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The piecewise linear dependence of orbital exponents ξ characterizing either nonorthogonal Slater
or orthogonal minimum atomic parameters/Moscow-Aachen-Paris (MAP) radial parts of atomic
orbitals is theoretically derived from a plausible model of electronic subshell energy and compared
with their values derived from a pragmatic Koga basis set covering the elements from H to Lr
(Z = 103). So derived values of exponents as well follow piecewise linear laws as functions of the
nuclear charge Z. The linear branches of the ξ vs Z fairly follow the structure of the Periodic Table
being specific for the segments of the Z values corresponding to p-, d- and f -elements, respectively.
In details, however, the parameters of the theoretical linear dependencies of orbital exponents ξ
on Z and those derived from the pragmatic basis set (referred to as experimental) differ from each
other which will be addressed elswhere.

1. INTRODUCTION AND THEORY

In the years 1913-1914 Moseley [1, 2] had experi-
mentally established that the square roots of atomic
ionization potentials are linearly dependent on nu-
clear charges Z which not long before that has been
identified with the atom’s ordinal numbers in the
Periodic Table [3] – the single parameter ultimately
characterizing a chemical element. The ionization
potentials of atomic one-electron states (atomic or-
bitals – AO’s) are related with the parameter of their
spatial decay – the orbital exponent – through:

ξn` ≈
√
2IPn`, (1)

(IPn` is the average ionization potential – the sum
of all ionization potentials of the subshell, charac-
terized by the principal n and azimutal ` quantum
numbers, divided by the number of electrons in it)
[4, 5], provided these states have an asymptotic form

∝ r(n−1)e−ξn`r (2)

for the electronic subshell.
This form of the atomic radial function is known

as the Slater-type orbital (STO) where the depen-
dence of the orbital exponents ξn` on Z was formu-
lated as a set of Slater rules [6]. Later [7, 8] some im-
provements to the Slater rules have been proposed,
which theoretically could be extended to the entire
available and practically sensible range of the Z val-
ues (= 1÷ 118). All these schemes represent orbital
exponents in the form:

ξn` (Z) =
Z − Sn` (Z)
n∗ (n)

,

where n∗ (n) is the effective principal qunatum num-
ber, and Sn` (Z) is a screening function of the

Coulomb field of the atomic nucleus specific for each
n`-subshell.

The screening functions Sn` (Z) [6–8] are sums of
contributions from all electrons in the atom with
electronic configuration

∏
n`

(n`)
pn` :

Sn` (Z) =
∑
n′`′

(pn′`′ (Z)− δn′`′,n`)σn′`′,n` (Z) ,

where the subshell occupation numbers pn` (Z)
can be taken as prescribed by the Madelung-
Klechkowskij rules [9, 10] or set according to exper-
iment. The quantities σn′`′,n`, (Z) as well charac-
teristic for the Z-th element are parameters of the
mutual screening of the subshells, and the Kronecker
delta-symbol δn′`′,n` serves to exclude the screening
of an electron in the n`-subshell by itself.

The structure of the Periodic Table reflects the se-
quence of the subshells’ filling in that sense that the
quantities pn` (Z) in each segment of the Z values,
corresponding to the filling of the n`-subshell are
equal to Z − Zn`, where Zn` is the atomic number,
immediately preceding the filling of it. (At Z = Zn`
the n`-subshell does not contain electrons).1 For the
numbers Zn` one can take the values preceding the
atomic number Zn+`, at which an electron with a
given value of n + ` appears for the first time ac-
cording to [9] i.e. Zn` = Zn+`− 1. Respectively, the
dependencies ξn` (Z) separate in branches, referring
to the filling of different subshells. Obviously, the

1 The segment of transition elements is an example: for their
3d-subshell Z3d = 20, since Ca is the element immediately
preceding this segment.
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length of a segment of the Z values, where the sub-
shell n` is being filled, equals to 2 (2`+ 1) .2

The rules [6–8] suggest the linear dependence of
exponents on Z:

ξn` (Z) = an`Z + bn` (3)

conforming with the Moseley law [1, 2] only if the
screening functions Sn` (Z) are also linear in Z. The
rules [6–8] suggest that the slopes an` and intercepts
bn` (with ordinate) in the segments of the Z values,
where the n`-subshell is being filled (i.e. it is open)
or, where it is already filled, and, thus, can be as-
cribed to the core, significanly differ.

Since the times whan the rules [6–8] have been
proposed, numerous basis sets have been developed
(see e.g. [11] and references therein) to be used
in quantum chemistry calculations. The orbitals
in these sets (hereinafter referred to as pragmatic),
however, lack whatever single characteristic. A
method of comparing the formal rules of ascribing
exponents’ with the pragmatic basis sets has been
proposed in Ref [12]. Namely, following an early sug-
gestion dating back to V.A. Fock [13], we proposed
a minimal atomic parameter (MAP) form [14] of the

radial function:

Rn`(r) ∝ (2ξn`r)
`
Pn`(2ξn`r) exp (−ξn` r) ,

which permits to construct sets of AOs which like the
STOs are characterized by the unique subshell spe-
cific parameter ξn` – orbital exponent, but through
its construction assure the orthogonality of the ra-
dial parts for the different values of n at the same
value of ` thanks to the polynomial multipliers Pn`.

Further, in paper [15] it has been shown that the
MAP exponents extracted from whatever pragmatic
basis (see [16, 17] by maximizing the overlap between
the subspaces spanned by the respective basis sets
against the MAP exponents as well follow the lin-
ear trends of the form eq. (3). This result can be
considered as experimental evidence for the linear
relations for orbital exponents coming from in silico
side, rather than postulated.

In order to obtain some more theoretical view of
the postulated and observed linear trends we con-
sider partially filled n`-subshell. For an atom with
nuclear charge Z it contains Z − Zn` electrons. De-
noting the exponent ξn` by ξ for brevity, we rewrite
the subshell energy as:

 ξ2

2µn`
− Zξ

n
αn` +

ξ

n

∑
n′`′ 6=n`

pn′`′βn′`′,n`

(
ξ

ξ′

)
+

1

2

ξ

n
γn` (Z − Zn` − 1)

 (Z − Zn`) ,

where we abbreviated ξn′`′ by ξ′. Correction coef-
ficients αn`, βn′`′,n`

(
ξ
ξ′

)
, γn` describe deviations

of the matrix elements of, respectively, core attrac-
tions, interactions of electrons in subshells n′`′ and

n`, and within the n`-subshell from the value
ξ

n
; µn`

is an effective mass of electron in the n`-subshell. It,
apparently, describes the deviation of electron ki-

netic energy in it from the value of
ξ2

2
characteristic

for H-like orbitals featuring µn` = 1.
For the filled n`-subshell, when some other (most

frequently a lower-lying) subshell ns`s is being filled
(e.g. the filled ns-subshell of a transition element

atom with the (n – 1)d subshell being filled) the
formula changes to:

[
ξ2

2µn`
− Zξ

n
αn` +

ξ

n

∑
n′`′<n`

pn′`′βn′`′,n`

(
ξ

ξ′

)
+

+
ξ

n
(Z − Zns`s)βns`s,n`

(
ξ

ξs

)
+

1

2

ξ

n
γn` (4`+ 1)

]
(2 (2`+ 1)) .

Minimizing the subshell energy with respect to ξ
we arrive to piecewise linear dependence of the or-
bital exponents on Z:3

ξn` =
µn`
n


αn`Z − γn`

2 (Z − Zn` − 1)−
∑
n′`′

′ 2 (2`′ + 1)βn′`′,n`

(
ξ
ξ′

)
,

αn`Z − βns`s,n`

(
ξ
ξs

)
(Z − Zns`s)−

∑
n′`′

′′ ∑ 2 (2`′ + 1)βn′`′,n`

(
ξ
ξ′

)
+ γn`

2 (4`+ 1) ,

αn`Z −
∑
n′`′<n` 2 (2`

′ + 1)βn′`′,n`

(
ξ
ξ′

)
+ γn`

2 (4`+ 1)

(4)
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(here
∑
n′`′

′ refers to the summation over n′`′ < n`

and
∑
n′`′

′′ over n′`′ < n`, n′`′ 6= ns`s ). The first

row refers to the exponent for the n`-subshell being
filled, the second row to a lower-lying ns`s-one being
filled and the bottom row to the filled n`-subshell in
the core.

For further estimates we conditionally accept
µn` × αn` = 1, as for H-like orbitals which may
be easily rectified later. Then the parameters of
the linear branches eq. (3) come from estimates
of the integrals of the electron-electron interaction.
It has been shown [12] that the MAP orbitals, al-

though provide necessary number of radial nodes
to assure the orthogonality condition, have much
weaker oscillation amplitudes of the wave function
in the range of smaller r’s than those of the H-like
functions with the same exponent so that the MAP
functions are pretty close (up to small oscillations in
the core region) to the nodeless STO’s. Thus, semi-
quantitative treatment may be based on STO’s.

In the simplest approximation the interaction
between electrons in the subshells reduces to the
Slater-Condon parameter F 0 (SCP) [18]. For a pair
of STO’s with exponents ξ, ξ′ and principal quantum
numbers n, n′ they are given by:

ξ′

n′
+
ξ

n
− (2n′ + 2n)!

n′n(2n′)!(2n)!

ξ′2n
′+1ξ2n+1

(ξ′ + ξ)2n′+2n+1

[
n 2F1

(
1, 2n′ + 2n+ 1; 2n′ + 1;

ξ′

ξ′ + ξ

)
+n′ 2F1

(
1, 2n′ + 2n+ 1; 2n+ 1;

ξ

ξ′ + ξ

)]
,

where 2F1 (a, b; c; z) is the Euler hypergeometric
function [19]. For the intrashell SCP we get after
some algebra:

F 0 =
ξ

n

(
1− (4n− 1)!!

4n(2n)!

)
≈ ξ

n

(
1− 1√

2πn

)
,

which immediatey yields:

γn` = 1− (4n− 1)!!
4n(2n)!

≈ 1− 1√
2πn

. (5)

In order to study qualitative behavior of βn′`′,n`’s

we, first, consider two limits: n′ < n;
ξ

ξ′
� 1 and

n < n′;
ξ′

ξ
� 1. Then in the lowest order with re-

spect to the small parameters we get

F 0 ≈


ξ

n

[
1− (2n′ + 2n)!

(2n′)!(2n)!

(
ξ

ξ′

)2n
]

n′ < n;
ξ

ξ′
� 1,

ξ′

n′

[
1− (2n′ + 2n)!

(2n′)!(2n)!

(
ξ′

ξ

)2n′]
n < n′;

ξ′

ξ
� 1,

where the upper row refers to the interaction of elec-
trons in the current subshell with parameters nξ
with a lower-lying subshell with parameters n′ξ′,
and the lower row to that with a subshell n′ξ′, ly-
ing above the current one.4 It can be seen that the
interactions with the more contracted lower lying
subshells rapidly flow to the magnitude of the in-

teraction with a point charge in the center of atom,
whereas the integral of interaction of an electron in
the current subshell with electrons in outer subshells
only weakly depend on the exponent of the current
subshell. Furthemore, setting as in the case of H-
like orbitals ξ′/ξ = n/n′, we arrive to the following
estimate for the quantities βn′`′,n`:

1 +
n′2

n2
− 2n′

n

(2n′ + 2n)!

(2n′)!(2n)!

[
n′B n′

n′+n

(2n, 2n′ + 1) + nB n
n′+n

(2n′, 2n+ 1)
]
, (6)
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Table 1. Contributions of the n′-shells to the screening of
electrons in the n-shell.†

n′/n 1 2 3 4 5 6 7
1 0.625 0.971 0.999 1. 1. 1. 1.
2 0.243 0.727 0.957 0.997 1. 1. 1.
3 0.111 0.425 0.774 0.950 0.994 0.999 1.
4 0.062 0.249 0.535 0.804 0.947 0.991 0.999
5 0.040 0.160 0.358 0.606 0.824 0.945 0.988
6 0.028 0.111 0.250 0.440 0.656 0.839 0.945
7 0.020 0.082 0.184 0.326 0.504 0.694 0.851

† The principal quantum number of the screened shell
(n) is listed in the uppermost row, the principal quan-
tum number of the screening shell (n′) in the leftmost
column. E.g. the amount of screening of the shell with
principal quantum number n = 2 by the shell with
n′ = 1 equals to 0.971 (1-st row, 2-nd column); similar-
ly, the screening of the shell with n = 1 (1st column) by
the shell with n′ = 7 (7th row) equals to 0.020.

which, although involves approximations, covers
both limiting cases (here Bz(a, b) is the Euler in-
complete beta-function [19]).

2. RESULTS AND DISCUSSION

Following the analysis of the previous Section we
calculated values of βn′,n (in the accepted setting
they are `, `′ independent) for n, n′ = 1 ÷ 7 which
are assembled in Table 1 (the γn values stand on the
diagonal). We see that higher-lying shells are almost
100% screened by the lower lying – upper triangle of
Table 1 where the principal quantum numbers of the
higher-lying number the columns of the Table. In-
versely, the higher-lying shells produce only a minor
contribution to the screening of the lower ones whose
principal quantum numbers refer to the rows – the
lower triangle of the Table.

With use of these values we estimated the slopes
an` of the piecewise linear dependencies eq. (3) of
the exponents on Z within the segments referring
to the filling of the n`-subshells. They are assem-
bled in Table 2 together with the estimates of the
same slopes derived from the Slater [6] and Burns
[7] rules and the analytic estimate of the screening
[8]. Additionally, we provide the parameters of the
Z-dependencies of the orbital exponents [15] by the
method [12], namely, by minimizing the Frobenius
angle between the subspaces spanned, respectively,
by the Koga basis AO’s [17], covering the Z values
upto 103, and the MAP AO’s against the MAP expo-
nents ξn`. The values of the MAP exponents derived
from the pragmatic Koga basis set can be considered
as experimental. The difference with Ref. [15] is
that the segments of the Z values where the fitting to
the linear model has been performed in the present

Table 2. Theoretical estimates of the slopes an` in eq. (3)
for the (sub)shells being filled compared with the correspon-
ding values derived from the rules [6–8]. The values printed
in the same font refer to the same value of `.

n Slater [6] Burns [7] Bessis [8] Present work
eq. (4) MAP [15]

2 0.325 0.325 0.324 0.318 0.367 s
0.294 p

3 0.217 0.217 0.216 0.204
0.290 s
0.262 p
0.213 d

4 0.176 0.163 0.162 0.150

0.260 s
0.255 p
0.230 d
0.169 f

5 0.163 0.130 0.129 0.118

0.235 s
0.239 p
0.217 d
0.162 f

6 0.155 0.108 0.108 0.097 0.231 s
0.242 p

7 – 0.093 0.092 0.082 –

paper are strictly limited to the segments where the
n`-subshells are being filled according to prescrip-
tion of the formal Madelung-Klechkowskij (n+ `, n)
rules [9, 10] reproducing the standard construction
of the Periodic Table, whereas in Ref. [15] the ranges
where the fits had been performed were selected by
visual arbitration of the linear branches of the ξ vs
Z dependencies.

The dependencies of the MAP exponents [15] to-
gether with the theoretical values obtained by eqs.
(4), (6) as functions of the efficient core charges
Z − Zn` are depicted in Figs. 1 – 4.

The obtained results may be described as follows.
In all cases either the theoretical or experimental
exponents are almost ideally linear as functions of
Z −Zn`. In this repect experiment agrees with the-
ory. Minor deviations of the points from lines in
Figs. 1, 2 are due to irregularities of the subshell
filling patterns in the d- and f -series: neither d- nor
f -elements follow any unque filling pattern like s2dg
or, respectively, s2fg with g = Z − Zn`. The sim-
plest picture occurs for Lanthanoid and Actinoid (f -
element) series. The slopes of the dependencies for
the 4f and 5f exponents (Fig. 1) almost coincide as
do the values of the 6s and 7s exponents themselves.

For the transition series (d-elements, Fig. 2)
we observe the behavior of exponents generally re-
cembling that of the f - and s-exponents of the f -
elements. Namely, the d- and s-exponents grow lin-
early with Z − Zn` the former ones with noticeable
slopes which are almost the same for different values
of n in case of the experimental exponents. As for
the s-exponenets either experimental or theoretical
values increase with Z − Zn` much slower than the
d-exponents.
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Figure 1. Graphs of dependencies of 4f (blue), 5f (orange), 6s (green), 7s (red) exponents on the effective nuclear charge
Z − Zn` and their linear fits. Left: exponent values extracted in Ref. [15] from Koga basis [17]. Right: the similar
dependencies derived according to eq. (4).

Figure 2. Graphs of dependencies of 3d (blue), 4d (orange), 5d (green), 4s (red), 5s (violet), 6s (light brown) exponents on
the effective nuclear charge Z − Zn` and their linear fits. Left: exponent values extracted in Ref. [15] from Koga basis [17].
Right: the similar dependencies derived according to eq. (4).

7 8 7 8

Figure 3. Graphs of dependencies of 6p (blue), 5p (orange), 4p (green), 3p (red), 2p (violet) exponents on the effective
nuclear charge Z − Zn` and their linear fits. Left: exponent values extracted in Ref. [15] from Koga basis [17]. Right: the
similar dependencies derived according to eq. (4).

Figure 4. Graphs of dependencies of 6s (blue), 5s (orange), 4s (green), 3s (red), 2s (violet) exponents on the effective
nuclear charge Z − Zn` and their linear fits. Left: exponent values extracted in Ref. [15] from Koga basis [17]. Right: the
similar dependencies derived according to eq. (4).
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The dependencies of the p- and s-exponents on
Z − Zn` depicted in Figs. 3, 4 are represented in a
way that simplifies the verification of the hypothesis
of single sp-shells as formulated in Refs. [20, 21].
Having this in mind, we set Z − Zn` – the value of
the effective core charge for each first p-element in
a period – to be equal to three. With this caveat we
notice that the p-exponents follow the same Z−Zn`
dependence patterns as do other n`-exponents.

When it comes to s-exponents (Fig. 4), the fea-
tures characteristic for the Z − Zn` dependencies of
other types of orbitals manifest themselves as in the
cases of other `-values. Specific of the s-orbitals can
be described as follows: for the smaller principal
quantum numbers (n = 2, 3) the hypothesis of a
single sp-shells may be substantiated by the single
linear dependencies of the s-exponents along the en-
tire periods. This, however, changes for larger vaues
of the the principal quantum number (n ≥ 4). The
intrusion of d- and f -elements in the sequence of
subshells’ filling between s- and p-ones breaks a uni-
form slope of s- and p-exponents so that those in the
beginning of the periods (alkali and alkaline earth el-
ements) elapse from the otherwise ideally linear de-
pendence of these exponents extracted from the sub-
sequent p-elements. It can be also noticed that for
larger n’s the slope of the s- and p-exponents turn
to be very close to each other which was not the
case for the smaller n’s. Fairly remarkably, however,
the degenerate slopes for the s-exponents of the s-
elements (alkali and alkaline earths) extracted from
the Koga basis by minimizing the Frobenius angles
are only slightly larger than the slopes extracted by
the same method from the basis sets for p-elements
(respectively, 0.280, 0.284, and 0.281 for 4s, 5s and
6s vs. 0.260, 0.235, and 0.231), so that the differ-
ence cannot be seen of the graphs Fig. 4. It is also
remarkable that the slopes of the Koga-MAP expo-
nents of ns-orbitals are very close to those of the (n
– 1)p-orbitals as it can be seen from Table 2. This
eventually might be interpreted as a hint towards an
alternative grouping of the sp-shells, namely, that
implied by the Janet’s Left-Step [22] Periodic Table
(see also [20, 21]).

Although the piecewise linear dependence of or-
bital exponents on Z or Z − Zn` as derived from
model eq. (4) is fairly confirmed by experiments the
slopes of these linear trends are underestimated by
the theory eqs. (4) – (6) as compared to experiment
for all n’s. (Also observe different scale of the ordi-
nate of the left and right panels of Figs. 3 – 4). Also
the cut-offs of the linear dependencies (the constant

screening accumulated by the atom with Z = Zn`
– the atomic core – produced by the already filled
subshells) are quite different for the theoretical and
experimental values so that the order of the graphs
depicting the dependencies of ξ’s on Z−Zn` for dif-
ferent values of n is opposite for the experimental
and theoretical values. Specifically, theoretical 4f -
exponents are systematically larger than the 5f ones
whereas for the experimental values this order is in-
verted. Similar discord between the experimental
and theoretical values is as well observed for other
subshells and segments of the Periodic Table.

3. CONCLUSION

In the present work on the basis of the model eq.
(4) we managed to establish theoretically generally
known linear dependencies of the AOs’ exponents on
the nuclear charges Z (atomic numbers) similar to
the fundamental Moseley law and to derive expres-
sions for the parameters of these trends. With use
of an approximate form of the AO’s the estimates of
the interaction parameters for electrons belonging
to different subshells and abiding within the same
subshell have been derived. With help of these esti-
mates the parameters of the linear trends of orbital
exponents vs Z have been obtained and compared
with the analogous parameters describing similar de-
pendencies extracted from the pragmatic Koga basis
sets available for the elements with Z = 1÷103. Al-
though the numerical agreement between theoretical
estimates of the parameters of the ξn` (Z) dependen-
cies and analogous experimental ones is quite poor
their general linear character is reproduced. The ob-
served discrepancies between theory and experiment
will be addressed elsewhere.
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