appendix D), the lattice
parameters must obey the linear temperature evolution, i.e.,
one with the exponent 2β. The latter is approximately
observed for the lattice parameter a in a wide range below the
(Q)1D- to 2D-RVB transition at about 100 K which, however,
changes to a somewhat more chaotic behavior at about 30 K. It
incidentally corroborates with the temperature course of the c
lattice parameter measured in the synchrotron experiment [6]
(figure 6(b)) which has not received due attention so far. As
one can see, the lattice parameter c generally decreases with
temperature. This behavior is in line with the usual thermal
expansion and thus does not require any special explanation. It
shows noticeable irregularities (not changing the sense of the
course) at about 80–100 K, where the magnetic susceptibility
changes from the quasi-Pauli to the quasi-Arrhenius regime,
which has been explained above through its interplay with
the opening of the pseudogap in the a-direction right in
this temperature range. The sense of the temperature course
of c changes at 30 K where the lattice parameter a starts
to show irregularities in its turn. This, however, nicely fits
in the above picture of the RVB phase transitions. Since
the available amount of experimental data does not suffice
to reliably estimate quite a few magnetostriction and other
parameters required for the quantitative description, we try
to derive a qualitative description in terms of the slopes of
the lattice parameters versus temperature at critical points.
In the minimal setting (i.e. neglecting the off-diagonal force

are sensitive to the variations of the c lattice parameter; it decreases as c
increases: J′c,c < 0. The Ja parameter is mediated by the lone pairs of N

atoms analogously to the O2− bridge in the geometry intermediate between
90◦ and 180◦. For the 90◦ geometry the singly occupied orbitals of interacting
Cu2+ sites overlap with the mutually orthogonal orbitals of the bridge,
charge transfer between them is not possible and the dominant interaction
is according to the Goodenough–Kanamori rules [7] ferromagnetic. As
shown in [17] for the intermediate geometries the singly occupied orbitals
of the magnetic ions overlap either with the same or also with orthogonal
orbitals of the bridge, which produces contributions of both signs to the total
effective exchange parameter. The ferromagnetic contribution was shown to
be strongly angle dependent, eventually vanishing for the 180◦ geometry,
which was recently confirmed by our direct calculations [18]. These are
arguments in favor of our assumption that J′a,a > 0.

8
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constants and magnetostriction terms) we immediately obtain
for the slope of c versus θ

dδc
dθ

∣∣∣∣
θ→θcrit

=
6J′c,cKaa

|K|
[ζc (θ → 0)]2

(
−

1

θcrit

)
. (14)

At the transition from the yellow to the orange phase this
slope has to change its sign since that of θcrit instantaneously
changes from positive in the yellow to negative in the orange
phase, as explained above, and that is precisely what happens.
We also conclude that the magnetostriction parameter J′c,c has
an intuitively understandable sign: it is negative since this
exchange parameter is dominated by the electron transfers
through the π -systems of the NCN2− units which in their turn
strongly depend on the Cu–N interatomic separations affected
by the deformation in the c-direction (see footnote 3). The
temperature slope must therefore be negative in the orange
(low-temperature) phase and positive in the yellow (transient)
one, and that is again what happens.

In a more general setting the contribution of the OP ζc to
the slopes of the lattice parameters versus temperature is

d
dθ

(
δa

δc

)∣∣∣∣∣
θ→θcrit

=
3 [ζc (θ → 0)]2

|K|

(
−

1

θcrit

)

×

( (
KccJ′c,a − 2KacJ′c,c

)(
−KacJ′c,a + 2KaaJ′c,c

)
,

)
(15)

so that it is clear that the contribution of the variation of the
OP ζc to the slope of a versus θ changes its sign when going
from the yellow to the orange phase. The visible decrease
of the negative slope of a in absolute value as seen below
30 K (in the orange phase as compared to the yellow phase)
requires that the addition to it coming from ζc is positive.
Semiquantitatively, this requires that

(
KccJ′c,a − 2KacJ′c,c

)
> 0

since in the orange phase θcrit in the above expression equals
the negative θcrit

a→a,c. Incidentally, the term −2KacJ′c,c(> 0)
has the required sign as estimated above. Thus, J′c,a has to be
either positive, which is in principle conceivable as the above
example of J′a,a shows, or at least not too strongly negative.
This tentatively explains the anomalies observed in figure 6.

4. Conclusion

A new form of the frustrated spatially anisotropic antiferro-
magnetic Heisenberg Hamiltonian close to the popular J1J2J3
model with exchange parameters Jc, Ja, and Jac extending
along the c, a, and a ± c directions of a two-dimensional
rectangular lattice is proposed. When applied to model
the fascinating physics of copper carbodiimide (CuNCN) it
explains the absence of magnetic order in CuNCN down
to 4 K by assuming a resonating valence bond (RVB)
character of its emerging phases. The quasiparticle spectrum
of the RVB model of the proposed Hamiltonian shows three
principal regimes: (i) a state with two pairs of lines of nodes,
(ii) states with a pair of lines of nodes (termed as 1D-
and Q1D-RVB states), and (iii) states with two pseudogaps
and four nodal points (2D-RVB states). The extraordinarily
rich parameters–temperature phase diagram of the model

contains eight different phases whose magnetic behavior
includes Curie and quasi-Pauli paramagnetism (1D- and
Q1D-RVB phases), and (pseudo)gapped (quasi-Arrhenius)
paramagnetism (2D-RVB phases). Both the quasi-Pauli and
quasi-Arrhenius regimes are reliably observed in experiment.
By adding magnetostriction and elastic terms to the free
energy of the model, the temperature dependence of the
CuNCN crystal structure is explained through a sequence
of transitions between different RVB phases when the
temperature decreases. Confronting the model with magnetic
susceptibility and structure data recorded as functions of tem-
perature between about 10 and 200 K, one finds remarkably
good agreement between the theoretical predictions and the
experiments.

Although structural manifestations are well known to
accompany various magnetic transitions, e.g. [19], the
specific result of this work is the unified description of the
somewhat contradictory combination of absence of magnetic
order, nongapped (Pauli) and gapped (Arrhenius) temperature
courses of the magnetic susceptibility in the respective
temperature ranges and structural effects coupled to the latter.
The RVB hypothesis has a crucial importance not for the
structural effects themselves, although we concentrate on
them in this paper, but as an ‘integrating factor’ allowing us
to explain from a unified viewpoint the facts coming from
different experimental methods.

The spin-Peierls state in the c-direction could be a
good ground state candidate within the picture of a strong
exchange extended in this direction mediated by the NCN2−

units. Had the spin-Peierls be there it would explain at least
two key features of CuNCN: the activation dependence of
the susceptibility due to opening of the spin-Peierls gap
and the absence of magnetic long-range order visible in
the neutron experiments due to the formation of alternating
Cu–Cu spin pairings along the c-direction. Unfortunately,
this intellectually attractive picture has to be abandoned for
the time being since no signature of superstructure in either
direction could be traced in the available structural data.
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Appendix A. Equations of motion and
self-consistency equations

The equations of motion are based on the Heisenberg
representation in which each operator obeys

ih̄Ȧ = [A,H] , (A.1)

9
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where [. . . , . . .] stands for the commutator and the ‘˙’ for the
time derivative. Applying this to the creation and annihilation
operators c†

rσ (crσ ) and performing commutation, mean-field
decoupling and Fourier transformation as done previously [3]
results in their mean-field equations of motion,

ih̄ċkσ = −
3
2

∑
τ

Jτξτ cos(kτ)ckσ

−
3
2

∑
τ

Jτ1τ cos(kτ)c†
−k−σ ,

ih̄ċ†
kσ =

3
2

∑
τ

Jτξτ cos(kτ)c†
kσ

−
3
2

∑
τ

Jτ1
∗
τ cos(kτ)c−k−σ . (A.2)

The latter reduce to the set of 2 × 2 eigenvalue problems for
each wavevector k,(

ξk 1k

1∗k −ξk

)(
uk

vk

)
= Ek

(
uk

vk

)
,

with

ξk = −3
∑
τ

Jτξτ cos(kτ),

1k = 3
∑
τ

Jτ1τ cos(kτ).

The summation over τ extends to τi; i = 1–4, which results in
the eigenvalues

Ek = ±

√
ξ2

k + |1k|
2,

whose eigenvectors are combinations of the annihilation and
creation operators with the coefficients uk, vk. This set of
equations is closed by the self-consistency conditions

ξτ = −
1

2N

∑
k

exp(ikτ)
ξk

Ek
tanh

(
Ek

2θ

)
,

1τ =
1

2N

∑
k

exp(−ikτ)
1k

Ek
tanh

(
Ek

2θ

)
(A.3)

for the order parameters (OPs). The lattice-symmetry
considerations allow us to restrict ourselves to the OPs:
ξa, ξc, ξac;1a,1c,1ac. For the complex OPs we introduce
a polar representation,

1τ = ητeiϕτ . (A.4)

The standard moves foreseen for the SU(2) symmetric
solutions are used to exclude the cross terms in the OPs from
E2

k, which leads to the system of three equations

ξτξτ′ = −ητητ′ cos(ϕτ − ϕτ ′). (A.5)

Introducing the relative phases as θa = ϕa−ϕac, θc = ϕc−ϕac,
we arrive at equations of the form4

ξaξc + ηaηc cos(θa − θc) = 0,

4 The consequences of setting θc = ϕac − ϕc and thus having the first
equation in the form ξaξc + ηaηc cos(θa + θc) = 0, which exactly coincides
with [8], have yet to be studied. Most probably it brings up more degenerate
phases with various phase angles.

ξaξac + ηaηac cos θa = 0,

ξcξac + ηcηac cos θc = 0,

similar to those derived in [8] which can be satisfied, e.g., by
setting

ξaξc = −ηaηc 6= 0,

θa = θc =
π

2
,

ηac 6= 0, ξac = 0.

(A.6)

Of course, the OPs can also be vanishing.
Under the above conditions the spectrum of quasiparticles

acquires the form

E2
k = 9(J2

a(ξ
2
a + η

2
a) cos2x+ J2

c (ξ
2
c + η

2
c ) cos2z

+ 4J2
ac(ξ

2
ac + η

2
ac)cos2x cos2z), (A.7)

where we set x = kx; z = kz. Obviously, the solutions of the
problem depend only on the effective OPs ζa =

√
ξ2

a + η
2
a,

ζc =
√
ξ2

c + η
2
c , and ζac =

√
ξ2

ac + η
2
ac.

Appendix B. High-temperature expansion

At high temperature we can use the expansion

ln
(

2 cosh
(

Ek

2θ

))
≈ ln 2+

1
2

(
Ek

2θ

)2

−
1

12

(
Ek

2θ

)4

(B.1)

which, when inserted in the formula (4), integrates explicitly.
For determining the critical temperatures to the first
approximation it suffices to restrict ourselves to the second-
power terms. This results in an expression quadratic in ζτ .
Combining the thus obtained ‘kinetic’ energy

− 2θ ·
9

8θ2

(
1
2

J2
aζ

2
a +

1
2

J2
c ζ

2
c + J2

acζ
2
ac

)
(B.2)

with the potential energy terms from equation (4), we arrive at

FHT =
∑
τ

[
−

9
8θ

J2
τ + 3Jτ

]
ζ 2
τ . (B.3)

This result can be improved with use of the Ginzburg–Landau
approximate free energy FGL(ζτ , θ), which involves the terms
up to the fourth power in ζτ s. They appear from the integration
of the fourth power of the spectrum which is performed
explicitly and yields the ‘kinetic’ energy of the form

1

768θ3 [36ζ 2
a J2

a(27ζ 2
acJ2

ac + 9ζ 2
c J2

c − 24θ2)

+ 243ζ 4
a J4

a + 3(36ζ 2
acJ2

ac(9ζ
2
c J2

c − 16θ2))

+ 486ζ 4
acJ4

ac − 288θ2ζ 2
c J2

c + 81ζ 4
c J4

c ],

which together with the potential energy yields the free energy
FGL(ζτ , θ) used for further analysis.

Appendix C. Quasiparticle densities of states in
various RVB phases

In section 2.2 we gave an impression of the complexity of
the phase diagram of the RVB model with three exchange

10



J. Phys.: Condens. Matter 25 (2013) 435602 A L Tchougréeff and R Dronskowski

Table C.1. The qDoS in the possible phases of the c–a–ca-RVB model in the high-temperature approximation. Their characteristic graphs
are given in figure 3. The pseudogap/bandwidth parameters in this table are A = 3Jaζa, C = 3Jcζc, B = 3Jacζac. In the last column K stands
for the complete elliptic integral of the first kind. Details of the derivation will be communicated elsewhere.

Character Color code g(ε)

Curie Gray δ(ε)

Pauli Red 2
π

1√
C2−ε2

Pauli Green 2
π

1√
A2−ε2

2µ2
B

π2B
ln 32B

πeγ θ Blue 2
π2B

K

(√
4B2−ε2

2B

)

Pauli Magenta 4
π2

K

(
2B√

4B2+C2−ε2

)
√

4B2+C2−ε2

Pauli Cyan 4
π2

K

(
2B√

4B2+A2−ε2

)
√

4B2+A2−ε2

Arrhenius Orange



4ε
π2AC

K

(
ε
√

A2 + C2 − ε2

AC

)
, ε < min(A,C)

4
π2

K

(
AC

ε
√

A2+C2−ε2

)
√

A2 + C2 − ε2
, min (A,C) < ε < max (A,C)

4ε
π2AC

K

(
ε
√

A2 + C2 − ε2

AC

)
, ε > max (A,C)

Arrhenius Yellow



4
π2

εK

(√
ε2
(

A2+4B2+C2−ε2
)

A2C2+4B2ε2

)
√

A2C2 + 4B2ε2
, ε < min (A,C)

4
π2

K

(√
A2C2+4B2ε2

ε2
(

A2+4B2+C2−ε2
)
)

√
A2 + 4B2 + C2 − ε2

, min(A,C) < ε < max(A,C)

4
π2

εK

(√
ε2
(

A2+4B2+C2−ε2
)

A2C2+4B2ε2

)
√

A2C2 + 4B2ε2
, ε > max (A,C)

parameters. We also gave a brief description of the most
characteristic features of the qDoS in various RVB phases.
Here we provide a brief sketch of the derivation of the qDoS
given in table C.1.

The definition of the qDoS reads

g(ε) =
1

4π2

∫
BZ
δ (ε − Ek) d2k. (C.1)

Following [20] we insert the integral representation for the
Dirac δ-function,

g(ε) =
1

2π
1

4π2

∫
BZ

∫
∞

−∞

dt exp (it (ε − Ek)) d2k

=
1

2π

∫
∞

−∞

dt

[
exp (itε)

1

4π2

∫
BZ

exp (−itEk) d2k
]
.

For all phases having lines of nodes the integration over one
of the components of the wavevector k in the BZ is performed
and yields an intermediate result in terms of the Bessel and
Struve functions of arguments dependent on the Fourier

transformation variable t and the remaining component of the
wavevector k. The Fourier transforms with respect to t can
be performed for the intermediate answers of that form. The
integration yields integrands of the elliptic integrals over the
remaining component of the wavevector k. This solves the
problem of calculating the qDoS for the dispersion laws with
the lines of nodes in the BZ. The results are given in the
respective cells of table C.1.

In order to cope with the remaining two phases whose
spectra contain only nodal points one more trick solves the
problem, namely performing the previous moves for the
squared spectrum and thus obtaining the distribution of the
states as a function of their squared energy. The distribution
of squares of the quasiparticle energies is

%(ε2) =
1

4π2

∫
BZ
δ
(
ε2
− E2

k

)
d2k. (C.2)

Then the sought qDoS is given by [21]

g (ε) = 2ε%(ε2). (C.3)
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To obtain %(ε2) we again use the integral representation of the
Dirac δ-function,

%(ε2) =
1

2π
1

4π2

∫
BZ

∫
∞

−∞

dt exp
(

it
(
ε2
− E2

k

))
d2k

=
1

2π

∫
∞

−∞

dt

[
exp(itε2)

1

4π2

∫
BZ

exp
(
−itE2

k

)
d2k

]
.

Remarkably enough, sequential integrations of the squared
spectrum over one of the components of the wavevector k
and Fourier transformation with respect to t yield expressions
of the same form as integration of the spectrum itself: the
Bessel function and an integrand of the elliptic integral.
Thus, the final integration over the remaining component of
the wavevector k yields some elliptic integrals given in the
respective cells of table C.1.

Appendix D. Magnetic susceptibility and estimates
of the model parameters

For the semiquantitative treatment we use the standard
definition of the magnetic susceptibility per spin,

χ = −2µ2
B

∫
g(ε)

∂f
(
ε
θ

)
∂ε

dε, (D.1)

where f (. . .) is the Fermi distribution function. For a
pseudogap to open in a state with, say, nonvanishing ζc
(red or magenta phase) one needs that at an observable
critical temperature the OP ζa splits from zero (orange or
yellow phase) at some observable temperature. We model the
temperature dependence of the pseudogap

3Jaζa (θ → 0)
(

1−
θ

θcrit

)β
(D.2)

so that it appears below the critical temperature θcrit (where by
θcrit one of the temperatures θcrit

c→c,a or θcrit
c,ac→c,a,ac is meant)

and perform the numerical integration of the expression (D.1)
for the susceptibility with the qDoS for the RVB phase with
two pseudogaps where we also set ζac = 0.5

The values of θcrit (θcrit
c→c,a or θcrit

c,ac→c,a,ac), 3Jaζa (θ → 0),
3Jcζc (θ → 0), and β can be adjusted to reproduce the
experimental course of the susceptibility [4] shown in
figure D.1. The scale of 3Jcζc (θ → 0) is given by the
magnitude of the Pauli paramagnetic susceptibility at a higher
temperature and yields the parameters of the original model
(1). The fact that the classical exponent 1

2 coming from our
simple high-temperature treatment allows for an acceptable
fit of the experimental susceptibility is pretty remarkable.
However, one has to realize that this is not the true critical
exponent (for which as we noticed above we do not have
enough data), but rather a value permitting us to interpolate
the susceptibility and thus the OP in a wider range of

5 We notice that due to the character of the dependence of the OP ζac on
the model parameters shown in table C.1 and the plausible assumption of
the relation Jac ' Jc between the exchange parameters, this OP can never be
large. Thus the characteristics of the system are basically not affected by the
specific value of the Jac since its contribution is scaled down by the small
value of ζac.

Figure D.1. EPR magnetic susceptibility of CuNCN [4] (blue dots)
as compared with the results of numerical integration with the qDoS
for the 2D-RVB phase. One can easily see the linear tail in the low
temperature range with no experimental points. Otherwise the
parameters are θ crit

= 100 K, β = 0.5, 3Jaζa (θ → 0) = 140 K,
3Jcζc (θ → 0) = 1250 K (red line).

temperatures. For the sake of simplicity we assume that the
phase with the finite qDoS at zero energy is the 1D-RVB
one with nonvanishing ζc. Then, using the zero temperature
limiting value of this OP, ζc (θ → 0) = 1

π
[3], we get Jc =

1310 K. This nicely agrees with the original estimate of [1]
(about 1000 K). It is also what one can intuitively expect
relying on the Goodenough–Kanamori rules [7]6. Using it
in the high-temperature estimate for the critical temperature
(5) we obtain for the highest critical temperature (that of
the transition from the Curie paramagnetic to the 1D-RVB
state) the value θcrit

c = 490 K, which lies a fair amount
above the decomposition temperature [1]. In the case where
the Q1D-RVB phase is assumed to be responsible for the
Pauli paramagnetism we take Jac = 1400 K as a plausible
estimate. By doing so the critical temperatures θcrit

ac = 535 K
and θcrit

c,ac = 435 K derive to be considerably higher than the
decomposition temperatures. In that sense these estimates
are consistent (neither of phases with divergent paramagnetic
susceptibility is observed). For the exchange parameter Ja

we notice that its values are pretty stable. Considering the
fitted critical value θcrit as the critical temperature θcrit

c,ac→c,a,ac
given by (7) yields Ja = 560 K. Combining this with the
zero-temperature limit of the pseudogap, 3Jaζa (θ → 0) =
140 K, we get ζa(θ → 0) = 0.08.

The semiquantitative agreement of the data shown in
figure 6(a) is achieved by confronting the slope of a versus
θ in the yellow phase,−7×10−6 Å K−1 (green line), with the
model (12), which yields for the slope(

d
dθ
δa

)∣∣∣∣
θ→θcrit

=
3J′a,a
Kaa

[ζc (θ → 0)]2
(
−

1

θcrit

)
(D.3)

(θcrit
= 100 K). Then the ratio of parameters describing the

spin–phonon coupling, J′a,a/Kaa = 0.034 Å, seems to fairly
fit the expectations.

6 Our previous estimate [4] of 2300 K looks to be somewhat exaggerated.
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Appendix E. Theory of the structural manifestations
of the RVB states

The observed geometry of the crystal with RVB phases
corresponds to the minimum with respect to ρλ of the free
energy (4) to which the elastic energy necessary to deform the
hypothetical structure with no exchange interaction

1
2

∑
µλ

Kµλρµρλ (E.1)

for each nearest neighbor Cu–Cu pair is added and the
exchange parameters are replaced according to the recipe (10).
This yields the mechanic equilibrium condition of the crystal
in an RVB phase,

∂F

∂ρλ
+

∑
µλ

Kµλρµ = 0. (E.2)

We notice that the free energy F given by expression (4) has
a special form. The first term (‘kinetic’ energy) is an integral
of a function of the dispersion law Ek whose argument has the
form ∑

τ

A2
τ J2
τ ζ

2
τ f 2
τ (k) , (E.3)

where Aτ are numerical coefficients (3 for τ = a, c; 6 for
τ = ac); fτ (k) are trigonometrical expressions (cos kτ for
τ = a, c; cos ka cos kc for τ = ac). The ‘potential’ energy
contribution to the free energy (4) is∑

τ

Aτ Jτ ζ
2
τ . (E.4)

Due to the above special form of the ‘kinetic’ and ‘potential’
energies, the self-consistency equations for ζτ each have the
form ∫

BZ
tanh

(
Ek

2θ

)
E′kA2

τ J2
τ ζτ f 2

τ (k) d2k = Aτ Jτ ζτ ,

to be solved simultaneously for all τ . Apparently, whatever
(sub)set of ζτ = 0 satisfies the equations, for the nonvanishing
OPs the self-consistency equations acquire the form∫

BZ
tanh

(
Ek

2θ

)
E′kf 2

τ (k) d2k =
1

Aτ Jτ
. (E.5)

Now we can turn to the structure determination. The derivative
of the kinetic energy with respect to the geometry parameters
ρλ reads

− 2
∑
τ

A2
τ

(
Jτ ζ

2
τ J′τ,λ + J2

τ ζτ
∂ζτ

∂ρλ

)
×

∫
BZ

tanh
(

Ek

2θ

)
E′kf 2

τ (k) d2k. (E.6)

The value of the above integral for the equilibrium values
of the OPs is given by the self-consistency conditions (E.5).
Thus, the derivative of the kinetic energy is rewritten as

− 2
∑
τ

Aτ

(
ζ 2
τ J′τ,λ + Jτ ζτ

∂ζτ

∂ρλ

)
. (E.7)

Combining this with the derivative of the potential energy and
that of the elastic energy, we get

− 2
∑
τ

Aτ

(
ζ 2
τ J′τ,λ + Jτ ζτ

∂ζτ

∂ρλ

)
+

∑
τ

Aτ

(
ζ 2
τ J′τ,λ + 2Jτ ζτ

∂ζτ

∂ρλ

)
+

∑
µλ

Kµλρµ = 0.

(E.8)

The terms including the derivative ∂ζτ
∂ρλ

stemming from the
kinetic and potential energies cancel each other, a remarkable
consequence of the Hellmann–Feynman and virial theorems,
which immediately results in

−

∑
τ

Aτ
(
ζ 2
τ J′τ,λ

)
+

∑
µλ

Kµλρµ = 0, (E.9)

which after some trivial algebra results in

ρµ =
∑
λ

(K)−1
µλ

(∑
τ

Aτ ζ
2
τ J′τ,λ

)
. (E.10)

For the lattice parameters a and c, we introduce the geometry
variables ρa = δa= (a− a0) , 2ρc = δc= (c− c0) and apply
the general relation (11). Then the variation of the two lattice
parameters is(

δa

δc

)
=

3
|K|

[( (
KccJ′a,a − 2KacJ′a,c

)(
−KacJ′a,a + 2KaaJ′a,c

)) ζ 2
a

+

( (
KccJ′c,a − 2KacJ′c,c

)(
−KacJ′c,a + 2KaaJ′c,c

)) ζ 2
c

]
, (E.11)

where we denote by |K| the determinant of the 2 × 2
matrix of the force constants and make use of our previous
consideration allowing us to neglect the OP ζac. It seems,
however, to be reasonable that the exchange constant Ja is
independent of the deformation in the c-direction and, thus,
J′a,c = 0. We may therefore write(

δa

δc

)
=

3
|K|

[
J′a,aζ

2
a

(
Kcc

−Kac

)

+ ζ 2
c

( (
KccJ′c,a − 2KacJ′c,c

)(
−KacJ′c,a + 2KaaJ′c,c

))] . (E.12)

Turning to the temperature dependence of the lattice
parameters as given by their slopes versus temperature at the
respective critical points, we notice that assuming a power law
for the OPs like in the interpolation formula (D.2),

ζτ (θ) = ζ
∗
τ (θ)

(
1−

θ

θcrit
τ

)β
, (E.13)

where the ζ ∗τ (θ)s are smooth in θcrit
τ and θcrit

τ are the reference
temperatures given in table 1 for the corresponding OPs in the
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relevant phases, immediately yields(
d

dθ
[ζτ (θ)]2

)∣∣∣∣
θ→θcrit

= −2β
(

1−
θ

θcrit
τ

)2β−1

×

(
1

θcrit
τ

)[
ζ ∗τ

(
θcrit
τ

)]2
,

(E.14)

which for the interpolated value of the exponent β = 0.5
provides the results used in our analysis.
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